status and progress of paf technology

30
CSIRO ASTRONOMY AND SPACE SCIENCE Phased Array Feed Development Update CSIRO – Technologies for Radio Astronomy, ASKAP Team, SKA PAF Group and APERTIF Team Mark Bowen, Alex Dunning, Doug Hayman, Kanapathippillai Jeganathan, Sean Severs, Rob Shaw, Bruce Veidt, Lisa Loche, and Wim van Cappellen 07 March 2016

Upload: duongdiep

Post on 02-Jan-2017

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Status and progress of PAF technology

CSIROASTRONOMYANDSPACESCIENCE

PhasedArrayFeedDevelopmentUpdate

CSIRO– TechnologiesforRadioAstronomy,ASKAPTeam,SKAPAFGroupandAPERTIFTeam

MarkBowen,AlexDunning,DougHayman,Kanapathippillai Jeganathan,SeanSevers,RobShaw,BruceVeidt,LisaLoche,andWim vanCappellen

07March2016

Page 2: Status and progress of PAF technology

Outline• PAFInstruments

Ø ASKAPØ Parkes 64m– BonnPAF(MPIfR)Ø APERTIF

• SKAPAFDevelopment – SKADish• PhasedArrayFeedArrayDevelopments

Ø AFADØ CryoPAF4Ø PHAROSØ ChequerboardArrayØ RocketArray

• ComparisonofcurrentPAFs• TheFuture

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page2

Page 3: Status and progress of PAF technology

ASKAP– AustralianSKAPathfinderA Wide Field-of-View Radio Telescope

Number of dishes 36 Dish diameter 12 mMax baseline 6kmResolution 10” (6km array), 30” (2km core)

Sensitivity 70 m2/KField of View 30 deg2

Speed 1.5x105 m4/K2.deg2

Observing frequency 700 – 1800 MHzProcessed Bandwidth 300 MHzSpectral Channels 16,000Phased Array Feeds 188 elements (94 dual polarisation)

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page3

Page 4: Status and progress of PAF technology

• Boolardy EngineeringTestArray(BETA)Ø DecommissionedFebruary2016Ø 6antennasfittedwithMk.IChequerboardPAFsØ Conversionandbasebandsamplingatantenna

• ASKAPDesignEnhancement (ADE)Ø 9antennascurrentlyoutfittedØ Mk.IIChequerboardPhasedArrayFeed/LNAsØ Directsamplingatcentralsite

ASKAP– AustralianSKAPathfinder

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page4

Page 5: Status and progress of PAF technology

ASKAP– ScienceCommissioning• First25BeamImage– FullASKAPFoV

Ø Centrefrequency– 850MHzØ Bandwidth– 48MHzØ 5antennas– Mk.IIPAFsfittedØ 25Beams– ASKAPFoV atthisfrequencyØ 30squaredegrees

The image was produced in a 12 hour observation of theApus test field using 5 Mk. II Phased Array Feeds.

The beam footprint as made up of 25 beams, in a 5 x 5square, and is the first image to instantaneously coverapproximately 30 square degrees – that is, the full ASKAPfield of view.

The data for the observation were calibrated and imagedon the ASKAP real time computer, Galaxy, located at thePawsey supercomputing centre in Perth, WesternAustralia.

Image Credit: Josh Marvil

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page5

Page 6: Status and progress of PAF technology

Parkes 64m– BonnPAF(MPI)• ASKAPPAF(Mk.II)builtbyCSIROforMPIfR

Ø ASKAPDigitiserandBeamformerØ GPUCorrelatorØ ModifiedRFsignalchain– Additionalfilters(RFI)

• CommissioningonParkes 64mantennaØ ReplacesParkes multibeam receiver(13beam)Ø Installation– February2016Ø Commissioning/softwaredevelopmentØ Removal– September2016Ø InstallationonEfflesberg – late2016

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page6

Page 7: Status and progress of PAF technology

Frequencyrange 1130– 1750MHzInstantaneousbandwidth 300MHzChannelbandwidth 12kHzPolarization DuallinearReflectors 12x25mBaselines 36to2412m

Systemtemperature 70KApertureefficiency 75%Simultaneousbeams 37dualpolFieldofview 8deg2

“Surveyspeedincrease” 17x

APERTIFspecifications

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page7

Page 8: Status and progress of PAF technology

• 12dishesmechanicallyupgraded• 6dishescurrentlyfullyinstalled• 6dishesreadyforhardware• NoiseSourceSysteminstalledforonedish

• HFcabinreadyforcorrelator

• Softwareverification

• Correlatorverification(à firstfringes)

• APERTIF-6softwareready(tocontrolinstrument)

StatusAPERTIFuptonow

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page8

Page 9: Status and progress of PAF technology

• Commissioning APERTIF-6

• APERTIF-12Installation• Hardwareforanother6dishes(dualpolarized)

• Furtherdevelopment ofcorrelatorfirmware

• APERTIF-12softwaredevelopment (usersoftware)(expectedendof2016)

• StartScienceCommissioning(April2016)

• FirstscienceAPERTIF2017

Currentlyongoingandfuture

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page9

Page 10: Status and progress of PAF technology

VerificationCorrelatorFirmwareà FirstFringes

• Usingskyinputdata,verify• Correctcross-correlationproduct

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page10

Page 11: Status and progress of PAF technology

SKAPAFDevelopment– SKADishCSIROPAFDesign

• Chequerboardarray• AustralianSKAPathfinder(ASKAP)Mk.II• RFoverFibresignaltransport• 650– 1670MHzband(SKA- Band2)

NRCPAFDesign• ThickVivaldiArray• AdvancedFocalArrayDemonstrator(AFAD)• Cryogeniccooling(CryoPAF)• 1.5– 4.0Hzband(SKA- Band3)

Credit: A. Chippendale, CSIRO

Credit: B. Veidt, NRC Canada

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page11

Page 12: Status and progress of PAF technology

AFAD– NRCCanadaKeyParameters

• FrequencyRange:0.75– 1.5GHz• ElementSpacing:100mm(λ/2)• ElementThickness: 5mm• TaperLength:113mm• SlotWidth:3mm• OverallLength:158mm• NumberofElements: 41• ElementMass: 165g

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page12

Page 13: Status and progress of PAF technology

MeasuredPerformancewithCMOSLNAs

• MeasuredperformanceoftheAFADArrayinaperturearraymodeusingtheNRCHot/ColdTestFacility(HCTF)locatedatDRAO,Penticton.

• TheAFADArraycomprisedof9CMOSLNAsincentreofthearray;theremaining32arrayelementshavecommercialHEMTLNAs.

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page13

Page 14: Status and progress of PAF technology

PAF Development - NRCConclusions• ObtainedgoodresultswithCMOSLNAsincentrearray

FutureWork• Constructa96element arraywithallelements usingCMOSLNAs• Singlepieceelement design• Digitalbeamformer• DemonstratearrayonDVA-1dishwithoffsetGregorianoptics

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page14

Page 15: Status and progress of PAF technology

CryoPAF4– NRCCanadaHistory

• 2014:SKADISHconsortium,“Band3”• 2015:NRCproject,newfrequency

Goals• Frequency:2.80– 5.18GHz• Systemtemperature:16K• Elements: Vivaldi– 96active(140intotal)• Cryogenicallycooledelements andLNAs(15K)• Duallinearpolarization• Digitalbackend– 36beamsat500MHz• SampledatRF

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page15

Page 16: Status and progress of PAF technology

SystemDescription

Description• Compositeradome• Infraredfilters/heatshields&metal

radiationshields• 140element arrayofall- metalVivaldis• Elements: Vivaldi– 96active(140in

total)• Elements andLNAscooledto15K• 3.5Knoise3-stageLNAs,40dBgain• Receiverpackageincludes filteringand

postLNAamplification– Roomtemp• Digitalbackend– 36beamsat500MHz• SampledatRF

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page16

Page 17: Status and progress of PAF technology

Thetotalreceivernoisetemperature is10.82K,whichwhenaddedtothecosmicbackground,atmosphere,andapproximatespilloverresults in18.52Ktotalsystemtemperature.

EstimatedSystemTemperature

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page17

Page 18: Status and progress of PAF technology

PowerBudget• Coldheads

• SinglestageGifford-McMahoncompressedheliumforcoolingLNAarray.5Wat15Kcapacity,0.29%efficiency,1.7kWpower.

• Singlestagepulse-tubecompressedheliumforheatsinking96dewar – DBEcoaxialcables.45Wat70K,0.65%efficiency,700Wpower.

• Heliumlines• Heliumcompressor

• Singlecompressortodeliver2.4kW• HeatShields

• RFtransparentheatshieldsbetweenradomeandantennaarraytoreflectinfraredradiation.

• Concentricthinmetalcylindersat15K,70K,300K- thermalinsulationtomostcriticalcomponents:LNAs

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page18

Page 19: Status and progress of PAF technology

PHAROS– JBCO,ASTRON,INAF• Cryogenicreceiver

• MMIC4-8GHzLNA(ASTRON)

• Analog MMICbasedbeamformer

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page19

Page 20: Status and progress of PAF technology

ChequerboardArray- CSIROOngoingWork

Ø ReducingPAFTsys– ReductionofTLNA =5K– 7KoverASKAPMkIILNAachievedinlaboratory

Ø UnderstandingoffeedwirelossanddielectriceffectsØ AdditionaldevicesbeingevaluatedforMk.IVandbeyondØ Improvedelement geometry(particularlyedgeelements)

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page20

Page 21: Status and progress of PAF technology

RocketArray– CSIROCSIROSKAPAFProgram

• Initiallyfocussedon650– 1670MHz(band2)• CommonRFsignalchain(Bands1,2,3)• Reducingsystemtemperature(TLNA)• OngoingevolutionofASKAPfeedpackage

(Mk.II→Mk.III→Mk.?)• ‘Rocket’elementdemonstrated5x4array

(40Elements)

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page21

Page 22: Status and progress of PAF technology

ElementandLNADesign• Elementbasedonaconicalsolidofrevolution• Edgeelements designedtoreducetheeffectoftheedge

discontinuity• Feedlinelossminimised• BalancedLNA– Differentialimpedance180Ω• CommercialHEMTLNA– TriQuint TQP3M939&TQP3M9040• 5x4arrayconstructedasproof-of-concept

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page22

Page 23: Status and progress of PAF technology

• CommonRFsystemarchitecture– SKAbands(1,2,3)Ø RFoverFibre(RFoF)forsignaltransport(ASKAP)Ø Integrated8channelassemblycompletedandtestedØ AllowsdirectinterfacingwithASKAPdigitalbackend

0 500 1000 1500 2000 2500 3000 3500 4000Frequency (MHz)

RF chain with and without Equalizer

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20585.1 MHz12.4 dB

1671 MHz5.74 dB

646 MHz6.32 dB

DB(|S(2,1)|)TxRx__30dBpad_without Equalizer

DB(|S(2,1)|)TxRx__30dBpad_with equalizer

200 400 600 800 1000 1200 1400 1600 1800 2000Frequency (MHz)

Equal_3A_measured

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

01754 MHz-1.571 dB

1153 MHz-5.51 dB368.1 MHz

-6.328 dB650.4 MHz-6.245 dB

1672 MHz-2.331 dB

DB(|S(2,1)|) (L)Equalizer_3A

DB(|S(1,1)|) (R)Equalizer_3A

PAF3 Eelectronics

RFoF txLNA Amp FIL

PAF1 Eelectronics

RFoF txLNA Amp FIL

PAF2 Eelectronics

RFoF txLNA Amp FIL

PAF (Band) selection

Pin Diode

Band control

ADCAmp FIL

RFoF Receiver

To PPFB / BF

Simplified System Block Diagram(Y. Chung 2015)

Prototype RF Signal Chain Gain

RFSignalChain• Leverageoffotherdevelopments– SKA

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page23

Page 24: Status and progress of PAF technology

• MeasurementusingmaxSNRbeamweights,usingtheParkes TestFacility– BETAdigitalbackend.• Measurement“calibrated’usingASKAP(Mk.II)referencearray.• GapsinthemeasurementsarecausedbyRFIwhilsttheverticaldisplacementisduetothe

measurementsystem.

MeasuredPerformance– Parkes TestFacilityMeasuredNoiseTemperature– RocketArray

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page24

Page 25: Status and progress of PAF technology

FutureWork• Hot/Coldloadtesting(LN2)– ASKAPMk.IIdigitalbackend(Mar2016)• InstallationonParkes 64mantenna– BonnPAFbackend(Sep2016)• LNAdevelopment– Parkes Ultra-WidebandReceiver• Investigatecryogenicsystemissues

Ø CooledelementsØ VacuumwindowØ Hermeticfeedthrus

• SamplingattheFocus

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page25

Page 26: Status and progress of PAF technology

• Measurements“calibrated’usingASKAP(Mk.II)referencearray.• GapsinthemeasurementsarecausedbyRFI.

Performance– RoomTemperaturePAFs

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page26

Page 27: Status and progress of PAF technology

CSIROStrategicDevelopment• EnhanceexistingAustraliaTelescopeNationalFacility(ATNF)Instruments• ReductioninPAFTsysachievedinSKAworkincorporatedintoASKAP• ParticipateinSKAPAFAIP• Continuecollaborativemeasurementprogram(NRC,ASTRON,JBCO,INAF)• EngagementwithbroaderPAFcommunity

• CryogenicallycooledPAFforParkesØ RocketarrayelementgeometryØ RFI/EMIconsiderationsØ Samplingatthefocus

• Increasebandwidth>2.5:1• HighfrequencyPAF– 22GHz• Designformanufacture

Ø Cost,MassØ Powerconsumption

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page27

TheFuture

Page 28: Status and progress of PAF technology

PhasedArrayFeedDevelopmentUpdate|MarkBowen|Page28

RadioAstronomyinGeneral• PAFsonlargesingledishes– Parkes,Effellsberg, Lovell,SRT,Arecibo&GBT• CryogenicPAFs• HighfrequencyPAFs(2GHz– 20GHz)• Continuecollaborativeprograms(NRC,ASTRON,JBCO,INAF,CSIRO,NRAO)• PAFsontheSKA

Page 29: Status and progress of PAF technology

CSIROASTRONOMYANDSPACESCIENCE

CSIROAstronomyandSpaceScienceMarkBowenGroupLeader– [email protected]

We acknowledge the Wajarri Yamatji people as thetraditional owners of the Murchison Radio Observatory site.

Page 30: Status and progress of PAF technology

ReferencesA.Chippendale,D.HaymanandS.Hay,“MeasuringNoiseTemperaturesofPhased-ArrayAntennasforAstronomy”,PublicationsoftheAstronomicalSocietyofAustralia,doi:10.1017/pas.2014.

R.ShawandS.Hay,“TransistorNoiseCharacterizationforanSKALow-NoiseAmplifier”,inProc.9thEuropeanConferenceonAntennasandPropagation(EuCAP),April12-17,2015,Lisbon,Portugal.

A.J,Beaulieu,L.Belostotski,T.Burgess,B.Veidt andJ.Haslet,“NoisePerformanceofaPhased-ArrayFeedwithCMOSLow-NoiseAmplifiers”,Accepted,DOI10.1109/LAWP.2016.2528818,IEEEAntennasandWirelessPropegation Letters.

Dunning,M.A.Bowen,D.Hayman,J.Kanapathippillia,H.Kanoniuk,R.ShawandS.Severs,“TheDevelopmentofaWideband‘Rocket’PhasedArrayFeed,”Submitted,46thEuropeanMicrowaveConference(EuMC),October4-6,2016,London,UK.

Veidt etal.,“Noise PerformanceofaPhased-ArrayFeedComposedofThickVivaldiElementswithEmbeddedLow-NoiseAmplifiers”,EuCAP 2015