statistical constraints · statistical constraints roberto rossi1, steven d. prestwich2, s. armagan...

36
Statistical Constraints Roberto Rossi 1 , Steven D. Prestwich 2 , S. Armagan Tarim 2,3 1 The University of Edinburgh Business School, The University of Edinburgh, UK 2 Insight Centre for Data Analytics, University College Cork, Ireland 3 Institute of Population Studies, Hacettepe University, Turkey 21st European Conference on Artificial Intelligence ECAI 2014 18-22 August 2014, Prague, Czech Republic 1/35

Upload: others

Post on 16-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical Constraints

Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3

1The University of Edinburgh Business School, The University of Edinburgh, UK2Insight Centre for Data Analytics, University College Cork, Ireland

3Institute of Population Studies, Hacettepe University, Turkey

21st European Conference on Artificial IntelligenceECAI 2014

18-22 August 2014, Prague, Czech Republic

1/35

Page 2: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Constraint ProgrammingFormal background

A Constraint Satisfaction Problem (CSP) is a triple 〈V,C,D〉

V is a set of decision variables,D is a function mapping each element of V to a domain

of potential values,C is a set of constraints stating allowed combinations of

values for subsets of variables in V .

A solution to a CSP is an assignment of a unique value to eachdecision variable such that the value is in the domain of therespective variables and all of the constraints are satisfied.

2/35

Page 3: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

StatisticsFormal background

What is a statistical model?

3/35

Page 4: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

StatisticsFormal background

What is a statistical model?

P. McCullagh, What is a statistical model?, The Annals ofStatistics, 30(5), pp. 1225—1267, (2002).

3/35

Page 5: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Probability theoryFormal background

A probability space is a mathematical tool that aims at modellinga real-world experiment consisting of outcomes that occurrandomly.

It is described by a triple (Ω,F ,P)

Ω denotes the sample space — the set of all possibleoutcomes of the experiment,

F denotes the sigma-algebra on Ω — i.e. thepower set 2Ω of all possible events on thesample space

P denotes the probability measure — i.e. a functionP : F → [0, 1] returning the probability of eachpossible event.

4/35

Page 6: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Probability theoryRandom variable

A random variable ω is an F-measurable function ω : Ω→ R

defined on a probability space (Ω,F ,P) mapping its sample spaceto the set of all real numbers.

Given ω, we can ask questions such as “what is the probabilitythat ω is less or equal to element s ∈ R.”

This is the probability of event o : ω(o) ≤ s ∈ F , which is oftenwritten as Fω(s) = Pr(ω ≤ s), where Fω(s) is the cumulative

distribution function (CDF) of ω.

5/35

Page 7: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Probability theoryMultivariate random variable

A multivariate random variable is a random vector(ω1, . . . , ωn)

T , where T denotes the “transpose” operator.

ω

ωn

ω′n

. . .

. . .

ω2

ω′2

ω1

ω′1

The outcome of the experiment is the vector of random variates

(ω′1, . . . , ω

′n)

T , which are scalars.

6/35

Page 8: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical ModelDefinition

Consider a multivariate random variable defined on probabilityspace (Ω,F ,P)

Let D be a set of possible CDFs on the sample space Ω.

We adopt the following definition of a statistical model

DefinitionA statistical model is a pair 〈D,Ω〉.

7/35

Page 9: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Nonparametric Statistical ModelDefinition

Let D denote the set of all possible CDFs on Ω.

DefinitionA nonparametric statistical model is a pair 〈D,Ω〉.

8/35

Page 10: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Parametric Statistical ModelDefinition

Let D denote the set of all possible CDFs on Ω.

Consider a finite-dimensional parameter set Θ together with afunction g : Θ→ D, which assigns to each parameter point θ ∈ Θa CDF Fθ on Ω.

DefinitionA parametric statistical model is a triple 〈Θ, g,Ω〉.

9/35

Page 11: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical InferenceDefinition

Consider now the outcome o ∈ Ω of an experiment.

Statistics operates under the assumption that there is a distinct

element d ∈ D that generates the observed data o.

The aim of statistical inference is then to determine whichelement(s) are likely to be the one generating the data.

10/35

Page 12: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Hypothesis TestingModus operandi 1 of 2

In hypothesis testing the statistician selects a significance level αand formulates a null hypothesis (H0), e.g.

“element d ∈ D has generated the observed data,”

and an alternative hypothesis, e.g.

“another element in D/d has generated the observed data.”

11/35

Page 13: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Hypothesis TestingModus operandi 2 of 2

Depending on the type of hypothesis, she must then select asuitable statistical test and derive the distribution of the

associated test statistic under the null hypothesis.

By using this distribution, one determines the probability ofobtaining a test statistic at least as extreme as the oneassociated with outcome o.

If this probability is less than α, this means that the observedresult is highly unlikely under the null hypothesis, and thestatistician should therefore “reject the null hypothesis.”

If this probability is greater or equal to α, the evidence collectedis insufficient to support a conclusion against the null hypothesis,hence we say that one “fails to reject the null hypothesis.”

12/35

Page 14: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Parametric Hypothesis TestingStudent’s t-test (one-tailed)

The classic one-sample t-test compares the mean of a sample to aspecified mean µ.

Student’s t-test statistics, t = x−µs/

√n, follows a T distribution with

n− 1 degrees of freedom.

µ

Reject H0

Fail toreject H0

α = 0.05

The two-sample t-test compares means µ1 and µ2 of two samples.

13/35

Page 15: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Nonparametric Hypothesis TestingOne-sample Kolmogorov-Smirnov test (two-tailed)

8 10 12 14x

0.2

0.4

0.6

0.8

1.0

CDF(x)

Kolmogorov-Smirnov statistic

14/35

Page 16: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Nonparametric Hypothesis TestingTwo-sample Kolmogorov-Smirnov test (two-tailed)

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

CDF(x)

x

Kolmogorov-Smirnov statistic

15/35

Page 17: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical Constraints

DefinitionA statistical constraint is a constraint that embeds a parametric

or a non-parametric statistical model and a statistical test

with significance level α that is used to determine whichassignments satisfy the constraint.

16/35

Page 18: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical ConstraintsParametric statistical constraint

A parametric statistical constraint c takes the general form

c(T, g,O, α)

where T and O are sets of decision variables and g : Θ→ D.

Let T ≡ t1, . . . , t|T |, then Θ = D(t1)× . . .×D(t|T |).

Let O ≡ o1, . . . , o|O|, then Ω = D(o1)× . . . ×D(o|O|).

An assignment is consistent with respect to c if the statistical testfails to reject the associated null hypothesis, e.g. “Fθ generatedo1, . . . , o|O|,” at significance level α.

17/35

Page 19: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical ConstraintsNonparametric statistical constraint

A nonparametric statistical constraint c takes the general form

c(O1, . . . , Ok, α)

where O1, . . . , Ok are sets of decision variables.

Let Oi ≡ oi1, . . . , o

i|Oi|, then Ω =

⋃ki=1 D(oi1)× . . .×D(oi|Oi|).

An assignment is consistent with respect to c if the statistical testfails to reject the associated null hypothesis, e.g“o11, . . . , o

1|O1|,. . . ,o

k1 , . . . , o

k|Ok| are drawn from the same

distribution,” at significance level α.

18/35

Page 20: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical ConstraintsRemarks

In contrast to classical statistical testing, random variates, i.e.random variable realisations (ω′

1, . . . , ω′n)

T , associated with asample are modelled as decision variables.

The sample, i.e. the set of random variables (ω1, . . . , ωn)T that

generated the random variates is not explicitly modelled.

ω

ωn

ω′n

. . .

. . .

ω2

ω′2

ω1

ω′1

19/35

Page 21: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical ConstraintsStudent’s t test constraint

t-testαw(O,m)

O ≡ o1, . . . , on is a set of decision variables each of whichrepresents a random variate ω′

i (i.e. a scalar);

m is a decision variable representing the mean of the randomvariable ω that generated the sample;

α ∈ (0, 1) is the significance level;

w ∈ ≤,≥,=, 6= identifies the type of statistical test;

Assignment o1, . . . , on, m satisfies t-testαw if and only if aone-sample Student’s t-test fails to reject the null hypothesis

identified by w; e.g. if w is “=”, the null hypothesis is “ the meanof the random variable that generated o1, . . . , on is equal to m.”

20/35

Page 22: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical Constraintstwo-sample Student’s t test constraint

t-testαw(O1, O2)

O1 ≡ o1, . . . , on is a set of decision variables each of whichrepresents a random variate ω′

i;

O2 ≡ on+1, . . . , om is a set of decision variables each of whichrepresents a random variate ω′

i;

Assignment o1, . . . , om satisfies t-testαw if and only if a two-sampleStudent’s t-test fails to reject the null hypothesis identified byw; e.g. if w is “=”, then the null hypothesis is “the mean of therandom variable originating o1, . . . , on is equal to that of therandom variable generating on+1, . . . , om.”

21/35

Page 23: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical ConstraintsKolmogorov-Smirnov constraint

KS-testαw(O, exponential(λ))

O ≡ o1, . . . , on is a set of decision variables each of whichrepresents a random variate ω′

i

λ is a decision variable representing the rate of the exponentialdistribution

α ∈ (0, 1) is the significance level

w ∈ ≤,≥,=, 6= identifies the type of statistical test thatshould be employed; e.g. “≥” refers to a single-tailed one-sampleKS test that determines if the distribution originating the samplehas first-order stochastic dominance over exponential(λ); “=”refers to a two-tailed one-sample KS test that determines if thedistribution originating the sample is likely to be exponential(λ),etc. 22/35

Page 24: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical ConstraintsKolmogorov-Smirnov constraint

KS-testαw(O, exponential(λ))

O ≡ o1, . . . , on is a set of decision variables each of whichrepresents a random variate ω′

i

λ is a decision variable representing the rate of the exponentialdistribution

α ∈ (0, 1) is the significance level

w ∈ ≤,≥,=, 6= identifies the type of statistical test

An assignment o1, . . . , on, λ satisfies KS-testαw if and only if aone-sample KS test fails to reject the null hypothesis identifiedby w; e.g. if w is “=”, then the null hypothesis is “randomvariates o1, . . . , on have been sampled from an exponential(λ).”

23/35

Page 25: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Statistical Constraintstwo-sample Kolmogorov-Smirnov constraint

KS-testαw(O1, O2)

O ≡ o1, . . . , on is a set of decision variables each of whichrepresents a random variate ω′

i

O2 ≡ on+1, . . . , om is a set of decision variables each of whichrepresents a random variate ω′

i

α ∈ (0, 1) is the significance level

w ∈ ≤,≥,=, 6= identifies the type of statistical test

An assignment o1, . . . , om satisfies KS-testαw if and only if atwo-sample KS test fails to reject the null hypothesis identifiedby w; e.g. if w is “=”, then the null hypothesis is “randomvariates o1, . . . , on and on+1, . . . , om have been sampled from thesame distribution.”

24/35

Page 26: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsClassical problems in statistics

Constraints:

(1) t-testα=(O,m)Decision variables:

o1 ∈ 8, o2 ∈ 14, o3 ∈ 6, o4 ∈ 12, o5 ∈ 12,o6 ∈ 9, o7 ∈ 10, o8 ∈ 9, o9 ∈ 10, o10 ∈ 5O1 ≡ o1, . . . , o10m ∈ 0, . . . , 20 α = 0.05

Figure: Determining the likely values of the mean of the random variablethat generated random variates O1

After propagating constraint (1), the domain of m reduces to8, 9, 10, 11, so at significance level α = 0.05 we reject the nullhypothesis that the true mean is outside this range.

25/35

Page 27: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsClassical problems in statistics

Constraints:

(1) KS-testα=(O1, O2)Decision variables:

o1 ∈ 9, o2 ∈ 10, o3 ∈ 9, o4 ∈ 6, o5 ∈ 11,o6 ∈ 8, o7 ∈ 10, o8 ∈ 11, o9 ∈ 14, o10 ∈ 11,o11, o12 ∈ 5, o13, . . . , o20 ∈ 9, 10, 11O1 ≡ o1, . . . , o10, O2 ≡ o11, . . . , o20 α = 0.05

Figure: Devising sets of random variates that are likely to be generatedfrom the same random variable that generated a reference set of randomvariates O1

By finding all solutions to the above CSP we verified that there are365 sets of random variates for which the null hypothesis isrejected at significance level α.

26/35

Page 28: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsClassical problems in statistics

BA

2 4 6 8 10 12 14x

0.2

0.4

0.6

0.8

1.0

CDF(x)

2 4 6 8 10 12 14x

0.2

0.4

0.6

0.8

1.0

CDF(x)

Figure: Empirical CDFs of (A) an infeasible and of (B) a feasible set ofrandom variates O2; these are 5, 5, 9, 9, 9, 9, 9, 9, 9, 9 and5, 5, 9, 9, 9, 9, 9, 10, 10, 11, respectively.

27/35

Page 29: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsGerman tank problem

During World War II, production of Germantanks such as the Panther was accuratelyestimated by Allied intelligence usingstatistical methods.

Complete set of tanks produced

1 2 M

sampleof size

n

Estimate M by using information fromcaptured tanks.

28/35

Page 30: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsGerman tank problem

Complete set of tanks produced

1 2 M

sampleof size

n

A sample ω1, . . . , ωn follows a multivariatehypergeometric distribution (urn modelwithout replacement and with multiple classesof objects).

However, we will consider an approximationthat exploits a Uniform(0,M) distribution.

29/35

Page 31: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsGerman tank problem

Complete set of tanks produced

1 2 M

sampleof size

n

Consider a sample ω1, . . . , ωn fromUniform(0,M). Let ω′

max = maxω′1, . . . , ω

′n.

The test statistic ωmax follows the distribution

F (x) =x

M. . .

x

M︸ ︷︷ ︸

n times

=xn

Mnf(x) = n

xn−1

Mn

The confidence interval for the estimatedpopulation maximum is (ω′

max, ω′max/α

1/n),where 1− α is the confidence level sought.

30/35

Page 32: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsGerman tank problem

In the following CSP, random variates havebeen generated from a Uniform(0,20).

Constraints:

(1) KS-testα=(O1,Uniform(0, m))Decision variables:

o1 ∈ 2, o2 ∈ 6, o3 ∈ 6, o4 ∈ 17, o5 ∈ 4,o6 ∈ 11, o7 ∈ 10, o8 ∈ 7, o9 ∈ 2, o10 ∈ 15,m ∈ 0,∞O1 ≡ o1, . . . , o10α = 0.05

Figure: A CSP formulation of the German tankproblem

After propagating constraint (1), the domainof m reduces to 9, . . . , 28, so at significancelevel α = 0.05 we reject the null hypothesisthat the true maximum M is outside thisrange.

31/35

Page 33: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsGerman tank problem

In the following CSP, random variates havebeen generated from a Uniform(0,20).

Constraints:

(1) KS-testα=(O1,Uniform(0, m))Decision variables:

o1 ∈ 2, o2 ∈ 6, o3 ∈ 6, o4 ∈ 17, o5 ∈ 4,o6 ∈ 11, o7 ∈ 10, o8 ∈ 7, o9 ∈ 2, o10 ∈ 15,m ∈ 0,∞O1 ≡ o1, . . . , o10α = 0.05

Figure: A CSP formulation of the German tankproblem

Note that the parametric statistical approachpreviously discussed would produce a tighterinterval: (17.0, 22.93).

32/35

Page 34: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsIncomplete German tank problem

Now assume that soldiers have erased the lastfigure of the 6th tank serial number.

Constraints:

(1) KS-testα=(O1,Uniform(0, m))Decision variables:

o1 ∈ 2, o2 ∈ 6, o3 ∈ 6, o4 ∈ 17, o5 ∈ 4,o6 ∈ 10, . . . , 19, o7 ∈ 10, o8 ∈ 7, o9 ∈ 2,o10 ∈ 15,m ∈ 0,∞ O1 ≡ o1, . . . , o10 α = 0.05

Figure: A CSP formulation of the German tankproblem

After propagating constraint (1), the domainof m reduces to 9, . . . , 32, so at significancelevel α = 0.05 we reject the null hypothesisthat the true maximum is outside this range.

33/35

Page 35: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

ApplicationsInspection scheduling

Parameters:

U = 10 Units to be inspectedI = 25 Inspections per unitH = 365 Periods in the planning horizonD = 1 Duration of an inspectionM = 36 Max interval between two inspectionsC = 1 Inspectors required for an inspectionm = 5 Inspectors availableλ = 1/5 Inspection rate

Constraints:

(1) cumulative(s, e, t, c,m)for all u ∈ 1, . . . , U

(2) KS-testα=(Ou, exponential(λ))(3) euI ≥ H −M

for all u ∈ 1, . . . , U and j ∈ 2, . . . , I(4) iu,j−1 = suI+j − suI+j−1 − 1(5) suI+j ≥ suI+j−1

Decision variables:

sk ∈ 1, . . . ,H, ∀k ∈ 1, . . . , I · Uek ∈ 1, . . . ,H, ∀k ∈ 1, . . . , I · Utk ← D, ∀k ∈ 1, . . . , I · Uck ← C, ∀k ∈ 1, . . . , I · Uiu,j−1 ∈ 0, . . . ,M, ∀u ∈ 1, . . . , U and

∀j ∈ 2, . . . , IOu ≡ iu,1, . . . , iu,I−1, ∀u ∈ 1, . . . , U

Figure: Inspection scheduling

Day of the year

Un

it

1 365

1

10

Figure: Inspection plan; black marksdenote inspections.

10 20 30 40x

0.2

0.4

0.6

0.8

1.0

CDF(x)

Figure: Empirical CDF of intervals(in days) between inspections forunit of assessment 1

34/35

Page 36: Statistical Constraints · Statistical Constraints Roberto Rossi1, Steven D. Prestwich2, S. Armagan Tarim2,3 1TheUniversity ofEdinburgh Business School,TheUniversityofEdinburgh, UK

Questions

35/35