spaceborne radar interferometry - university of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf ·...

78
Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne Radar Interferometry Leland E. Pierce The Univ of Michigan, Radiation Lab Ann Arbor, MI 48109-2122 USA March 26, 2014 Leland E. Pierce Spaceborne Radar Interferometry

Upload: lamxuyen

Post on 29-Aug-2018

225 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Spaceborne Radar Interferometry

Leland E. Pierce

The Univ of Michigan, Radiation Lab

Ann Arbor, MI 48109-2122 USA

March 26, 2014

Leland E. Pierce Spaceborne Radar Interferometry

Page 2: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Radar Interferometry Overview

Used to measure the height variation of the Earth’s surface, towithin a few meters

Radar on a satellite in orbit: imaging from 2 slightly differentperspectives.

∆-path-length gets you the height.

Can also map heights of forests

http://uavsar.jpl.nasa.gov/cgi-bin/data.pl

https://www.asf.alaska.edu/

Leland E. Pierce Spaceborne Radar Interferometry

Page 3: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Outline

1. Introduction to Radar

2. Synthetic Aperture Radar (SAR)

3. SAR Interferometry

4. Application: Mapping forests nationwide

Leland E. Pierce Spaceborne Radar Interferometry

Page 4: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Electromagnetic Waves and Currents

Two Conducting Wires

Leland E. Pierce Spaceborne Radar Interferometry

Page 5: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Electromagnetic Waves and Currents

Oscillating Current on One Wire

Leland E. Pierce Spaceborne Radar Interferometry

Page 6: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Electromagnetic Waves and Currents

Radiated Field Propagates in All Directions

Leland E. Pierce Spaceborne Radar Interferometry

Page 7: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Electromagnetic Waves and Currents

Field Induces Current on Second Wire

Leland E. Pierce Spaceborne Radar Interferometry

Page 8: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Electromagnetic Waves and Currents

Current on Second Wire Radiates

Leland E. Pierce Spaceborne Radar Interferometry

Page 9: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Electromagnetic Waves and Currents

Field Induces Current on First Wire

Leland E. Pierce Spaceborne Radar Interferometry

Page 10: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Electromagnetic Waves and Currents

Field Induces Current on First Wire

Leland E. Pierce Spaceborne Radar Interferometry

EECS 230, EECS 330

Page 11: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Radar Block Diagram

A Radar is a system for generating such a field and measuring therefelected field:

Switch G

GFilterA/D

Tx

RxMixer

Oscillator

(digital control circuitry not shown)

Leland E. Pierce Spaceborne Radar Interferometry

Page 12: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Radar Block Diagram

A Radar is a system for generating such a field and measuring therefelected field:

Switch G

GFilterA/D

Tx

RxMixer

Oscillator

(digital control circuitry not shown)

Leland E. Pierce Spaceborne Radar Interferometry

EECS 411, EECS 430

Page 13: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Typical Sensing Scenario

Radar on an airplane or a satellite looks down upon the Earth:

IncidentPulse

ReflectedEnergy

Leland E. Pierce Spaceborne Radar Interferometry

Page 14: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Radar Equation

Received power:

Pr = Pt

1

(4πR2)2λ2G 2

4πσ0

targetAtarget

1

(4πR2)2is due to spreading loss.

λ2G 2

4πis due to the antenna.

σ0targetAtarget is due to the target.

σ0target is a dimensionless parameter that encapsulates the target’s

response to the field.

Leland E. Pierce Spaceborne Radar Interferometry

Page 15: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Radar Equation

Received power:

Pr = Pt

1

(4πR2)2λ2G 2

4πσ0

targetAtarget

1

(4πR2)2is due to spreading loss.

λ2G 2

4πis due to the antenna.

σ0targetAtarget is due to the target.

σ0target is a dimensionless parameter that encapsulates the target’s

response to the field.

Leland E. Pierce Spaceborne Radar Interferometry

EECS 632

Page 16: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Radar Equation

Recieved Power vs. Range for a few cases:

Leland E. Pierce Spaceborne Radar Interferometry

Page 17: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Target Properties

• Reflected Field is usually larger for targets that are largecompared with the wavelength.

• Metal objects have much larger induced currents, and so muchlarger reflected fields as compared with non-conducting materials.

• In the microwave spectrum (most spaceborne instruments), wetobjects reflect more than dry objects.

Leland E. Pierce Spaceborne Radar Interferometry

Page 18: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Target Properties

Scattering Mechanisms

(http://envisat.esa.int)Leland E. Pierce Spaceborne Radar Interferometry

Page 19: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Thermal Noise

Thermal Noise limits the radar’s performance:

Vrms =√

4RkTB

R - Resistance, Ohmsk - Boltzmann’s constant, Ws/KT - Temperature, KB - Bandwidth of voltmeter, Hz

Leland E. Pierce Spaceborne Radar Interferometry

Page 20: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Thermal Noise

Must design the radar with a high enough transmit power in orderto get a large enough backscattered power from the expectedtargets to overcome the receiver noise.

0

1

2

3

4

5

6

7

8

9

10

250 300 350

Temperature (K)

Noi

seV

olta

ge(m

icro

-Vol

ts)

B=1 MHz

R=1 KOhm

Leland E. Pierce Spaceborne Radar Interferometry

EECS 411

Page 21: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Signal due to two targets:

Vtotal = V1ejφ1 + V2e

jφ2

Phase φ is related to distance from the radar.

Leland E. Pierce Spaceborne Radar Interferometry

Page 22: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Two identical targets, same range:

Vtotal = 2Vejφ

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

Leland E. Pierce Spaceborne Radar Interferometry

Page 23: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Two identical targets, different ranges:

Vtotal = V1ejφ1 + V2e

jφ2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

Leland E. Pierce Spaceborne Radar Interferometry

Page 24: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Two identical targets, phases cancel:

Vtotal = V1ejφ1 + V1e

−jφ1 = 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

Leland E. Pierce Spaceborne Radar Interferometry

Page 25: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

For many scatterers:

V =∑

Viejφi = Vejφ

φ is uniformly distributed [0, 2π],V is Rayleigh distributed.

Leland E. Pierce Spaceborne Radar Interferometry

Page 26: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Rayleigh distribution for received voltage from many scatterers:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Voltage

p(v

)

p(V ) =V

σ2e−V2

2σ2

V =

π

Variance = (2 − π

2)σ2

Leland E. Pierce Spaceborne Radar Interferometry

Page 27: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Exponential distribution for received power from many scatterers:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Power

p(P

)

p(P) =1

2σ2e−P

2σ2

P = 2σ2

Variance = P2

standard deviation = mean

Leland E. Pierce Spaceborne Radar Interferometry

Page 28: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Speckle Mitigation: Add independent samples:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10Number of independent samples averaged

relative σ

1.0

0.0

< P >=

N∑

i=1

Pi

stddev = P/√

N

Leland E. Pierce Spaceborne Radar Interferometry

Page 29: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Speckle Mitigation: Example:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50Sample Number

Rec

eive

dpow

er

average=⇒

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50Sample Number

Rec

eive

dpow

er

Leland E. Pierce Spaceborne Radar Interferometry

Page 30: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Speckle

Speckle Mitigation: Example:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50Sample Number

Rec

eive

dpow

er

average=⇒

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50Sample Number

Rec

eive

dpow

er

Leland E. Pierce Spaceborne Radar Interferometry

EECS 632, EECS 401

Page 31: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Range Resolution

Range Resolution: 2-target case:Transmitted pulse with width τand two received pulses.Define range resolution as thespacing between 2 targets suchthat the two returned pulses startto overlap:

2R1

c+ τ =

2R2

c

Leland E. Pierce Spaceborne Radar Interferometry

Page 32: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Range Resolution

Range Resolution: 2-target case:

range resolution =cτ

2=

c

2B

Cannot make pulse width too short, or the transmitted power willnot be enough to overcome thermal noise.

Leland E. Pierce Spaceborne Radar Interferometry

Page 33: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Range Resolution

Instead of transmitting a constant-frequency pulse, send afrequency-chirped pulse instead:

chirp = V (t) = cos(ωt + Ωt2)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

Leland E. Pierce Spaceborne Radar Interferometry

Page 34: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Range Resolution

Process the received signal with a matched filter:

processed signal =

signal(t ′)chirp∗(t − t ′)dt ′

Matched filter applied to a single chirp:

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Time

Vol

tage

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 0 1 2Time

Pow

er

Leland E. Pierce Spaceborne Radar Interferometry

Page 35: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Range Resolution

Because we processed the received signal with a matched filter:

range resolution =c

2Bwhere B is the bandwidth of the chirp.

• Independent of pulse width.• Can now choose pulse width to satisfy power, or other systemconstraints.

Leland E. Pierce Spaceborne Radar Interferometry

Page 36: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Azimuth Resolution

Antenna Pattern determines when targets at different anglesoverlap:

Leland E. Pierce Spaceborne Radar Interferometry

Page 37: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Phased Arrays

Antenna Arrays can be used to get narrower beams:

Array Pattern =(

Aiejφi

)

f (θ, φ)

f (θ, φ) is the single-antenna pattern

Aiejφi is the amplitude and phase weighting for each antenna

Leland E. Pierce Spaceborne Radar Interferometry

Page 38: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Phased Arrays

Can design the weights to produce a very narrow main beam:

An array of 5 separate an-tennas, showing their single-antenna beams.

The composite antennabeam for the whole array.

Leland E. Pierce Spaceborne Radar Interferometry

Page 39: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Phased Arrays

Can design the weights to produce a very narrow main beam:

An array of 5 separate an-tennas, showing their single-antenna beams.

The composite antennabeam for the whole array.

Leland E. Pierce Spaceborne Radar Interferometry

EECS 531

Page 40: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Typical Sensing Scenario

Side-looking radar from an airplane or satellite:

(http://www.radartutorial.eu/)

Leland E. Pierce Spaceborne Radar Interferometry

Page 41: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

JERS

Example Spaceborne SAR: JERS

(http://www.eorc.jaxa.jp)

Frequency: 1.25 GHzResolution: 18m range × 18m azOrbital Height: 568 KmSwath Width: 75 KmBoresite: 35 degrees

Leland E. Pierce Spaceborne Radar Interferometry

Page 42: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Example SAR Image

SAR image with speckle Despeckled SAR image(http://earth.esa.int)

Leland E. Pierce Spaceborne Radar Interferometry

Page 43: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Example SAR Image

(http://visibleearth.nasa.gov)Leland E. Pierce Spaceborne Radar Interferometry

Page 44: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Example SAR Image

(http://visibleearth.nasa.gov)Leland E. Pierce Spaceborne Radar Interferometry

EECS 632

Page 45: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

SAR Phase

• Previous images showed SAR images of backscattered power.

• A SAR can also record the phase, but an image of it looks likenoise.

• If use two SAR antennas, the phase difference between the samepixels in the two images is meaningful.

Leland E. Pierce Spaceborne Radar Interferometry

Page 46: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Motivation

• Start with 2 sensors looking atsame spot on the ground.• These sensors have a separation,B , and an angle α, defining theirrelative positions.• Relative to the ground, thesesensors have a height, H, abovesome reference surface.• A point on the ground is at aparticular range and incidence an-gle from each sensor.

The unknown height, h, of the point on the ground is what wewant to solve for.

Leland E. Pierce Spaceborne Radar Interferometry

Page 47: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Motivation

Assume know both ranges, andbaseline. Solve for the look angleusing law of cosines:

(r +∆R)2 = r2+B2−2Br cos(β)

where β = α + (π/2 − θlook).

After solving for θlook we can calculate h:

h = H − r cos(θlook)

Leland E. Pierce Spaceborne Radar Interferometry

Page 48: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Motivation

• However, we only know the range to within 5 or 10 meters.• This causes an uncertainty in the look angle.• This leads to a large uncertainty in the height:

heigh uncertainty ∝( r

B

)

∆r

• For current spaceborne SAR systems r ∈ (250Km, 800Km), whileB is 100 to 200 meters, giving r/B ≈ 5000.• Typical range resolutions are meters, and so this makes theheight error far too large.

Leland E. Pierce Spaceborne Radar Interferometry

Page 49: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Motivation

• Solution 1: Use a large baseline.

Problem: Using large baselines violates the assumption ofnearly-equivalent scattering centers, and so the difference in rangesdoes not measure what we want.

• Solution 2: Improve our precision for ∆r :Problem: we need mm-scale precision in order to get height errorsof a few meters.Solution: Use the phase of the signal.

Leland E. Pierce Spaceborne Radar Interferometry

Page 50: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Motivation

• Phase of an L-band SAR signal:

Precision of 1 degree equates to:

24cm(1/360) ≈ 7mm

This could work.

Leland E. Pierce Spaceborne Radar Interferometry

Page 51: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Overview

(Taylor, et al., 1999, Atlantis Scientific, Inc.)

Leland E. Pierce Spaceborne Radar Interferometry

Page 52: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• Start with two images covering the same region on the Earth.These were taken by two different overpasses of a SAR satellite.

• The images are single-look complex, with Real and Imaginaryparts.

• In order to form the phase difference for each pixel, we need thepixels to be lined up with each other: Co-Registration is required.

Leland E. Pierce Spaceborne Radar Interferometry

Page 53: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• Manually collect a few points that initializes the algorithm withan offset, rotation and scale between the 2 images.

(Richards, AESS, 2007)

Leland E. Pierce Spaceborne Radar Interferometry

Page 54: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• Then use correlation on small image patches to automaticallycollect many more points, with sub-pixel accuracy.

• Efficiently calculate correlation using Fourier Transform:

Fim1 = IM1

Fim2 = IM2

Correlation(i, j) = F−1IM1 · IM2∗

For an image patch centered at (i,j).

Leland E. Pierce Spaceborne Radar Interferometry

Page 55: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• For high-resolution correlation, use 10X-oversampled imagepatches.

• Resampling is best achieved using the Fourier Transform.

• Start with an N×N patch, and forward transform:

IM PATCH(N,N) = F(im patch(N,N))

• Zero-pad 10× and inverse transform:

im patch(10N, 10N) = F−1(IM PATCH(10N, 10N))

• The result is an image interpolated at a 1/10 the pixel spacing ofthe original.

Leland E. Pierce Spaceborne Radar Interferometry

Page 56: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• For each automatically-generated sample point we use a measureof contrast of the correlation function that is the peak/average.

Example correlation functions.(Richards, AESS, 2007)

• Threshhold this value to choose “good” points.

Leland E. Pierce Spaceborne Radar Interferometry

Page 57: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• Calculate a warping function from one image to the other usingthese automatically-collected tie points.• Assume a polynomial function for this:

xnew = a0 + a1xold + a2xoldyold + a3x2old + · · ·

• Similarly for ynew .• Use linear-least squares to solve for the unknown coefficients.

Leland E. Pierce Spaceborne Radar Interferometry

Page 58: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• Use the oversampled image and the polynomial functions toresample the second image.

(Richards, AESS, 2007)

Leland E. Pierce Spaceborne Radar Interferometry

Page 59: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Coregistration

• Use the oversampled image and the polynomial functions toresample the second image.

(Richards, AESS, 2007)

Leland E. Pierce Spaceborne Radar Interferometry

EECS 442, EECS 451

Page 60: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Difference

• Using the pixel-by-pixel phase difference is too noisy.

(ERDAS Field Guide, 1999)

Dark is 0 degrees, bright is 360 degrees.

Leland E. Pierce Spaceborne Radar Interferometry

Page 61: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Difference

• Intead, estimate using a small neighborhood:

Phase Difference = arg

N∑

i ,j=1

Im1 · Im2∗

(ERDAS Field Guide, 1999)

Leland E. Pierce Spaceborne Radar Interferometry

Page 62: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Baseline Estimation

• Using data from 2 different overpasses of a satellite means thatwe really don’t know what the baseline is.• One could use the orbital data to try to estimate it, but theorbits are not accurate enough.• Instead, use a few points on the ground where one knows theelevation. Like benchmarks that the USGS installed.• Using the previous equations for phase difference and a guess forthe baseline length and angle results in guessed phases for each ofthese calibration points.• Use a numerical nonlinear optimization technique to iterativelyupdate the guess until the error in the guessed phases comparedwith the measured phases is small enough.

Leland E. Pierce Spaceborne Radar Interferometry

Page 63: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Unwrapping

• The phase difference image has other issues that need to bedealt with before we can generate an elevation map:

1. Flattening.2. Unwrapping.3. Phase offset.

Leland E. Pierce Spaceborne Radar Interferometry

Page 64: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Flattening

• Since we want the elevation with respect to a reference surface,at this point we can subtract the phase difference that we expectdue to this reference surface.• This makes the phase variation more slowly-varying across theimage, which helps with the next step: Unwrapping.

Original Flattened

(ERDAS Field Guide, 1999)

Leland E. Pierce Spaceborne Radar Interferometry

Page 65: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Wrapping

• The measured phase is wrapped between the values 0 and 2πradians. For an example hill shape, we get:

(Richards, AESS, 2007)

Leland E. Pierce Spaceborne Radar Interferometry

Page 66: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Unwrapping

• Phase unwrapping involves adding back 2π radians where neededto get back the actual phase across the image.

(ERDAS Field Guide, 1999)

Leland E. Pierce Spaceborne Radar Interferometry

Page 67: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Unwrapping

• Involves finding the traces in the image where the phase resetsfrom 2π to 0.• Then add back n2π, region-by-region.• Many techniques: a starting point:Dennis C. Ghiglia, Mark D. Pritt, “Two-dimensional phaseunwrapping: theory, algorithms, and software,” Wiley, 1998.• Important issues:1. noise2. abrupt elevation changes3. shadow

Leland E. Pierce Spaceborne Radar Interferometry

Page 68: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Unwrapping

• Example result of phase unwrapping

(ERDAS Field Guide, 1999)Leland E. Pierce Spaceborne Radar Interferometry

Page 69: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Phase Offset

• Now the phase still has an arbitrary offset, which we can dealwith using the same calibration points we used for the baselineestimate.• Use the known position and elevation of the calibration points todetermine the offset, and perhaps even a slope, for determining thefinal phase values.• A linear-least squares formulation can be used.

Leland E. Pierce Spaceborne Radar Interferometry

Page 70: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

IFSAR Processing: Convert to Elevation

• Last step is to convert phase to elevation in meters:

h =−λ

r sin(θlook)

B cos(θlook − α)φunwrapped

Leland E. Pierce Spaceborne Radar Interferometry

Page 71: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

SRTM

Example Spaceborne IFSAR: SRTM

(http://southport.jpl.nasa.gov)

Frequency: 5 GHzResolution: 6-30 m range and azOrbital Height: 225 KmSwath Width: 20-100 KmBoresite: 40 degrees

Leland E. Pierce Spaceborne Radar Interferometry

Page 72: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Forest Height Estimation

On the right: an airphoto, with forest stands outlined.On the left: SRTM elevation map: showing that the forests aretaller than the surrounding land.

Leland E. Pierce Spaceborne Radar Interferometry

Page 73: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Forest Height Estimation

One slice through the dataset showing the correspondence of theSRTM data and the known forest height.

Since the radar scatters fromwithin the canopy, equations thattake into account the species andforest density are used to estimatethe forest height.

Leland E. Pierce Spaceborne Radar Interferometry

Page 74: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Forest Height/Biomass Estimation

From Josef Kellndorfer:

Leland E. Pierce Spaceborne Radar Interferometry

Page 75: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Thanks for your attention

You can contact me at:[email protected]

Viewgraphs available at:http://www.eecs.umich.edu/~lep/ifsar talk 2014.pdf

Leland E. Pierce Spaceborne Radar Interferometry

Page 76: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

Relevant EECS Courses

EECS 230 and 330: Intro. to Electromagnetics

EECS 280: Programming

EECS 373: Embedded Systems

EECS 411 and 430: Introduction to radar circuits and wireless

EECS 401: Probability

EECS 442: Computer Vision

EECS 451: Signal Processing

EECS 531: Antennas

EECS 632: Imaging radar systems and processing

Leland E. Pierce Spaceborne Radar Interferometry

Page 77: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

References

ERDAS Field Guide, (especially Chapter 8) 1998.www.gis.usu.edu/manuals/labbook/erdas/manuals/FieldGuide.pdf

Mark A. Richards, “A Beginner’s Guide to Interferometric SARConcepts and Signal Processing.” IEEE A&E Systems MagazineVol. 22, No. 9, Sept., 2007.http://users.ece.gatech.edu/ mrichard/AESS%20IFSAR%20Tutorial.pdf

Leland E. Pierce Spaceborne Radar Interferometry

Page 78: Spaceborne Radar Interferometry - University of …web.eecs.umich.edu/~lep/ifsar_talk_2014.pdf · Introduction Radar Introduction Synthetic Aperture Radar SAR Interferometry Spaceborne

IntroductionRadar Introduction

Synthetic Aperture RadarSAR Interferometry

References

John Curlander, Robert McDonough, “Synthetic Aperture Radar:Systems and Signal Processing,” Wiley, 1991.

Ramon F. Hanssen, “Radar interferometry: data interpretation anderror analysis,” Kluwer Academic, 2001.

Stephen C. Taylor, Bernard Armour, William H. Hughes, AndrewKult, Chris Nizman, “Operational interferometric SAR dataprocessing for RADARSAT using a distributed computingenvironment,” Geocomputation, 1999.http://www.geocomputation.org/1999/084/gc 084.htm

Leland E. Pierce Spaceborne Radar Interferometry