steady state impacts in inverse model parameter optimization

21
steady state impacts in inverse model parameter optimization Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G.J., Pereira, J.S., Berbigier, P., Carrara, A., Granier, A., Montagnani, L., Papale, D., Rambal, S., Sanz, M.J., and Valentini, R.(2008), Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval, Global Biogeochem. Cycles, 22, GB2007, doi:10.1029/2007GB003033.

Upload: afia

Post on 05-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

steady state impacts in inverse model parameter optimization. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: steady state impacts in inverse model parameter optimization

steady state impacts in inverse model parameter optimization

Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G.J., Pereira, J.S., Berbigier, P., Carrara, A., Granier, A., Montagnani, L., Papale, D., Rambal, S., Sanz, M.J., and Valentini, R.(2008), Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval, Global Biogeochem. Cycles, 22, GB2007, doi:10.1029/2007GB003033.

Page 2: steady state impacts in inverse model parameter optimization

motivation / goals

• CASA model parameter optimization• spin-up routines force soil C pools

estimates• impacts of the steady state in:

– model performance– parameter estimates / constraints

• propagation of C fluxes estimates uncertainties for the Iberian Peninsula

Page 3: steady state impacts in inverse model parameter optimization

the CASA model

ha RRGPPNEP

APARNPPPARfAPARAPAR

WT *

p

issii MTWkCRh )1(

Potter et al., 1993

OptT wB10QwsA *

Page 4: steady state impacts in inverse model parameter optimization

= Css∙ ηCns

• inclusion of a parameter that relaxed the steady state approach: η

approach to relax the steady state approach

OptT wB10QwsA *

Fix Steady State

Relaxed Steady State

111

Page 5: steady state impacts in inverse model parameter optimization

experiment design

• significance of each parameter:– removing one parameter at a time;

• alternatives to η:– replacing by :

• soil C turnover rates;• extra parameters on NPP and Rh

temperature sensitivity.

• Levenberg-Marquardt least squares optimization

Page 6: steady state impacts in inverse model parameter optimization

site selection and data

• CARBOEUROPE-IP:– 10 Sites

• optimization constraints: NEP• model drivers:

– site meteorological data;– remotely sensed fAPAR and LAI;– different temporal resolutions

Page 7: steady state impacts in inverse model parameter optimization

effect of η in optimizationadd

ing

η

IT-N

on [

sink:

542

gC

m-2 y

r-1]

Page 8: steady state impacts in inverse model parameter optimization

determinants of parameter variability: ANOVA

40

165

33

42

*

39

7 1

33

172

Topt

17

9

2

27

39

6

Bw

9

28

056

42

Q10

464

55

19

12

Aws

83

116

80

FST PRM TMR FST*PRM FST*TMR PRM*TMR

site

parameter vector

temporal resolution

site xparameter vector

site xtemporal resolution

parameter vector x temporal resolution

Page 9: steady state impacts in inverse model parameter optimization

what drives η?r2: 0.76; α < 0.001

Page 10: steady state impacts in inverse model parameter optimization

model performance improvements

model performance in relaxed > fixed steady state assumptions.

Page 11: steady state impacts in inverse model parameter optimization

differences in parameter estimates and constraints

ε*

Topt Bwε Q10 Aws

relaxed

fixed

relaxed

fixedε*

Topt Bwε Q10 Aws

P/P SE/SE

↑NPP ↓Rh

Page 12: steady state impacts in inverse model parameter optimization

total soil C poolsrelaxed fixedmeasurements

Page 13: steady state impacts in inverse model parameter optimization

steady state approach impacts

• model performance– relaxed > fixed

• parameter estimates– biases

• parameter uncertainties– relaxed < fixed

• soil C pools estimates– relaxed closer to measurements

Page 14: steady state impacts in inverse model parameter optimization

propagating parameters / uncertainties

Page 15: steady state impacts in inverse model parameter optimization

spatial simulations

• Iberian Peninsula• optimized parameters per site:

– optimization: naïve bootstrap approach• no assumption on parameters distribution

– GIMMS NDVIg : 8km, biweekly;

• parameter propagation per PFT: – estimating NEP / NPP / Rh

Page 16: steady state impacts in inverse model parameter optimization

spatial impacts : NPP 1991

relaxed fixed relaxed - fixed

Page 17: steady state impacts in inverse model parameter optimization

seasonality : NPP : IPrelaxed versus fixed

Page 18: steady state impacts in inverse model parameter optimization

iav : NEP : IPrelaxed versus fixed

Page 19: steady state impacts in inverse model parameter optimization

seasonality and iav : IP

var.

inter annual variability

seasonal amplitude

uncertainties

Min max min max min max

NPP -9% 62% -11% 53% -60% -2%

Rh -15% 74% -39% 131% -60% -2%

NEP -10% 63% -10% 91% -60% 6%

(relax – fix) / fix

Page 20: steady state impacts in inverse model parameter optimization

remarks

• biases in optimized parameters lead to significant differences in flux estimates: seasonality and iav

• uncertainties propagation show significant reductions under relaxed steady state approaches

• impacts in data assimilation schemes

Page 21: steady state impacts in inverse model parameter optimization