stephan de roode and johan van der dussen delft university of technology , netherlands

18
The EUCLIPSE/GCSS model intercomparison study of a stratocumulus to cumulus cloud transition as observed during ASTEX Stephan de Roode and Johan van der Dussen Delft University of Technology, Netherlands http://www.euclipse.nl/

Upload: shalin

Post on 31-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

The EUCLIPSE/GCSS model intercomparison study of a stratocumulus to cumulus cloud transition as observed during ASTEX. Stephan de Roode and Johan van der Dussen Delft University of Technology , Netherlands http://www.euclipse.nl/. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

The EUCLIPSE/GCSS model intercomparison study of a

stratocumulus to cumulus cloud transition as observed during

ASTEX

Stephan de Roode and Johan van der Dussen

Delft University of Technology, Netherlands

http://www.euclipse.nl/

Page 2: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Current boundary-layer cloud model intercomparison

studies for large-eddy simulation and single-column

models

CGILS (steady state solutions of stratocumulus and cumulus)

- aim: understand cloud-climate feedback for SST=+2K

Lagrangian cloud transitions (SST increases along the trajectory)

- ASTEX (aircraft) and composite cases (cloud fraction from satellite)

- aim: understand and validate modeling results of cloud regime transition

This talk:

- Subsidence, entrainment, and cloud layer depth evolution

Page 3: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

ASTEX transition: Large-scale divergence

difficult to quantify from the ECMWF model

∂z inv

∂t= wsubs

−Div⋅zinv

{ +went

Large-scale divergence: is it important for the stratocumulus-to-cumulus transition?

Page 4: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Mean state evolution: liquid water potential

temperature

285 290 295 300 305 3100

1000

2000

3000

θL ( )K

285 290 295 300 305 310

θL ( )K

290 295 300 305 310

θL ( )K

290 295 300 305 310 315

θL ( )K

t = 3 hr t = 8 hr t = 20 hr t = 36 hr

Divergence from ERA-40 (changing sign)

Divergence constant (5×10-6 s-1)

t > 20 hr : boundary height differs considerably

Page 5: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

ASTEX Lagrangian: Dutch Atmospheric Large-Eddy Simulation

ResultsDivergence from ERA-40 (changing sign)

Divergence constant (5×10-6 s-1)

cloud break up for case with larger divergence

Page 6: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Entrainment of dry and warm air from above the inversion:

cloud top height (ztop) rises

cloud base height (zbase) rises

Cloud deepening:

∂zcld

∂t=

∂z top −zbase

∂t> 0

Page 7: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

(g/kg)

z (m

) qsat

cloud base

qT

cloud top

Cloud layer depth evolution

zcld = fct qT ,qsat T( )( )

Page 8: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

(g/kg)

z (m

)

qsat

cloud base rises

qT

cloud top rises

Specific humidityExample: entrainment drying

zcld = fct qT ,qsat T( )( )

Page 9: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

(g/kg)

z (m

) qsat

lower cloud base height

qT

Example: longwave radiative cooling,saturation specific humidity decreases

Randall: in some cases cloud layer depth can increase by entrainment only

This presentation: consider all heat and moisture fluxes

zcld = fct qT ,qsat T( )( )

Page 10: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Cloud base and top height evolution for a well-mixed cloud layer

∂zcld

∂t= we +w −

weΔqT +w' qT 'z=zb−ΔSqT

−L vqs

RvT2weΔθL +w' θL 'z=zb

−ΔFrad / ρcp( )[ ]

z i −zb( )∂qs

∂z

⎛ ⎝ ⎜

⎞ ⎠ ⎟

Rad cooling –Cloud thickening

Cloud deepening by entrainment

Moistening –Cloud thickening

Drizzle –Cloud thinning

Entrainment drying –Cloud thinning

Entrainment warming –Cloud thinning

Subsidence - Cloud thinning

∂z i

∂t= we +w

zcld = z top −zbase

Page 11: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Cloud base and top height evolution for ASTEX as a function of the entrainment rate

cp<w' L'>zbase = 11 W/m2 , Lv<w'qT'>zbase = 60 W/m2

L = 5 K , qT = -1.1 g/kg LW = 74 W/m2

Div = 5 x 10-6 s-1

zbase = 300 m , ztop= 600 m

-150

-100

-50

0

50

100

150

0 0.5 1 1.5 2

d/dt ztop

(m/h)

entrainment rate (cm/s)

Page 12: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Cloud base and top height evolution for ASTEX as a function of the entrainment rate

cp<w' L'>zbase = 11 W/m2 , Lv<w'qT'>zbase = 60 W/m2

L = 5 K , qT = -1.1 g/kg LW = 74 W/m2

Div = 5 x 10-6 s-1

zbase = 300 m , ztop= 600 m

-150

-100

-50

0

50

100

150

0 0.5 1 1.5 2

d/dt ztop

d/dt zbase

(m/h)

entrainment rate (cm/s)

Page 13: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Cloud base and top height evolution for ASTEX as a function of the entrainment rate

-150

-100

-50

0

50

100

150

0 0.5 1 1.5 2

d/dt ztop

d/dt zbase

d/dt zcld

(m/h)

entrainment rate (cm/s)

cloud layer thickness growths for went < 1.9 cm/s

Page 14: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Example: DYCOMS II RF01

cp<w' L'>zbase = 11 W/m2 , Lv<w'qT'>zbase = 60 W/m2

L = 8.5 K , qT = -7.5 g/kg LW = 74 W/m2

Div = 5 x 10-6 s-1

zbase = 500 m , ztop= 800 m

For went > 0.4 cm/s,

cloud layer rapidly thins

-300

-200

-100

0

100

200

300

0 0.5 1 1.5 2

d/dt zbase

d/dt ztop

d/dt zcld

(m/h)

entrainment rate (cm/s)

Page 15: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Steady-state cloud layer depth: equilibrium entrainment

rates

cp<w' L'>zbase = 11 W/m2 , Lv<w'qT'>zbase = 80 W/m2

LW = 70 W/m2

Div = 5 x 10-6 s-1

zbase = 300 m , zi= 650 m

equilibrium entrainment rate

ASTEX

DYCOMS II RF01

Page 16: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Steady-state cloud layer depth: equilibrium entrainment

rates

cp<w' L'>zbase = 11 W/m2 , Lv<w'qT'>zbase = 80 W/m2

LW = 70 W/m2

Div = 5 x 10-6 s-1

zbase = 300 m , zi= 650 m

equilibrium entrainment rate

ASTEX

DYCOMS II RF01

entrainment rate (Nicholls and Turton, 1986)

Page 17: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Steady-state cloud layer depth: equilibrium entrainment

rates

cp<w' L'>zbase = 11 W/m2 , Lv<w'qT'>zbase = 80 W/m2

LW = 70 W/m2

Div = 5 x 10-6 s-1

zbase = 500 m , zi= 800 m

equilibrium entrainment rate

ASTEX

DYCOMS II RF01Cloud top height decreases(entrainment smaller than subsidence)

Page 18: Stephan de Roode  and Johan van der Dussen Delft University of Technology , Netherlands

Conclusions

Large-scale divergence is important for the evolution of the stratocumulus cloud deck

In a large part of the regime where the cloud layer depth is in a steady state the cloud

top increases with time

Acknowledgements

The EUCLIPSE project is an international effort, funded under Framework Program 7 of the European Union

NWO-NCF has sponsored the use of the Dutch Supercomputer "Huygens"

Irina Sandu (MPI), Chris Bretherton (UW), and Adrian Lock (UKMO) are thanked for their help setting up

the ASTEX intercomparison case