spin–lattice simulations with lammps · 2017-09-05 · spin–lattice simulations with lammps...

17
Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida ([email protected]), Steve Plimpton, Aidan Thompson 9/5/17 Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 2014-00000

Upload: others

Post on 03-Aug-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Spin–lattice simulations with LAMMPSLAMMPS Workshop and Symposium

Julien Tranchida ([email protected]), Steve Plimpton, Aidan Thompson

9/5/17

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a whollyowned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

2014-00000

Page 2: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Introduction

Objective: developing a LAMMPS package for spin–lattice simulations.

Enable study of:

Magnetostriction,Spin–lattice relaxation,Spin dynamics,Topological spinstructures,Spin liquids, ...

Simulations of bismuth oxide and fcc colbalt.

9/5/17 2

Page 3: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Introduction

Objective: developing a LAMMPS package for spin–lattice simulations.

Enable study of:

Magnetostriction,Spin–lattice relaxation,Spin dynamics,Topological spinstructures,Spin liquids, ...

Simulations of bismuth oxide and fcc colbalt.

9/5/17 2

Page 4: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

EOMs for the spin dynamicsFrom the DFT formalism, Antropov et al. derived equations forthe dynamics ot atomic spins [2]:

dsidt

=1

1 + λ2((ωi + ηi)× si + λ si × (ωi × si))

Magnetic interactions:

ωi = −1

ℏ∂HMag

∂si

Spin Hamiltonian:

HMag =N∑

i,j,i̸=jJij (rij) si · sj

+ gµBµ0

N∑i=0

si · Hext

Connection to a random bath:

⟨ηi⟩ = 0 and⟨ηα

i (t)ηβj (t

′)⟩ = 2Dδijδαβδ(t − t′)

Fluctuation–dissipationrelation:

D =2πλkBT

[2] Antropov, V. P. et al. (1996). Phys. Rev. B, 54(2), 1019.9/5/17 3

Page 5: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

EOMs for the spin dynamicsFrom the DFT formalism, Antropov et al. derived equations forthe dynamics ot atomic spins [2]:

dsidt

=1

1 + λ2((ωi + ηi)× si + λ si × (ωi × si))

Magnetic interactions:

ωi = −1

ℏ∂HMag

∂si

Spin Hamiltonian:

HMag =N∑

i,j,i̸=jJij (rij) si · sj

+ gµBµ0

N∑i=0

si · Hext

Connection to a random bath:

⟨ηi⟩ = 0 and⟨ηα

i (t)ηβj (t

′)⟩ = 2Dδijδαβδ(t − t′)

Fluctuation–dissipationrelation:

D =2πλkBT

[2] Antropov, V. P. et al. (1996). Phys. Rev. B, 54(2), 1019.9/5/17 3

Page 6: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

EOMs for the spin dynamicsFrom the DFT formalism, Antropov et al. derived equations forthe dynamics ot atomic spins [2]:

dsidt

=1

1 + λ2((ωi + ηi)× si + λ si × (ωi × si))

Magnetic interactions:

ωi = −1

ℏ∂HMag

∂si

Spin Hamiltonian:

HMag =N∑

i,j,i̸=jJij (rij) si · sj

+ gµBµ0

N∑i=0

si · Hext

Connection to a random bath:

⟨ηi⟩ = 0 and⟨ηα

i (t)ηβj (t

′)⟩ = 2Dδijδαβδ(t − t′)

Fluctuation–dissipationrelation:

D =2πλkBT

[2] Antropov, V. P. et al. (1996). Phys. Rev. B, 54(2), 1019.9/5/17 3

Page 7: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

EOMs for spin–lattice dynamics

Spin–lattice Hamiltonian [3]:

Hsl =N∑

i=1

mi|vi|2

2+

N∑i,j

V (rij) +N∑

i,j,i̸=jJij (rij) si · sj + gµBµ0

N∑i=0

si · Hext

The associated spin–lattice equations of motion are given by [3]:∂ri∂t

= vi

∂vi∂t

= Fi (rij, si,j) =N∑

j,i̸=j

[−

dV (rij)

dr+

dJ (rij)

drsi · sj

]∂si∂t

= ωi × si

[3] Beaujouan, D., et al.. (2012). Phys. Rev. B, 86(17), 174409.9/5/17 4

Page 8: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

EOMs for spin–lattice dynamics

Spin–lattice Hamiltonian [3]:

Hsl =N∑

i=1

mi|vi|2

2+

N∑i,j

V (rij) +N∑

i,j,i̸=jJij (rij) si · sj + gµBµ0

N∑i=0

si · Hext

The associated spin–lattice equations of motion are given by [3]:∂ri∂t

= vi

∂vi∂t

= Fi (rij, si,j) =N∑

j,i̸=j

[−

dV (rij)

dr+

dJ (rij)

drsi · sj

]∂si∂t

= ωi × si

[3] Beaujouan, D., et al.. (2012). Phys. Rev. B, 86(17), 174409.9/5/17 4

Page 9: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Numerical integrationAdvance operators are not commuting, a Suzuki–Trotterdecomposition has to be used [4]:

ST decomposition:

v← v + Lv.∆t/2

r← r + Lr.∆t/2

s← s + Ls.∆t

r← r + Lr.∆t/2

v← v + Lv.∆t/2

s0 ← s0 + Ls0 .∆t/2

sN−1 ← sN−1 + LsN−1 .∆t/2

sN ← sN + LsN .∆t

sN−1 ← sN−1 + LsN−1 .∆t/2

s0 ← s0 + Ls0 .∆t/2

Numerical results:

Sim. param.: λ = 0, Hext = 10T along

ez, JCo

[4] Omelyan, I. P. et al. (2001). Phys. Rev. Lett., 86(5), 898.9/5/17 5

Page 10: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Numerical integrationAdvance operators are not commuting, a Suzuki–Trotterdecomposition has to be used [4]:

ST decomposition:

v← v + Lv.∆t/2

r← r + Lr.∆t/2

s← s + Ls.∆t

r← r + Lr.∆t/2

v← v + Lv.∆t/2

s0 ← s0 + Ls0 .∆t/2

sN−1 ← sN−1 + LsN−1 .∆t/2

sN ← sN + LsN .∆t

sN−1 ← sN−1 + LsN−1 .∆t/2

s0 ← s0 + Ls0 .∆t/2

Numerical results:

Sim. param.: λ = 0, Hext = 10T along

ez, JCo

[4] Omelyan, I. P. et al. (2001). Phys. Rev. Lett., 86(5), 898.9/5/17 5

Page 11: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Numerical integrationAdvance operators are not commuting, a Suzuki–Trotterdecomposition has to be used [4]:

ST decomposition:

v← v + Lv.∆t/2

r← r + Lr.∆t/2

s← s + Ls.∆t

r← r + Lr.∆t/2

v← v + Lv.∆t/2

s0 ← s0 + Ls0 .∆t/2

sN−1 ← sN−1 + LsN−1 .∆t/2

sN ← sN + LsN .∆t

sN−1 ← sN−1 + LsN−1 .∆t/2

s0 ← s0 + Ls0 .∆t/2

Numerical results:

Sim. param.: λ = 0, Hext = 10T along

ez, JCo

[4] Omelyan, I. P. et al. (2001). Phys. Rev. Lett., 86(5), 898.9/5/17 5

Page 12: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Parallel implementation

A sectoring method, respecting the symplectic properties of thespin–lattice algorithms, was implemented [5]:

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

Sectoring operations for a two dimen-sional system with four processors.

A

C

B

D

Communication between four sectorsfor periodic boundary conditions.

[5] Amar, J. G. et al. (2005). Phys. Rev. B, 71(12), 125432.

9/5/17 6

Page 13: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

ResultsWeak and strong scaling results for the sectoring algorithm:

Simulation conditions: λ = 0, JCo > 0,

∆ t = 10−4 ps, Hext = 10T along ez

Simulation conditions: λ = 0, JCo > 0,

∆ t = 10−4 ps, Hext = 10T along ez

The 50 % efficiency of the algorithm is reached between 250 and300 atoms per process.

9/5/17 7

Page 14: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Conclusions

Summary:A package allowing spin lattice simulations has been developed,Mathematically rigorous integration algorithms were implemented(magnetization and energy preservation),A sectoring algorithm was implemented and tested.

Future work:Take the long range dipolar interaction into account:

HMag =N∑

i,j,i̸=jJij (rij) si · sj −

µ0µ2b

N∑i,j,i̸=j

gigjr3ij

((si · eij)(sj · eij)−

1

3(si · si)

)Find experiments to compare with.

9/5/17 8

Page 15: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Appendix 1: Magnetic interactions

Spin Hamiltonian:

HMag = HEx +HZee +HAn +HDM +HME +HDip

Magnetic anisotropy:

HAn = Ka

N∑i=0

(si · na)2

Magneto-electricinteraction:

HME =N∑

i,j,i ̸=j(E × rij) · si × sj

Zeeman interaction:

HZe = gµBµ0

N∑i=0

si · Hext

Dzyaloshinskii-moriya:

HDM =N∑

i,j,i̸=jDij · si × sj

9/5/17 9

Page 16: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Appendix 2: Poisson bracket for spin–lattice systems

Considering f (t, ri,pi, si) and g (t, ri,pi, si), one has:

{f, g} =N∑

i=1

[∂f∂ri

.∂g∂pi− ∂f

∂pi.∂g∂ri

+siℏ.

(∂f∂si× ∂g

∂si

)][] Yang, K. H. et al. (1980). Phys. Rev. A, 22(5), 1814.

9/5/17 10

Page 17: Spin–lattice simulations with LAMMPS · 2017-09-05 · Spin–lattice simulations with LAMMPS LAMMPS Workshop and Symposium Julien Tranchida (jtranch@sandia.gov), Steve Plimpton,

Appendix 3: Parametrization of the exchange interaction

Bethe–Slater model for the parametrization:

J(ij) = 4α( rijδ

)2(1− γ

( rijδ

)2)

exp(−( rijδ

)2)Θ(rc − rij)

(1)with:

α an energy in eV,δ a characteristic distance in Å,γ an adimensional coefficient,rc a cutoff distance.

9/5/17 11