stephan de roode , irina sandu, johan van der dussen, pier siebesma, bjorn stevens,

21
LES results of the EUCLIPSE Lagrangian transitions: Entrainment, decoupling and low cloud transitions Stephan de Roode, Irina Sandu, Johan van der Dussen, Pier Siebesma, Bjorn Stevens, Andy Ackerman, Peter Blossey, and Adrian Lock

Upload: marny-valdez

Post on 02-Jan-2016

32 views

Category:

Documents


3 download

DESCRIPTION

LES results of the EUCLIPSE Lagrangian transitions: Entrainment, decoupling and low cloud transitions. Stephan de Roode , Irina Sandu, Johan van der Dussen, Pier Siebesma, Bjorn Stevens, Andy Ackerman, Peter Blossey, and Adrian Lock. Entrainment. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

LES results of the EUCLIPSE Lagrangian transitions:

Entrainment, decoupling and low cloud transitions

Stephan de Roode, Irina Sandu, Johan van der Dussen,

Pier Siebesma, Bjorn Stevens,

Andy Ackerman, Peter Blossey, and Adrian Lock

Page 2: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Schematic of cumulus penetrating stratocumulus

by Bjorn Stevens (based on ATEX intercomparison)

Cloud layer

Entrainment

Boundary layer is decoupled

Subcloud layer dynamics scale like dry convective boundary layer

Page 3: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Contents

Determining the degree of decoupling

Moisture and heat fluxes in the decoupled subcloud layer

Evolution of the subcloud layer state

Entrainment scaling

Page 4: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Stratocumulus cloud layer rises with timeSlow increase in cumulus cloud base height

Page 5: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Total water content for ASTEX

- binned mean + (all data) mean horizontal legs

Page 6: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Bulk structure of a decoupled boundary layer

Park et al., 2004, Wood and Bretherton 2004

αq =qT z i

−( ) − qT,0

qT z i+

( ) − qT,0

αq = 0 if vertically well mixed

Page 7: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Quantification of decoupling from observations

Wood and Bretherton 2004

larger αq for deeper boundary layers

αq =qT z i

−( ) − qT,0

qT z i+

( ) − qT,0

Page 8: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Decoupling parameter αq consistent between LES models

Page 9: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Example: Turbulent fluxes in ASTEX from DALES at t=23 hr

w'w' m2s−2( )

w'θv ' mKs-1( )

ρcpw'qT ' Wm-2( )

Next step: quantify buoyancy and total specific humidity flux at the cumulus base height

Page 10: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Buoyancy flux ratio rv becomes similar to CBL

rθv=

w'θv 'cu base

w'θv 'sfc

CBL value -0.2

Page 11: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Moisture flux ratio rq exhibits clear diurnal cycleMean value rq slightly smaller than unity

rq =w'qT '

cu base

w'qT 'sfc

Page 12: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Virtual potential temperature evolution in the subcloud layer

h

w'θv '0 = cDUML θv,0 − θv,ML( )

w'θv 'h = rθvw'θv '0

∂v,ML

∂t= −

∂w'θv '

∂z=

1 − rθv

h

⎝ ⎜

⎠ ⎟cDUML θv,0 − θv,ML( )

w'θv ' flux profile

Page 13: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Virtual potential temperature evolution in the subcloud layer

∂v,ML

∂t=

θv,0 − θv,ML

τθv

h

w'θv ' flux profile

τv=

h

cDUML 1 − rθv( )

If h = 500 m, rv = -0.2, cD=0.001, UML = 10 m/s then

τv ≈ 0.5 day

Page 14: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Assume SST increases linearly with time (and likewise v,0)

v,0 t( ) = θv,00 + γtTime-dependent BC

Solution

v,ML t( ) = γtlinear term

{ + θv,00 − γτθv+ γτθv

+ θv,ML t =0− θv,00( )e

−t / τθv

"memory term"1 2 4 4 4 4 4 3 4 4 4 4 4

Assume constant subcloud layer height h

Page 15: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Similar approach for the subcloud humidity

Time scale:€

∂qv,ML

∂t=

1 − rq v

h

⎝ ⎜

⎠ ⎟cDUML qs,0 − qv,ML( ) =

qs,0 − qv,ML

τq

τq =h

cDUML 1 − rq v( )

If rqv = 1, τq ∞ (then steady-state qv,ML)

Page 16: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Surface forcing obeys Clausius-Clapeyron

qs,0 t( ) = qs,0 t =0e t / τ cc

Clausius-Clapeyron time scale:

τcc =Rv T0 t =0( )

2

L vγ≈ 5 days

Solution

Time-dependent BC

qv,ML t( ) =qs,0 t( )

1+τq

τcc

+ qv,ML t =0−

qs,0 t =0

1+τq

τcc

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

e−t / τq

"memory term"1 2 4 4 4 4 3 4 4 4 4

As τq > 0 , subcloud humidity tendency typically smaller than surface saturation value

Page 17: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Subconclusion

Decoupled subcloud layer:

v,ML increases in accord with changes in the SST

Question: what about cloud layer?

Net cooling due to longwave radiative loss

->

will lead to a destabilization

Idea: entrainment is "needed" to prevent destabilization

Page 18: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

What is the entrainment rate needed to give a quasi-steady state

(this means LV tendency in the cloud is similar to the subcloud layer)

∂VL,CLD

∂t=

∂θVL

∂t

⎝ ⎜

⎠ ⎟subcloud

≈w eΔθVL

z i − h−

1

ρcp

ΔF

z i − h

∂VL

∂t= −

∂w'θ'VL

∂z−

1

ρcp

∂F

∂z , θVL = θL 1+ 0.61qv − qL( )

w e =z i − h

ΔθVL

∂θVL

∂t

⎝ ⎜

⎠ ⎟subcloud

+1

ρcp

ΔF

ΔθVL

Page 19: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Nighttime quasi-steady state entrainment value is rather close to the actual entrainment rate in solid stratocumulus

Page 20: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

Conclusions

Dynamics in a decoupled subcloud layer similar to the dry CBL

Decoupling makes it easier to understand subcloud layer dynamics

-> subcloud temperature dictated by time-varying SST

Humidity flux exhibits a distinct diurnal cycle

-> Max during the night, nearly all evaporated moisture in transported to the stratocumulus

During night-time quasi-steady state boundary layer

-> entrainment rate controled by SST tendency

Page 21: Stephan de Roode , Irina Sandu, Johan van der Dussen,  Pier Siebesma, Bjorn Stevens,

To do

Scaling behavior of drizzle in LES runs (how does it depend on the LWP?)