strain-enhanced device and circuit for optical communication system

40
NTU GIEE NanoSiOE RT O RTCV D pol y RTCV D nitride Clean M odule Load lock ellipso- m eter foup 1 Strain-enhanced Device and Strain-enhanced Device and Circuit for Circuit for Optical Communication System Optical Communication System 指指指指 指指指 指指 指指 指指指 指指指指指指指指指指指指

Upload: caesar

Post on 12-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Strain-enhanced Device and Circuit for Optical Communication System. 指導教授:劉致為 博士 學生:余名薪 台灣大學電子工程學研究所. Outline. Introduction Optical Communication System Mechanical/Package Strain Technique Strain-enhanced MOS Photodetector Strain-enhanced Transimpedance Amplifier - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

1

Strain-enhanced Device and Circuit forStrain-enhanced Device and Circuit forOptical Communication SystemOptical Communication System

指導教授:劉致為 博士 學生:余名薪

台灣大學電子工程學研究所

Page 2: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

2

OutlineOutline Introduction

Optical Communication System Mechanical/Package Strain Technique

Strain-enhanced MOS Photodetector Strain-enhanced Transimpedance Amplifier 7Gb/s Transimpedance Amplifier SiGe HBT BiCMOS Active Inductor Summary and Future Work

Page 3: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

3

Optical Communication SystemOptical Communication System

MUX

CMU

Laser Driver

DFF

Q

TIA LA

CDR

DMUX

Optical Fiber

Data Input

Data Output

Photodetector & Transimpedance Amplifier (TIA)

System block diagram

Transmitter

Receiver

Medium

Page 4: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

4

Mechanical/Package Strain TechniqueMechanical/Package Strain Technique

Side view Top view

Mechanical setup (detector)

BiaxialTensile Strain

UniaxialTensile Strain

Page 5: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

5

Mechanical/Package Strain TechniqueMechanical/Package Strain Technique

O-ringto fix the substrate

Chip

Mechanical stress(at center)

Biaxial strain

r

Packagesubstrate

Package substrate Biaxial

compressive strain

Biaxial tensile strainChip

Mechanical displacement

O-ringChip

Mechanical stress(at centerline)

Uniaxial strain

Si strip

Si stripUniaxial

compressive strain

Uniaxial tensile strainChip

Mechanical displacement

Mechanical setup (circuit chip)

BiaxialTensile Strain

UniaxialTensile Strain

Page 6: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

6

Ramam & Electroluminescence spectra

Ramam spectrum EL spectrum

• The red-shift of Si-Si peak in Ramam spectra indicates 0.13% biaxial tensile strain and 0.35% uniaxial tensile strain.• The EL spectra of a MOS LED under tensile strain indicates bandgap shrinkage.

Mechanical/Package Strain TechniqueMechanical/Package Strain Technique

Page 7: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

7

Mechanical/Package Strain TechniqueMechanical/Package Strain Technique

Current change (%)At |VGS|-|VT|=1V

250nm node (L=240nm)

Compressive0.06% strain

Tensile0.06% strain

NFET

Uniaxial // channel

-4.3 10.8

Uniaxial ┴ channel

-6.9 2.5

Biaxial -6.2 8.7

PFET

Uniaxial // channel

5.5 -8.8

Uniaxial ┴ channel

-6.8 4.8

Biaxial 0.3 -0.9

Current enhancement in MOSFET

• The drain current is enhanced owing to the electron mobility enhancement.• NFET has enhancement under tensile strain, and PFET has enhancement under uniaxial compressive strain parallel to channel and the uniaxial tensile strain perpendicular to channel.

Page 8: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

8

OutlineOutline Introduction Strain-enhanced MOS Photodetector

Metal/Thin-oxide/P-Si Tunneling Diode Photodetector Responsivity Enhancement by Tensile Strain

Strain-enhanced Transimpedance Amplifier 7Gb/s Transimpedance Amplifier SiGe HBT BiCMOS Active Inductor Summary and Future Work

Page 9: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

9

MOS Tunneling Diode PhotodetectorMOS Tunneling Diode PhotodetectorI-V & C-V characteristics

I-V curve C-V curve

• At the negative bias region, the device can serve as a LED. When the gate is biased at the positive voltage greater than threshold voltage, the device can serve as a PD. • C-V indicates that the deep depletion in the NMOS tunneling diode is formed for the large positive gate bias.

Page 10: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

10

MOS Tunneling Diode PhotodetectorMOS Tunneling Diode Photodetector

Photo currentDark current

Interface defects

Δ EC

Δ EV

EC

EV

Al SiO2 P-Si

hv

EF

hv

Al SiO2 P-Si

EC

EV

Band diagram

Accumulation (LED) Inversion (Detector)

• The bandgap shrinkage enlarges the concentration of the electron in the bulk silicon, and since the tunneling process would not be the limiting factor for electron to go from p-Si to Al gate, the photo current increases. Namely, the responsivity is enhanced.

Page 11: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

11

MOS Tunneling Diode PhotodetectorMOS Tunneling Diode PhotodetectorMeasurement

Biaxial tensile strain Uniaxial tensile strain

• The dark current has almost no change under strain, and the photo current is enhanced gradually with increasing strain.

Page 12: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

12

MOS Tunneling Diode PhotodetectorMOS Tunneling Diode PhotodetectorResponsivity enhancement

12%

14%

• Uniaxial strain has potentiality to achieve higher strain gauge than biaxial strain.• The maximum of current enhancement is about 12% and 14% under biaxial and uniaxial strain respectively.

Page 13: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

13

OutlineOutline Introduction Strain-enhanced MOS Photodetector Strain-enhanced Transimpedance Amplifier

Circuit Design & Simulation Bandwidth Enhancement by Tensile Strain

7Gb/s Transimpedance Amplifier SiGe HBT BiCMOS Active Inductor Summary and Future Work

Page 14: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

14

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance Amplifier

Iin

Vout

VDD

VB

50Ω

Parasitic isolation Core Amplifier Output buffer

M1

M2

M3 M4

M5 M6

M7

M8

M9

M10

R1

R2

R3

R4

R5

I1

I2

I3

X

Y Z

Circuit schematic

Main Gain Stage Peaking Stage

Page 15: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

15

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance AmplifierInductive peaking

L

R

CVin

Vout

12

RCsLCs

RLsg

V

Vm

in

out

1

)1(22

sms

msRgm

• For m = 0.4, the transfer function exhibits a maximum flat response with a bandwidth improvement of 70% compared to a simple common source amplifier. If m = 0.7, the bandwidth reaches its maximum value with 1.5dB peaking and 85% improvement.

fM

agni

tude

(dB

) m = 0.4

m > 0.4

m < 0.4M1

M2

M3

I1

I2

Rf

VB3

Zin

(τ= RC , m = L/R2C )

Active Inductor

Page 16: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

16

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance Amplifier

f f

Main Gain Stage Overall Gain

Peaking Stage

Bandwidth enhancement

After strain After strain

8

7 8 7 8 7

1,gs

s sm m m m o

CL R

g g g g r

2262

2

2 nn

nnsm

Y

Z

ss

sRg

V

V

s

gsgds

gsgds

n L

CCR

CCL

106

1062

,)(

1

Active Inductor :

Peaking Stage :

Page 17: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

17

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance Amplifier

1E91E8 1E10

20

30

40

50

60

10

70

freq, Hz

dB(G

ain)

1E91E8 1E10

-150

-100

-50

0

50

100

150

-200

200

freq, Hz

Pha

se

Frequency response & Stability

Magnitude response Phase response

2 3 4 51 6

500

1000

1500

2000

0

2500

freq, GHz

Sta

bFac

t1

1 2 3 4 5 6 7 8 90 10

0.05

0.10

0.15

0.20

0.25

0.00

0.30

freq, GHz

mag(D

elta

)

K factor Δ factor

Gain: 60dBΩBandwidth: 3.5GHzPeaking < 0.5dB

K > 1

Δ< 1

Page 18: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

18

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance AmplifierInput-referred noise current density & Eye diagram

Input-referred noise current density

Eye Diagram at 3.125Gb/s, 20uA

HzpAI innoise /202,

Jitter < 20ps

Page 19: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

19

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance Amplifier

Technology TSMC 0.18um RFCMOS

Supply voltage 1.8V

Transimpedance gain 60dBΩ

Bandwidth 3.5GHz

Input referred noise current

< 20pA/√Hz

Jitter < 20ps

Group delay variation < 65ps

Power consumption (core) 12mW

Chip Area 600*380 um2

Performance Summary

Page 20: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

20

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance AmplifierMeasurement : Bandwidth enhancement

• Through 0.06% biaxial tensile strain, the characteristic of active inductor can be modified, thus improves the -3dB frequency.• The bandwidth enhancement is about 5.5%.

Page 21: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

21

Strain-enhanced Transimpedance AmplifierStrain-enhanced Transimpedance AmplifierCircuit layout & Die photograph

Die photo

Layout

Page 22: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

22

OutlineOutline Introduction Strain-enhanced MOS Photodetector Strain-enhanced Transimpedance Amplifier 7Gb/s Transimpedance Amplifier

Circuit Design & Simulation Measurement

SiGe HBT BiCMOS Active Inductor Summary and Future Work

Page 23: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

23

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance Amplifier

R1

VB1

M1

M2

M3 M4

M5

R2

R3

L1

Rf

C2

Vout

C3

R6Iin

R4 R5

C1VB2

L2 L3

M6 M7

VB3

Parasitic isolation Core Amplifier Differential Output Buffer

Circuit schematic

Page 24: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

25

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance Amplifier

1E6 1E7 1E8 1E9 1E101E5 1E11

-50

0

50

-100

100

freq, Hz

dB(G

ain)

1E91E8 1E10

-150

-100

-50

0

50

100

150

-200

200

freq, Hz

Pha

se

7 8 96 10

50

100

150

200

0

250

freq, GHz

Sta

bFact1

10 20 300 40

0.2

0.4

0.6

0.8

0.0

1.0

freq, GHz

mag(D

elta

)

Frequency response & Stability

Magnitude response Phase response

K factor Δ factor

Gain: 56dBΩBandwidth: 8GHzPeaking < 1dB

K > 1

Δ< 1

Page 25: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

26

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance AmplifierInput-referred noise current density & Eye diagram

Input-referred noise current density

Eye Diagram at 10Gb/s, 20uA

HzpAI innoise /152,

Jitter < 15ps

Page 26: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

27

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance Amplifier

S11 S12

S21 S22

Measurement : S-parameters

Page 27: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

28

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance AmplifierMeasurement : Frequency response

Magnitude response Phase response

50)1)(1(

2

12212211

2121 SSSS

SZTransform function:

Gain: 57dBΩBandwidth: 6GHz

Page 28: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

29

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance AmplifierMeasurement : Eye diagram

2.5 Gb/s PRBS 3.125 Gb/s PRBS

7 Gb/s PRBS

• Measured on PCB.• Equivalent input current ~ 50uA.• Eye can open well under 7Gb/s PRBS.• Jitter < 35ps @ 7Gb/s• The inductive characteristic of bond wire may help improve overall bandwidth.

Page 29: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

30

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance Amplifier

Simulation Measurement

Technology TSMC 0.18um RFCMOS TSMC 0.18um RFCMOS

Supply voltage 1.8V 1.8V

Transimpedance gain 56dBΩ 57dBΩ

Bandwidth 8GHz 6GHz

Input referred noisecurrent

< 15pA/√HzSensitivity:

20uA/eye open

Jitter < 15ps < 35ps @ 7Gb/s

Group delay variation < 80ps < 90ps

Power consumption (core) 10mW 10mW

Chip Area 880*980 um2 880*980 um2

Performance Summary

Page 30: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

31

7Gb/s Transimpedance Amplifier7Gb/s Transimpedance AmplifierDie & PCB photograph

Die photo

PCB photo

PCB layout

Page 31: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

32

OutlineOutline Introduction Strain-enhanced MOS Photodetector Strain-enhanced Transimpedance Amplifier 7Gb/s Transimpedance Amplifier SiGe HBT BiCMOS Active Inductor

CMOS Active Inductor BiCMOS Active Inductor

Summary and Future Work

Page 32: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

33

SiGe HBT BiCMOS Active InductorSiGe HBT BiCMOS Active Inductor

Zin

V1 V2

-Gm1

Gm2

I2

I1

C 21 mmin GG

sCZ

M1

M2 M1

M1

M1

M2

M2

M2

M1

M1

M1

M1

M2

M2 M2

M2

Basic configuration of active inductor

Gyrator-C topology:

CS-CD type

CS-CG type

Two-transistor active inductor:

Page 33: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

34

SiGe HBT BiCMOS Active InductorSiGe HBT BiCMOS Active InductorProposed active inductor

CMOSBiCMOS

Type A Type B

RsLs

Cp

Rp

Zin 2

1

mp gR

1gsp CC

21

1

mm

os gg

GR

21

2

mm

gss gg

CL

M1

M2

I2

I1

I2

M2

Q1

Q2

M1

I1

I2

I1

I2

M2

Q1

Q3 VB3

Equivalent model :

1

2

o

gs

s

s

G

C

R

LQ

2121

212 1TT

gsgs

mm

psSR ff

CC

gg

CLf

CascodeBiCMOS Type A

Page 34: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

35

SiGe HBT BiCMOS Active InductorSiGe HBT BiCMOS Active Inductor

)))(CC((

)CCC()(

211gd1gs22

gd1gd2gs21

gddsmm

dsin sCggsg

sgsZ

eq

m

gs

m

gd

mm

gsgd

gsm

gdm

mm

gs

mm

ds

in R

g

C

g

C

gg

CC

Cg

Cg

gg

C

gg

g

Z

2

2

2

1

22

2

21

222

21

22

1

2

2

2

21

1

1

11

]Re[

eq

m

gs

m

gd

mm

gsgd

gdmm

gs

mm

gs

in Lj

g

C

g

C

gg

CC

Cgg

C

gg

Cj

Z

2

2

2

1

22

2

21

222

221

22

21

2

1

1

]Im[

M1

M2

I2

Zin analysis

Zin

Page 35: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

36

SiGe HBT BiCMOS Active InductorSiGe HBT BiCMOS Active Inductor

1M 10M 100M 1G 10G 100G-100

-80

-60

-40

-20

0

20

40

60

80

100

Zin

ph

ase

Frequency (Hz)

CMOS BiCMOS BiCMOS cascode

Frequency response of input impedance

Magnitude Phase

• For fair comparison, all the active inductors are designed with identical MOSFET size and power consumption. • BiCMOS active inductor has wider inductive range.• The phase of BiCMOS type rises at lower frequency and reaches the higher degree, which means BiCMOS type has much higher quality factor and less resistive loss.

1M 10M 100M 1G 10G 100G0

10

20

30

40

50

60

70

Zin

mag

nit

ud

e (

dB

)

Frequency (Hz)

CMOS BiCMOS BiCMOS cascode

Page 36: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

37

SiGe HBT BiCMOS Active InductorSiGe HBT BiCMOS Active Inductor

0 2 4 6 8 10 12 14 16 18 20-20

-10

0

10

20

30

Ind

ucta

nce (

nH

)

Frequency (GHz)

CMOS BiCMOS BiCMOS cascode

0 2 4 6 8 10 12 14 16-5

0

5

10

15

20

Qu

ality

facto

r

Frequency (GHz)

CMOS BiCMOS BiCMOS cascode

Inductance & Quality factor

Inductance Q-factor

• BiCMOS type has much higher resonant frequency.• Cascode will reduce the resonant frequency owing to its extra parasitics, but it provides higher inductance at high frequency and higher quality factor.

Page 37: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

38

SiGe HBT BiCMOS Active InductorSiGe HBT BiCMOS Active Inductor

5 10 150 20

-1E-8

0

1E-8

2E-8

-2E-8

3E-8

freq, GHz

Indu

ctan

ce3

2 4 6 8 100 12

10

30

50

70

90

-10

110

freq, GHz

Q3

5 10 150 20

-1E-8

0

1E-8

2E-8

-2E-8

3E-8

freq, GHz

Indu

ctan

ce3

2 4 6 8 100 12

10

305070

90110

130150170

190

-10

210

freq, GHz

Q3

5 10 150 20

-2E-8

-1E-8

7E-24

1E-8

2E-8

3E-8

-3E-8

4E-8

freq, GHz

Indu

ctan

ce3

2 4 6 8 100 12

10

30

50

70

90

110

-10

130

freq, GHz

Q3

Inductor characteristic tuning

I1 tuning

I2 tuning

VB tuning

I1 increasingI1 increasing

I2 increasing I2 increasing

VB increasing VB increasing

Inductance Q-factor

Page 38: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

39

OutlineOutline Introduction Strain-enhanced MOS Photodetector Strain-enhanced Transimpedance Amplifier 7Gb/s Transimpedance Amplifier SiGe HBT BiCMOS Active Inductor Summary and Future Work

Summary CMOS Image Sensor

Page 39: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

40

SummarySummary A novel metal/thin-oxide/silicon structure tunneling diode photo detector is

proposed. With biaxial or uniaxial tensile strain, the band-gap of bulk Si shrinks, resulting in higher electron concentration under identical exposure, thus the responsivity is enhanced. The maximum of responsivity enhancement under biaxial and uniaxial tensile strain are about 12% and 14% respectively.

A Transimpedance Amplifier (TIA) adopting active inductor is designed. Through inductive characteristic tuning by biaxial tensile strain, a 5.5% bandwidth enhancement can be achieved.

A 7Gb/s transimpedance amplifier fabricated with TSMC 0.18um CMOS process is proposed. The measured gain and bandwidth are 57dBΩ and 6GHz respectively. The eye can open well with operation under 7Gb/s PRBS.

A novel BiCMOS type active inductor is proposed. From simulation, it can be proved that BiCMOS active inductor can achieve higher quality factor and resonant frequency than CMOS type with the great help from SiGe HBT. However, the inductance value would be slightly lower.

Page 40: Strain-enhanced Device and Circuit for Optical Communication System

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

41

Future WorkFuture WorkCMOS image sensor

Replace with MOS detector

• The photodiode can be replaced with our MOS tunneling diode photodetector by connecting the gate of the diode to the source of transfer gate.

• The lower dark current(~3nA/cm2) and higher quantum efficiency (~80%) can improve the performance of the pixel, such as dynamic range and sensitivity.