spr 4165, verification of bridge foundation design

64
Center for Offshore Foundation and Energy Engineering 3/3/2021 1 VERIFICATION OF BRIDGE FOUNDATION DESIGN ASSUMPTIONS AND CALCULATIONS Rodrigo Salgado, Monica Prezzi and Fei Han Jeremy Hunter Athar Khan Mir Zaheer Tim Wells Barry Partridge Mahmoud Hailat Matthew Kohut, Sean Porter and Derek Barnes Superior Construction Company Acknowledgments 1 2

Upload: others

Post on 03-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

1

VERIFICATION OF BRIDGE FOUNDATION

DESIGN ASSUMPTIONS AND CALCULATIONS

Rodrigo Salgado, Monica Prezzi and Fei Han

Jeremy Hunter

Athar Khan

Mir Zaheer

Tim Wells

Barry Partridge

Mahmoud Hailat

Matthew Kohut, Sean Porter and Derek Barnes

Superior Construction Company

Acknowledgments

1

2

Page 2: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

2

Project Background

Location - Lafayette, IN, USA

3

4

Page 3: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

3

Old timber piles

Built 1936; rehabilitated 1984

Dead loads at foundation level and span lengths

152 ft❑ Total length: 1000 ft

❑ 7-span bridge

❑ Typical span length: 152 ft

❑ Budget estimate: $ 18 million

130'-6"

Span "A"

WABASH RIVER

152'

Span "B"

152'

Span "C"

Span "D"

Pier no. 4Pier no. 3

Pier no. 2

Bend no. 1

N. RIVER RD.

Approx. existing ground Q100- 532.34 Q100- 532.34

OHWM Elev. 510.00

Flowline Elev. 500.94

152' 92' 132'

Span "E" Span "F" Span "G"

Approx. existing ground

Q100- 532.34

Pier no. 5 Pier no. 6 Pier no. 7

Bend no. 8

152'

2121

kips

4200

kips

5490

kips

5418

kips

5364

kips

4734

kips

5040

kips

1824

kips

Pier 7

92 ft 132 ft

5

6

Page 4: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

4

New bridge

130'-6"

Span "A"

WABASH RIVER

152'

Span "B"

152'

Span "C"

Span "D"

Pier no. 4Pier no. 3

Pier no. 2

Bend no. 1

N. RIVER RD.

Approx. existing ground Q100- 532.34 Q100- 532.34

OHWM Elev. 510.00

Flowline Elev. 500.94

152' 92' 132'

Span "E" Span "F" Span "G"

Approx. existing ground

Q100- 532.34

Pier no. 5 Pier no. 6 Pier no. 7

Bend no. 8

152'

Bridge pier

Piles

Bridge deck

Foundation loads (per pile)

Bent 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 6 Pier 7 Bent 8

Number of piles 7 15 18 18 18 18 15 8

Type of piles CE CE OE OE OE OE OE CE

Dead load (kips) 303 280 305 301 298 263 336 228

Live load (kips) 151 187 267 220 196 257 185 115

Lateral load (kips) 10 12 12 11 10 11

7

8

Page 5: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

5

LRFD design for pile group

( )n n n n

b b s sL g DL LLRF Q RF Q LF DL LF LL+ +Factored load

(obtained from structural engineer)

Group efficiency

Resistance factors

(must be the right ones for the analysis method used!)

Nominal resistance (geotechnical analysis)

This approach is general and could be used both for ULSs and SLSs

but so far resistance factors have been developed only for specific

analyses and ULSs

Where are the Questions?

10

( )n n n n

b b s sL g DL LLRF Q RF Q LF DL LF LL+ +

Calculated with Purdue

Pile Design Method -

Verified in JTRP SPR

4040 research project

Group efficiency:

One of the greater

uncertainties in such

calculations: for a

given soil profile, it

depends on type of

pile, c-c spacing, cap

resistance, settlement

From structural design:

conservative?

Studied in JTRP SPR

4165 research project

9

10

Page 6: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

6

Where are the Questions?

11

( )n n n n

b b s sL g DL LLRF Q RF Q LF DL LF LL+ +

For what settlement are these calculated?

Ultimate limit states of a bridge are fundamentally similar to

those that would be observed in structures that have been

better studied, such as frame buildings

Serviceability is defined differently, relating to ride quality

and maintenance preferences

Tolerable Movement of Bridge Foundations

11

12

Page 7: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

7

SLS in bridges are related to the riding conditions

Uncomfortable/dangerous ride if pavement is wavy or cracked

Settlements or horizontal displacements of the foundations causing such conditions are clearly not tolerable

Lower initial cost or lower maintenance costs?

It may be advantageous to save on the foundations (an initial cost) even if it means more frequent repair and maintenance of pavements (delayed costs)

Defects caused by vertical movements are easier to correct than those caused by lateral movements, which may lead to an undesirable closing of expansion joints

Bridge Foundations

δ

l

:

:l

Difference in settlement between foundations

Distance between adjacent foundations

13

14

Page 8: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

8

Bozozuk (1978)

Empirical limits on vertical settlement

Barker, R. M., Duncan, J. M., Rojiani, K. B., Ooi, P. S. K., Tan, C. K., and Kim, S. G. (1991). “Manuals for the design of bridge foundations: Shallow

foundations, driven piles, retaining walls and abutments, drilled shafts, estimating tolerable movements, and load factor design specifica- tions and

commentary.” NCHRP Rep. 343, Transportation Research Board, Washington, DC.

Settlement

magnitude

Basis for recommendation Reference

50 mm Not harmful Bozozuk (1978)

60 mm Ride quality Walkinshaw (1978)

>60 mm Structural distress Walkinshaw (1978)

100 mm Ride quality and structural distress Grover (1978)

100 mm Harmful but tolerable Bozozuk (1978)

>100 mm Usually intolerable Wahls (1990)

15

16

Page 9: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

9

Tolerable Horizontal Movements of Bridges

Horizontal movement

(mm)Basis for recommendation Reference

25 Not harmful Bozozuk (1978)

38 Tolerable in most cases Moulton, et al. (1985)

51 Structural distress Walkinshaw (1978)

51 Harmful but tolerable Bozozuk (1978)

51 Usually intolerable Wahls (1990)

δ

l

:

:l

Difference in Settlement between Foundations

Distance between Foundations

Maximum Angular

Distortion, δ / lBasis for Recommendation Recommended by

0.004 Tolerable for multiple-span bridges Moulton, et al. (1985)

0.005 Tolerable for single-span bridges Moulton, et al. (1985)

'Standard specifications for highway bridges 2000 interim version.’

Maximum Angular

Distortion, δ / lBasis for Recommendation Recommended by

0.004 Tolerable for multiple-span bridgesMoulton, et al. (1985)

Barker, et al. (1991)

0.008 Tolerable for single-span bridgesMoulton, et al. (1985)

Barker, et al. (1991)

'LRFD bridge design specifications 2005 interim version'

17

18

Page 10: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

10

Tolerable Angular Distortion for Bridges

Value of

Angular

Distortion

Percent of 119 continuous-span bridges

for which this amount of angular distortion

was considered to be tolerable

Percent of 56 simple-span bridges for

which this amount of angular distortion

was considered to be tolerable

0.000-0.001 100% 98%

0.001-0.002 97% 98%

0.002-0.003 97% 98%

0.003-0.004 96% 98%

0.004-0.005 92% 98%

0.005-0.006 88% 96%

0.006-0.008 85% 93%

MOULTON ET AL. (1985)

Allowable angular distortion by AASHTO (2018)

20

Continuous-span bridges

0.004

Simple-span bridges

0.008

(AASHTO. (2018). AASHTO LRFD bridge design specifications. American Association of State Highway and Transportation Officials, Washington, D.C.)

19

20

Page 11: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

11

Allowable settlement for the Sagamore Bridge

For pier 7 (span length = 92 ft)

Allowable differential settlement: 92 ft 0.004 = 112 mm

Assuming: differential settlement/total settlement = 0.75

Allowable total settlement = 112/0.75 = 150 mm

For a typical pier (span length = 152 ft)

Allowable differential settlement: 152 ft 0.004 = 185 mm

Assuming: differential settlement/total settlement = 0.75

Allowable total settlement = 185/0.75 = 247 mm

Site Investigation

21

22

Page 12: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

12

Cone Penetration Test (CPT)

Standard Penetration Test (SPT)

23

24

Page 13: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

13

In-situ test locations

CEP OEP

6' 12' 12' 12'9'

50'

5'

5'29'

7'

19'TB-4

TB-6

Pier-7

CPT-2

CPT-3

ROEP: reaction open-ended pipe pile

CEP: closed-ended pipe pile

OEP: open-ended pipe pile)

: CPT

: SPT

CPT-5

Soil samples

80 ft65 ft25 ft 110 ft

25

26

Page 14: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

14

Existence of large particles

Gravel content

0

20

40

60

80

100

120

0 20 40 60 80

Dep

th (

ft)

Gravel content (%)

27

28

Page 15: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

15

In-situ tests - SPT & CPT

OEP

CEP

0

20

40

60

80

100

120

140

160

0 20 40 60 80

Dep

th (

ft)

qc (MPa)

CPT-5

0

20

40

60

80

100

120

140

160

0 50 100 150

Dep

th(f

t)

N60

TB-4

TB-6

Pier 7

Pile Instrumentation

29

30

Page 16: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

16

Bridge Foundations – Test Piles

Closed-

ended pipe

piles

Open-

ended

pipe piles

Closed-ended steel pipe pile

32

Soil

31

32

Page 17: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

17

Closed-ended steel pipe pile

33

Soil

Axial load Q

Shaft resistance

Base resistance

Layout of Strain Gauges – closed-ended pile

33

34

Page 18: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

18

Open-ended steel pipe pile

35

Soil

Open-ended steel pipe piles - sands

36

Soil

Axial load Q

Soil plug

35

36

Page 19: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

19

Double-wall system for open-ended pile

37

Qannulus

Qs

Qplug

A B

C

𝑄 = 𝑄𝑠 + 𝑄𝑝𝑙𝑢𝑔 + 𝑄𝑎𝑛𝑛𝑢𝑙𝑢𝑠

Measurements:

A: outer shaft

B: plug + annulus

C: annulus

B-C: plug

Axial load Q

Layout of Strain Gauges – Open-ended pile

Fabricated in two

segments:

Double-wall bottom

segment

Single-wall top

segment

37

38

Page 20: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

20

Pipe pile

Electrical-resistance

strain gauges

Vibrating-wire

strain gauges

Installation of sensors

Surface polishing

Pile instrumentation

50 VW strain gauges

104 ER strain gauges

5 miles of cables

Pile instrumentation

39

40

Page 21: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

21

Double wall assembly

Sensors

Inner pile

Inner pile slid into the outer pile

Outer pile

Double wall assembly

Spacing rod

Strain gauge cables

ER strain gauge

Rollers

Cables from

the inner pipe

Hole (ϕ=5cm)

drilled on outer

pipe

Inner pipeSliding

41

42

Page 22: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

22

Double wall assembly

Double wall assembly – driving shoe

Silicon

Bolt

Pile shoe

43

44

Page 23: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

23

Piles ready for driving

Channels placed on

outer pipe to

prevent damage to

wires during driving

Measurement of Plug Formation

45

46

Page 24: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

24

Open-ended steel pipe piles - sands

47

Case 1: fully coring (unplugged)

Soil

Open-ended steel pipe piles - sands

48

Case 2: plugged penetration

Soil

47

48

Page 25: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

25

Open-ended steel pipe piles - sands

49

Case 3: Partial plugging

Soil

Importance of plug measurement

50

IFR and PLR are recognized as the key factors in

modern design methods (Purdue method, UWA

method) for open-ended piles

Study is still needed to learn how to predict plug

formation and its effect on the pile’s resistances

Paik, K., and Salgado, R. (2003). “Determination of Bearing Capacity of Open-Ended Piles in Sand.” Journal of Geotechnical and Geoenvironmental

Engineering, 129(1), 46–57.

Lehane, B. M., Schneider, J. a., and Xu, X. (2005). “The UWA-05 Method for Prediction of Axial Capacity of Driven Piles in Sand.” Proceedings of the

International Symposium. on Frontiers in Offshore Geotechnics (IS-FOG 2005), 683–689.

49

50

Page 26: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

26

Plug measurement

51

Plug length

Animation shows the case of

partial plugging

Pile Driving

51

52

Page 27: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

27

Pile positioning

Pile driving

53

54

Page 28: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

28

Driving resistance - closed-ended pile

460

470

480

490

500

510

520

530

0 10 20 30 40 50

Ele

vat

ion

(ft

)

Blow count (blows/ft)

0

10

20

30

40

50

60

0 20 40 60 80

Dep

th (

ft)

qc (MPa)

Pile driving resistance – open-ended pile

420

430

440

450

460

470

480

490

500

0 10 20 30 40 50

Ele

vat

ion

(ft

)

Blow count (blows/ft)

20

30

40

50

60

70

80

90

100

0 20 40 60 80

Dep

th (

ft)

qc (MPa)

0

10

20

30

40

50

60

70

80

40% 60% 80% 100%

Penetr

ation d

epth

(ft

)

Incremental filling ratio (%)

55

56

Page 29: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

29

Plug measurement

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Penetr

ation d

epth

(ft

)

Plug length (ft)

0

10

20

30

40

50

60

70

80

40% 60% 80% 100%

Penetr

ation d

epth

(ft

)

Incremental filling ratio (%)

Driving resistance - comparison

420

430

440

450

460

470

480

490

500

510

520

0 10 20 30 40 50

Ele

vat

ion

(ft

)

Blow count (blows/ft)

OE

CE

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80

Dep

th (

ft)

qc (MPa)

57

58

Page 30: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

30

Static Pile Load Test

Static load test - layout

Test Pile

CEP

Test Pile

OEP

ROEP-1

6'

10' 9''

12' 12' 12'

ROEP-2 ROEP-3 ROEP-4 ROEP-5 ROEP-6

ROEP-7 ROEP-8 ROEP-9 ROEP-10 ROEP-11 ROEP-12

9'

ϕ = 24'' ϕ = 26''

ϕ = 24''

(ROEP: reaction open-ended pipe pile; CEP: closed-ended pipe pile; OEP: open-ended pipe pile)

59

60

Page 31: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

31

Static load test

Static load test

61

62

Page 32: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

32

Static load test

Load cell

Hydraulic

jack

Spherical

seating

Reference

beam

Dial gauge

Reaction beam

Timelapse video prepared by Wayne Bunnell, courtesy of Darcy Bullock, Purdue Univeristy, JTRP

63

64

Page 33: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

33

Load settlement curve

Ultimate load: 1025 kips

Plunging load: 1225 kips

Resistance components

Shaft: 537 kips

Base: 488 kips

Closed-ended pipe pile

0

200

400

600

800

1000

1200

1400

0% 5% 10% 15% 20% 25%

Load (

kip

s)

Relative settlement at pile head (%)

1025 kip1025 kip

Load settlement curve

Ultimate load: 1075 kips

Plunging load: 1400 kips

Resistance components

Shaft: 576 kips

Plug: 80 kips

Annulus: 419 kips

Open-ended pipe pile

0

300

600

900

1200

1500

0% 5% 10% 15% 20% 25%

Load (

kip

s)

Relative settlement at pile head (%)

1075 kip1075 kip1075 kip

65

66

Page 34: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

34

Resistance components - closed-ended pile

0

100

200

300

400

500

600

700

0% 5% 10% 15% 20% 25%

Resi

stance

(kip

s)

Relative settlement at pile head (%)

Shaft resistance

Base resistance

Resistance components - open-ended pile

0

100

200

300

400

500

600

700

800

0% 5% 10% 15% 20%

Load (

kip

)

Relative settlement at pile head (%)

Shaft resistance

Annulus resistance

Plug resistance

67

68

Page 35: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

35

Load transfer curve

460

470

480

490

500

510

520

530

0 200 400 600 800 1000 1200

Ele

va

tio

n (

ft)

Axial load (kips)

Open-ended pileClosed-ended pile

410

430

450

470

490

510

530

0 400 800 1200

Ele

va

tio

n (

ft)

Axial load (kips)

Upper segment

Inner pipe

Outer pipe

Unit shaft resistance calculation

Axial load Q

depth

A

B

QA

QB

qsL 𝑞𝑠𝐿 =𝑄𝐴 − 𝑄𝐵𝜋𝐵𝐿L

69

70

Page 36: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

36

Unit shaft resistance

Open-ended pile Closed-ended pile

420

430

440

450

460

470

480

490

500

510

520

0.0 0.5 1.0 1.5 2.0

elev

ati

on

(ft

)

Unit shaft resistance (ksf)

Upper segment

Outer pipe

Inner pipe

460

470

480

490

500

510

520

0.0 1.0 2.0 3.0 4.0

Ele

va

tio

n (

ft)

Unit shaft resistance (ksf)

Unit shaft resistance - comparisons

460

470

480

490

500

510

520

0 1 2 3 4

Ele

vation (

ft)

Unit shaft resistance (ksf)

Open-ended pile-upper segment

Open-ended pile-outer pipe

Closed-ended pile

71

72

Page 37: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

37

Components of Pile Resistance

Axial load

Shaft resistance

Base resistance

Soil

Total resistance +

Cone resistance qc

Unit shaft resistance qsL

CPT resistances

correlated with

measured

resistances in

PLTs

460

470

480

490

500

510

520

0 1 2 3 4

Ele

vation (

ft)

Unit shaft resistance (ksf)

Open-ended pile-upper segment

Open-ended pile-outer pipe

Closed-ended pile

CPT PLTsDesign Methods

73

74

Page 38: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

38

Bridge Monitoring

Construction stages

Pile installation

76

75

76

Page 39: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

39

Construction stages

Pile cap pouring

77

Construction stages

Bridge pier pouring

78

77

78

Page 40: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

40

Construction stages

Pier cap

(“hammer head”)

Backfilling of the cofferdam

and pier cap pouring

79

Construction stages

Placement of beams over

span 7-8

Pier 7Pier 6 Bent 8

80

79

80

Page 41: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

41

Construction stages

Beams

81

Construction stages

Placement of beams over

span 6-7

Pier 7Pier 6 Bent 8

82

81

82

Page 42: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

42

Construction stages

Construction of the bridge deck

83

Construction completed

84

83

84

Page 43: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

43

85

Concrete-embedded and sister-bar strain

gauges in bridge pier

Arc-weldable strain gauges on pile

heads

Bridge deck

Beams

Pier

Pile cap

Piles

Cofferdam

Backfill

Pier cap

Data logger

Cables for sensors in the bridge pier

Cables for sensors on pile heads

Instrumentation scheme

86

Bridge deck

Beams

Pile cap

Piles

Cofferdam

Backfill

Pier cap

Instrumentation scheme

Bridge pier

Concrete-embedded

strain gauge

Rebar

strain gauge

Arc-weldable

strain gauge

85

86

Page 44: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

44

87

End of stage 2

01/18/2018

2 beams,1/18/18

3 beams, 1/18/18

4 beams,1/18/185 beams,1/19/18

10 beams,1/20/18

6/20/2018

Deck pouring,7/26/18

Deck pouring,7/26/18

Deck complete,11/16/19

12/4/2019

0

500

1000

1500

2000

2500

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Tota

l lo

ad

on p

ile c

ap s

ince s

tage

2

(kip

s)

Settlement of pier 7 since stage 2 (mm)

Load-settlement response of bridge pier

3/17/2020

88

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6

Avera

ge

load

in e

ach

pile

(kip

s)

Pile head settlement (mm)

Average pile in the

pile group supporting

pier 7

Settlement measurement started

Pile load test on a single pile

Stiffness of the single test pile

at 5 mm

= 76.4 kips/ mm

Stiffness of an average pile in

the group at 5 mm

= 46.4 kips/ mm

Load-settlement response of piles

87

88

Page 45: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

45

89

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Stage 1 Stage 2 Stage 3 Stage 4 Stage 4 Stage 5 Stage 5 Stage 5

Load (

kip

s)

Total load applied on pile cap

Total load carried by piles

Monitoring

start

12/12/17 1/18/18 1/19/18 1/20/18 7/23/18 11/16/18 6/25/19 12/4/19

Total load on pile cap

Qpg

Pile capQcap

Qtotal = Qcap + QpgQcap

Load transfer from bridge pier to piles

Total load on pile cap

Qpg

Pile capQcap

Qtotal = Qcap + Qpg

Stage Stage 2 Stage 3 Stage 4 Stage 4 Stage 5 Stage 5 Stage 5

Date 1/18/2018 1/19/2018 1/20/2018 7/23/2018 11/16/2018 12/04/2019 3/17/2020

Qpg/Qtotal 67% 66% 65% 89% 76% 78% 78%

Qcap/Qtotal 33% 34% 35% 11% 24% 22% 22%

Load transfer from bridge pier to piles

89

90

Page 46: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

46

91

Load distribution among piles in the group

Stage 1

(12/12/2017)

Stage 2

(1/18/2018)

Stage 3

(1/19/2018)

Stage 4

(1/20/2018)

(kips)

N

92

Load distribution among piles in the group

(kips)

Stage 4

(7/23/2018)

Stage 5

(11/16/2018)

Stage 5

(6/25/2019)

Stage 5

(12/4/2019)

N

91

92

Page 47: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

47

Live Load Test

93

94

132'92'

Live load test – load step 0

N

Top view

Bent 8

Pier 7Pier 6

93

94

Page 48: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

48

95

132'92'

Live load test – load step 1

N

Top view

Bent 8

Pier 7Pier 6

96

132'92'

N

Top viewLive load test – load step 2

Bent 8

Pier 7Pier 6

95

96

Page 49: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

49

97

132'92'

N

Top viewLive load test – load step 3

Bent 8

Pier 7Pier 6

98

132'92'

N

Top viewLive load test – load step 4

Bent 8

Pier 7Pier 6

97

98

Page 50: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

50

99

132'92'

N

Top viewLive load test – load step 5

Bent 8

Pier 7Pier 6

10

0

132'92'

N

Top viewLive load test – load step 6

Bent 8

Pier 7Pier 6

99

100

Page 51: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

51

10

1

132'92'

N

Top viewLive load test – load step 7

Bent 8

Pier 7Pier 6

10

2

132'92'

Live load test – load step 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

Bent 8

Pier 7Pier 6

101

102

Page 52: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

52

10

3

132'92'

Live load test – load step 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

Bent 8

Pier 7Pier 6

10

4

132'92'

Live load test – load step 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

Bent 8

Pier 7Pier 6

103

104

Page 53: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

53

10

5

132'92'

Live load test – load step 3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

Bent 8

Pier 7Pier 6

10

6

132'92'

Live load test – load step 4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

Bent 8

Pier 7Pier 6

105

106

Page 54: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

54

10

7

132'92'

Live load test – load step 5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

Bent 8

Pier 7Pier 6

10

8

132'92'

Live load test – load step 6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

Bent 8

Pier 7Pier 6

107

108

Page 55: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

55

10

9

132'92'

Live load test – load step 7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N

Bridge pier

Pile group

200

150

100

50

0

Legendkips

kips

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

Bent 8

Pier 7Pier 6

11

0

Live load test – load history

0

0

0

0

0

N

Bridge pier

Pile group

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

4

-1

3

-1

-2

101

59

42

20

6

158

95

64

33

12

61

32

23

11

-1

117

68

46

25

7

step 1

174

105

70

38

13

196

120

80

step 7

North

step 2 step 3 step 4 step 5 step 6

44

20

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

step 0 step 1 step 2 step 3 step 4 step 5 step 6 step 7

109

110

Page 56: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

56

11

1

Live load test – load eccentricity

e = 5'

Pedestrian

walkway10' 11' 24' 6'

Shoulder Driveway Shoulder

Resultant force

10' Multi-use path

6'Shoulder

24'Driveway

11'Shoulder

N

Top view

0

100

200

300

400

500

600

22:10 22:50 23:30 0:10 0:50

Liv

e lo

ad

(kip

s)

Time (hh:mm)

Total live load in pier 7

Total live load carried by piles

11

2

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

The difference represents the cap

resistance Qcap

Live load test – load transfer

111

112

Page 57: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

57

11

3

Live load test – load-settlement response

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 70

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4

Liv

e lo

ad

in

bri

dge

pie

r (k

ips)

Settlement of the bridge pier (mm)

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

0

5

10

15

20

0 0.1 0.2 0.3 0.4

Ave

rag

e liv

e lo

ad

in

ea

ch

pile

(kip

s)

Pile head settlement (mm)

11

4

113

114

Page 58: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

58

Highlights and Implementation

Rare case history with complete dataset

❑ Full site investigation and soil characterization

❑ Dynamic and static load tests on fully instrumented test piles

❑ Load and settlement monitoring of the bridge pier and its foundation

elements under dead and live loads during and after bridge

construction

115

116

Page 59: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

59

11

7

Implementation: instrumentation scheme

Bridge deck

Beams

Pile cap

Piles

Cofferdam

Backfill

Pier cap

Bridge pier

Concrete-embedded

strain gauge

Rebar

strain gauge

Arc-weldable

strain gauge

Barcode sticker

attached to pier 7

Barcode sticker

attached to the old pier

Implementation: instrumentation scheme

Bridge pier

Digital level

Barcode

sticker on

the pier

Reference station

Level staff

117

118

Page 60: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

60

Pile cap contribution

Stage Stage 2 Stage 3 Stage 4 Stage 4 Stage 5 Stage 5 Stage 5

Date 1/18/2018 1/19/2018 1/20/2018 7/23/2018 11/16/2018 12/04/2019 3/17/2020

Qpg/Qtotal 67% 66% 65% 89% 76% 78% 78%

Qcap/Qtotal 33% 34% 35% 11% 24% 22% 22%

12

0

Group pile interactions

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6

Avera

ge

load

in e

ach

pile

(kip

s)

Pile head settlement (mm)

Average pile in the

pile group

supporting pier 7

Settlement measurement started

Pile load test on a single pile

Peak load in

live load test

FE simulation

119

120

Page 61: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

61

Dead load per pile:

Design load = 336 kips

Measured at the end of construction (direct measurement) = 248 kips

Measured at the end of construction (assuming zero cap resistance) = 325 kips

Live load per pile:

AASHTO design load (vehicular+wind+water…) = 185 kips

AASHTO design load (vehicular) = 81 kips

Simulation of live load test (assuming continuous-span) = 62 kips

Simulation of live load test (assuming simple-span) = 51 kips

Measured in live load test (direct measurement) = 23 kips

Measured in live load test (assuming zero cap resistance) = 53 kips

Comparison between measured and estimated loads

Purdue Method

Unit shaft resistance (qsL) for closed-ended pipe piles

Unit base resistance (qb,ult) for closed-ended pipe piles

( )m A h0 Acax

0

min max min

0.01

tan

( )exp( )

sL v c

qK P P

q K

hK K K K

B

=

=

= + − −

• h = distance from the pile base

• Kmin = 0.2

• = 0.05

• B = pile diameter

• DR = relative density

• δc = interface friction angle

• qcb,avg = average cone resistance

near the pile base

h

z

B

( ), ,1 0.0058 cbu vgl aRb t D qq = −

Han et al. 2019; Salgado et al. 2011; Salgado & Prezzi 2007

0

0

'ln 0.4947 0.1041 0.841ln

(%) 100%'

0.0264 0.0002 0.0047 ln

c hc

A A

R

hc

A

q

p pD

p

− − −

=

− −

121

122

Page 62: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

62

Purdue Method

Unit shaft resistance (qsL) for open-ended pipe piles

Unit base resistance (qb,ult) for open-ended pipe piles

( )

( )

( )

sL v0 cs

min max min

m x h0 Aca A

1 0.6 tanL6P R

e

0.2

xp

0

, 0

.01

.05min

q K

hK K K K

B

K P

K

q P

= −

= =

= + −

=

• δcs = interface friction angle

• D = penetration depth

• Lplug = soil plug length

• B = outer pile diameter

• Bi = inner pile diameter( )1

cb,avg cb,avul g

.2

b, t0.21 IF 0.6R q qq

−=

Han et al. 2019; Paik & Salgado 2003

Lplug

D

Bi

B

IFR ≈ min[1, (Bi /1.5)0.2], Bi in

meters (Lehane et al. 2005)

Bridge foundation design in gravelly sand

Elevation range

(ft)

Soil description Unit shaft

resistance

(ksf)

Gravel

content

(%)

qc

(ksf)

qsL/qc

522-513Clayey silt with

sand0.11 - 20 0.0056

513-501Clayey silt with

sand0.58 9 80 0.0073

501-486 Sandy gravel 0.55 24 390 0.0014

486-482 Sand with gravel 0.35 15 156 0.0022

482-475 Sand with gravel 0.60 10 234 0.0026

475-464 Gravelly sand 0.95 27 427 0.0022

464-456 Gravelly sand 0.81 41 696 0.0012

456-444 Gravelly sand 0.66 29 801 0.0008

444-432 Gravelly sand 1.11 27 565 0.0020

432-422 Gravelly sand 1.83 30 538 0.0034

123

124

Page 63: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

63

Dissemination

❑ Road School 2019, Purdue University

❑ TRB 2020, Washington, DC

❑ Geo-Congress 2020, Minneapolis, MN

❑ Indiana Bridge Design Conference, 2021

❑ IFCEE 2021, Dallas, TX

❑ ICSMGE 2021, Sydney, Australia

❑ TRB AKG70, Foundations of Bridges and Other Structures, Washington, DC, January

2021

Thank you ☺

125

126

Page 64: SPR 4165, Verification of bridge foundation design

Center for Offshore Foundation and Energy Engineering

3/3/2021

64

127