strength of cold-formed steel box columns

Upload: pauloandressepulveda

Post on 06-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    1/17

     Missouri University of Science and Technology 

    Scholars' Mine

    I#aa* S#!a*6 C$##!# C*-F+# S##* S!#

    (1988) - 9& I#aa* S#!a*6 C$##!# C*-F+# S##* S!#

    N3 8&, 12:00 AM

    Strength of cold-formed steel box columnsN. E. Shanmugam

    S. P. Chiew 

    S. L. Lee

    F**4 & a aa* 4 a: &://!&*a+#.+.#/!!

    A !*# - C$##!# !##% %& 6 $ $## a # a!!# 6 W#-W# Y C## $ C*-F+# S##* S!# a

    S!&*a' M#. I &a ## a!!## $ !* I#aa* S#!a*6 C$##!# C*-F+# S##* S!# 6 a a&#

    a+a $ S!&*a' M#. F +# $+a, *#a# !a! 4#a3#@+.#.

    R#!++## CaN. E. S&a+%a+, S. P. C&#4, a S. L. L##, "S#%& $ !*-$+# ##* 5 !*+" (N3#+# 8, 1988). International SpecialtyConference on Cold-Formed Steel Structures. Pa# 7.&://!&*a+#.+.#/!!/9!!$-#1/9!!$-#1/7

    http://scholarsmine.mst.edu/?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss/9iccfss-session1?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss/9iccfss-session1?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPagesmailto:[email protected]:[email protected]://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss/9iccfss-session1?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss/9iccfss-session1?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarsmine.mst.edu/?utm_source=scholarsmine.mst.edu%2Fisccss%2F9iccfss-session1%2F9iccfss-session1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    2/17

    ABSTRACT

    Ninth

    International

    Specialty Conference on Cold-Formed Steel Structures

    St. Louis Missouri U.S.A. November

    8-9,1988

    STRENGTH OF COLD FORMED

    STEEL

    OOX

    COLUMNS

    N.E.

    Shanmugam

    1

      M.ASCE S.P.

    Chiew

    2

     

    S.L. Lee

    3

      F.ASCE

    Cold-formed

    s t ee l box

    columns have two obvious modes of

    fa i lure ;

    they

    can

    reach the

    ul t imate capac i ty

    e i the r by

    overal l column

    buckl ing

    or l oca l buckling. This paper i s

    concerned with

    a

    numerical

    method to

    pr e d i c t the ul t imate load-car ry ing capaci ty

    of

    cold-formed s t ee l box

    columns

    subj

    ected

    to

    axial

    force

    and

    unequal

    end

    moments. The method

    accounts for the ef f ec t of

    loca l

    p la te buckling and in i t i a l

    imperfec t ions

    upon

    the u l t imate s t reng th of columns.

    Moment-curvature- thrust r e l a t ionsh ips are

    developed by

    using

    piecewise

    l i nea r

    s t r e s s - s t r a in curves; they are incorporated in to the column

    -analysis

    in which

    the

    d i f fe ren t i a l equation

    of bending

    i s numerically

    in tegra ted .

    Use

    of a

    su i tab le fa i lu re c r i t e r ion and

    numerical

    procedure

    makes t poss ib le to

    obtain column

    curves .

    For design purposes,

    column

    curves from which ul t imate s t reng th

    of

    column under ax ia l

    or

    eccentr ic

    loading condi t ions

    can

    be

    eas i ly obtained

    are presented.

    INTRODUCTION

    Thin-wal led s t i f fened compression

    elements

    are commonly

    encountered

    in

    cold-formed

    s t ee l box columns. When such columns are

    subj

    ected to

    compressive

    loading, wi th the onse t

    of buckling

    the

    growth

    of out

    of plane

    def lec t ions in

    the pla te elements r esu l t s in changes in

    the s t re ss

    pa t te rn

    which

    in

    tu rn reduces

    the pla te

    s t i f fn es s . This

    reduction causes the f a i lu re of

    the

    column a t a

    load

    l ess

    than

    i t s

    c l a s s i ca l

    Euler

    buckling load.

    The

    design

    of

    cold-formed s t ee l box

    columns, therefore ,

    requires

    the

    cons idera t ion of

    local

    p la te

    buckling,

    overa l l column

    buckl ing and

    the

    i n t e r a c t i on

    between the local

    and

    overa l l buckling. A

    close-form eva lua t ion

    of

    ul t imate s t rength of such

    columns i s

    well

    nigh

    impossible

    and

    the

    use of numerical

    procedure,

    therefore , becomes necessary .

    Numerous inves t igators

    6,8,11,17)

    have studied the ef f ec t

    of

    loca l

    buckl ing on

    the s t r eng th of

    pla te elements

    subjected to

    compressi

    ve loading.

    Rigorous

    methods

    using

    la rge def lect ion

    theory

    coupled with f i n i t e dif fe rence

    methods

    (12,14)

    and

    e las to -p las t i c f i n i t e

    1 . Senior

    Lecture r , Department

    of

    Ci

    v i I

    Engineering,

    National

    Univers i ty

    of

    Singapore,

    Kent Ridge,

    Singapore

    0511.

    2. St ruc tura l Engineer, T.H. Chuah and Associa tes (Pte) Ltd, 190

    Middle

    Road,

    Fortune

    Centre, 11-04,

    Singapore

    0718.

    3.

    Professor and Head, Department

    of Civi l

    Engineering, National

    Univers i ty of Singapore, Kent Ridge, Singapore 0511.

    129

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    3/17

    130

    element formulat ions (5 ,7) have been proposed for

    the

    ul t imate s t rength

    ana lys is

    of

    p la t e elements .

    For

    design

    off ice

    use, however, simple

    methods using the

    ef f ec t ive

    width

    concept

    were presented by Von

    Karman

    (16)

    and

    Winter

    (18) .

    Ilimy

    of

    the design

    spec i f i ca t ions

    1,2 ,4)

    for

    cold-formed s t ee l s t ruc tu ra l elements have accepted the

    ef fec t ive

    width

    pr inc ip le

    and it has been proved

    to

    yie ld sa t i s f ac tory

    r e su l t s .

    A

    simple

    ana ly t i ca l

    method

    was presented

    recent ly

    by

    the authors

    (10,15) for

    predic t ing

    the s t r eng th of thin-walled

    welded s tee l

    box

    columns

    subjec ted to

    ax ia l

    load and end moments.

    The

    method accounts

    for

    loca l buckl ing of

    component pla tes , welding r es idua l

    s t r esses and

    i n i t i a l column imper fec t ions .

    The

    method i s extended for

    the

    ana lys is of cold-formed s t ee l box columns in

    the

    present s tudy .

    Homent-curvature- thrust r e l a t ionsh ips are developed by

    using

    piecewise

    l inea r

    s t r e s s - s t r a i n curves .

    They

    are incorporated in to the column

    ana lys i s in which the

    d i f fe ren t i a l equat ion

    of bending i s numerical ly

    i n t eg ra t ed .

    Use of

    a

    su i tab le f a i lu re

    c r i t e r i on and numerical procedure

    makes it

    poss ib le

    to

    obta in the ul t imate s t r eng th . Resul ts are

    presented in the form

    of

    column

    curves

    which can be used

    read i ly

    by

    des igners .

    THEORY

    An exact ana lys is for u l t imate

    s t rength of cold-formed

    s tee l box

    columns i s

    complica ted

    because

    of

    the local

    buckl ing of

    component p la t es

    and the non- l inear i ty of the

    s t r e s s - s t r a i n

    curves.

    However, the

    so lu t ion

    can

    be

    great ly

    s imp l i f i ed

    by

    adopting approximate

    l inear i sed

    s t r e s s - s t r a in curves .

    Box columns

    can be

    t r ea ted as

    an assemblage

    of

    long p la t es supported along the longi tud ina l edges

    as

    shown in Figure 1

    Local

    buckl ing of

    the

    component

    pla tes ,

    which are under

    ax ia l

    compression, i s

    allowed for

    by applying

    an appropr ia te

    load-shor ten ing

    curve, while

    those under t ens ion

    are t r ea t ed by assuming an

    e las t i c -pe r fec t ly

    p l a s t i c

    s t r e s s - s t r a i n curve.

    Simpl i f ied piecewise

    l i ne a r

    s t r e s s - s t r a i n curves (Figure

    2b) based

    on

    approximat ions

    of s t r e s s - s t r a i n curves by Moxham

    Cr is f ie ld ,

    Harding

    e t a l . and L i t t l e (3)

    were

    proposed by Shanmugam e t al .

    (15) .

    These

    curves represent

    unwelded

    p la t es having s lenderness

    r a t ios

    equal

    to

    80,

    55,

    40 and

    30

    or

    l e s s , and

    i n i t i a l

    imperfec t ion

    of

    b 1

    000,

    b

    being the width of the

    p la t e in a d i rec t ion normal to

    the

    compressive

    loadings .

    These

    curves

    have been used

    to account

    for the local buckl ing

    of the

    component p la t es

    of

    box columns and

    the

    moment-curvatures- thrust

    H - ~ - P ) re la t ionsh ips

    for column cross - sec t ions were

    developed

    as

    explained

    in the fol lowing sec t ions .

    MOMENT CURVATURE THRUST

    RELATIONSHIPS

    t becomes imperat ive

    to

    formulate the moment-curvature- thrust

    r e l a t ionsh ips for ind iv idua l

    cross-sect ions

    in order

    to

    determine the

    equi l ibr ium curves def in ing

    the

    domain of s t ab le equi l ibr ium of moment,

    t h r u s t and column l eng th . The M ~ P r e l a t ionsh ip i s

    computed

    numerical ly using

    the

    method

    s imi l a r to tha t adopted by Nishino e t

    a l .

    13).

    The

    fol lowing assumptions are made in the

    ana lys i s

    which

    follows:

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    4/17

    131

    ( i )

    the

    mater ia l i s homogeneous and i so t rop ic in both

    the

    e l a s t i c

    and

    p l a s t i c

    s t a t e s ,

    ( i i ) e l a s t i c - pe r f e c t l y p l a s t i c

    s t r e s s - s t r a i n

    r e la t ion

    Figure

    2a)

    i s

    assumed

    for f l ange p la t e under

    t ens ion

    and

    the

    local buckl ing of the f lange p la t e

    under compression

    i s allowed by

    applying an

    appropr ia te

    s t r e s s - s t r a i n

    curve

    from

    the

    se t

    of

    curves given in Figure 2b.

    The

    por t ion of

    the

    web

    p la t e under compression i s t r ea t ed in a s imi lar

    manner

    to tha t

    of the compression f l ange by

    applying the

    s t r e s s - s t r a i n

    curve with the

    assumption t ha t

    b i s equal to the depth of

    the

    compression

    zone

    ( i i i ) the ioca l buckl ing of the p la t e

    due to

    shear i s

    ignored,

    ( iv)

    v )

    (vi)

    ( v i i )

    the s t r a i n

    d i s t r i bu t i on

    i s

    l i ne a r

    across the depth

    of

    the cross - sec t ion

    Figure 3) ,

    the res idua l s t r esses in each component p la t e are

    assumed

    to

    be i n se l f - equ i l ib r ium and

    dis t r ibu ted

    in the form shown in

    Figure

    4,

    the

    e f f e c t

    of s t r a i n

    r ever sa l

    i s

    negl ig ib le ,

    and

    the de f lec t ions

    are

    smal l so t ha t curvature can be

    expressed by

    the

    second der iva t ives of def l ec t ions .

    Consider the

    cross - sec t ion

    as shown in Figure 3(a) .

    The neutra l

    axis i s located a t a dis tance R from the concave

    extreme

    f ib re of the

    cross sec t ion . For purpose of obta in ing the M P

    re la t ionsh ip ,

    the

    cross sect ion

    i s

    d i sc re t i sed i n to n elements . The s t r a i n a t any

    element

    i can

    be expressed

    in the

    non-dimensional

    form

    in

    which

    e:

    e

    c

    1 )

    t o t a l s t r a in a t element i ,

    pos i t ive

    i f in tension

    s t r a i n

    a t the centro id of the sec t ion

    j> curvature non-dimens ional i sed by

    the curvature

    a t

    i n i t i a l

    yie ld ing

    for bending, 2e:

    y

    /d

    Yi

    dis tance

    of

    the

    cen t re

    of element

    i

    from

    the

    cent ro idal

    axis

    e: . res idual s t r a in a t element i

    ~

    e

    y

    yie ld s t r a i n

    d

    depth

    of cross sec t ion

    The corresponding s t r e s s

    cr

    i s obta ined by making use of

    the

    appropr ia te s t r e s s - s t r a in

    curves

    ~ ven in Figure

    2b,

    cr being posi t ive

    i f in

    tens ion .

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    5/17

    132

    The ax ia l force and bending moment carr ied

    by

    the c ro ss - se c t io n

    can

    be

    eas i ly obta ined by

    using the equi l ib r ium

    equat ions

    n

    p

    E

    2 a)

    n

    m

    E

    Z

    i ~ 1

    2 b)

    where

    p

    m

    n

    t o t a l number

    of

    elements

    A

    re

    of

    cros s s ec t i on

    Z p l as t i c modulus

    of sec t ion

    M .

    area of element

    i

    P

    y

    squash load

    My

    p l as t i c moment yz

    The

    moment

    developed about

    the

    cen t ro ida l

    axis

    of

    a

    cross-sec t ion

    can be

    determined numerica l ly

    fo r

    any

    given value of

    ax ia l

    t h rus t

    and

    curva ture 4> The

    computations

    involve the determinat ion of the correc t

    pos i

    t i o n

    of the n e u t ra l ax i s . Success i ve values of R can be

    i n t e rpo la t ed and the correc t value

    i s

    determined such t ha t the

    ne t

    compress ive fo rce from the reSUlt ing s t r a i n dis t r ibu t ion

    defined

    by

    R

    and

    > obtained

    from

    Eq.

    2 a)

    toge ther with Eq.

    matched the given ax ia l

    t h rus t . The r e s u l t i n g moment

    can be

    c a lc u la te d

    from

    Eq. 2 b)

    and

    the

    procedure repeated

    fo r

    other values of 4>. Typica l M-4>-P

    r e l a t i onsh ips

    obtained

    are given in Figure

    5 . The

    v a r i a t i o n

    of

    m M My

    wi

    th

    respec t

    to

    > ~ ~ fo r p P P

    0 .3

    i s

    plo t t ed

    in Figure 5 for

    pla te

    s l e n d e r n e s ~

    i t 40, and 80.

    ULTIMATE

    STRENGTH

    OF COLU 1NS

    Box

    columns sub jec ted to e c c e n t r i c

    load can

    be t rea ted

    by

    cons ider ing the

    can t i l eve r column under

    the

    ac t ion

    of a x ia l force

    P,

    t r a n sv e rse

    shear force Q

    and

    bending moment

    M

    a t

    the f ree

    end

    as

    shown

    in Figure 6 . In i t i a l imperfec t ion i s assumed to be represented

    by

    i n i t i a l curva ture which

    i s

    constan t

    throughout

    the length of the

    column.

    The

    equi l ib r ium

    condi t ion

    and the curva ture-d i sp lacement

    r e l a t i o n are given, respec t ive ly in the non-dimens ional form

    as

    Ar

    pw

    +

    qx)

    3

    mf

    Z

    d

    2

    w

    (4) + 4>i)

    2r

    4)

    dx

    2

    d

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    6/17

    133

    in

    which

    m

    f Mf/My

    q

    Q/P ; g

    Y Y

    x

    x;; f ;

    w

    W/r

    and

    ~ i

    ~ i / ~ y

    The

    def lected

    shape

    of

    a

    column

    for

    given values

    of

    mf

    p

    and

    q

    ana

    prescn.oea values

    of

    ~ .

    can oe

    ootained

    oy in tegra t ing t:q. 4 J.n

    view

    of

    Eq. 3

    and the m ~ m e n t - c u r v a t u r e - t h r u s t re la t ionship

    for a

    par t i cu la r

    cross - sec t ion developed ea r l i e r . In order

    to s impli fy the

    in tegra t ion

    of Eq. 4 a numerical

    procedure

    was

    adopted. The method is

    explained in re fe rence 15

    and

    hence it i s

    not

    repeated

    here in .

    Wi

    th

    the

    help

    of the

    numerical

    in tegra t ion technique the re la t ion

    between

    m

    and

    x can

    be obtained

    for a se t

    of

    p, q

    and and various

    assumed

    values of

    m

    f

    The m-x re la t ionships thus obtained: are plot ted

    as shown in

    Figure

    7

    and

    they

    are refer red

    to

    as equil ibrium

    curves.

    Applying Horne s (9) s t ab i l i t y cr i te r ion the envelope of the equil ibrium

    curves can

    be constructed. The envelope

    i s the boundary of the

    s table

    equilibrium domain

    of

    the cant i lever column

    of cer ta in

    length

    subjected

    to

    the

    combined act ion

    of

    end

    moment, axia l

    th rus t

    and shear .

    The

    var ia t ion

    of

    the

    moment capaci ty along the length of the

    column

    for a

    par t icular

    value

    of ax ia l thrus t and shear i s gi

    ven by

    the envelopes in

    Figure 7.

    t i s

    more useful

    to presen t the ul t imate

    s t rength

    of

    box columns

    in the

    form

    of

    column

    curves. The equations developed for can t i l eve r

    column can be extended

    to

    the trea tment of

    simply

    supported box columns

    subjected

    to

    unequal end moments with

    -1

    K 1 as shown

    in

    Figure 8.

    The

    simply

    supported

    column

    may

    be

    t rea ted

    as

    two can t i l eve r

    columns

    of

    lengths

    X

    and

    x2

    with f ixed ends a t poin t

    O.

    The par t of the

    colum to

    the r ight of point

    0

    corresponds

    to

    the cant i lever column of Figure

    6.

    With

    Q

    = M 1

    -

    K)/L whi l s t the

    par t to l e f t

    of

    0

    corresponds to

    a

    column

    under a t ransverse

    load Q opposite in sense to

    tha t shown

    in

    Figure 6

    and hence care should be exercised in using the appropriate envelopes.

    A

    typica l

    envelope

    constructed for the whole length of

    a

    column

    with par t i cu la r

    values

    of

    and

    q

    and various

    magnitudes of p i s

    shown

    in

    Figure

    9. The

    curves t..re

    plot ted

    on the m-A

    plane in which

    A

    is

    normalised s lenderness r a t i o given

    by

    5)

    The envelopes on the l e f t correspond

    to

    the cant i lever column of

    length

    x1 and on

    the

    r igh t

    to

    the

    cant i lever column

    of

    length

    x2 For given

    values of p and q, a t the l imi t of s t ab i l i t y the poin t (m, A

    1

    ) and

    (Kffi , A

    2

    )

    must

    be on the envelopes corresponding to p

    and q. The

    c r i

    t i c a l

    values of A,

    and

    x

    2

    are

    not

    known a p r io r i

    however,

    they mus t

    sa t i s fy

    the fol lowing

    equat ions:

    6)

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    7/17

    134

    z

    m 1

    - K)

    q

    Ar ITA

    7)

    A

    value

    of A

    i s

    f i r s t

    assumed along with the

    prescr ibed

    values

    of K , m

    and p.

    q i s determined from Eq. 7

    and the

    values of 1.1

    and 1.2 and

    hence A are

    obtained

    from the envelopes corresponding

    to the

    se t of

    value

    of p

    and

    q.

    This

    process i s

    repeated

    unt i l

    the assumed value

    of

    A

    matches

    the

    computed one. A faml.ly of column curves p-A

    curves)

    for

    various values of

    m and

    K can be constructed. The

    s teps

    involved

    in

    the const ruct ion of column curves are i l l u s t r a t ed in Figure 10.

    RESULTS AND

    DISCUSSION

    The

    proposed

    method

    was appl ied

    to the

    analysis of

    the behaviour

    of

    box columns

    having

    d i f fe ren t p la te

    slenderness

    ra t ios . The

    parameters were

    so chosen

    tha t

    they show

    the

    influence of

    end

    moment,

    the

    moment

    ra t io and

    column

    s lenderness .

    Column

    curves which were

    generated from

    the

    resul t s are

    presented

    in Figures 11-13. In each of

    these f igures curves are given for moment ra t ios equal

    to

    1.0,

    0.0

    and

    -1

    .0 ,

    respect ively .

    K equal

    to one

    represents

    the case of

    a column

    under

    equal end

    moments.

    Resul t s

    are presented for end moment M/My)

    equal

    to

    0.0,

    0.1 and 0.3

    and

    pla te s lenderness

    ra t io of

    30, 40, 55

    and

    80.

    All these

    curves

    were

    obtained

    assuming

    i n i t i a l

    curvature , .,

    equal to

    0.1

    and f ixed

    value of

    res idual s t ress

    level shown

    in

    Figure 4

    The

    re su l t s for K =

    0.0

    and

    -1 .0 c lea r ly show

    the

    e f fec t

    of

    unequal

    end

    moments upon the s t r eng th

    of axia l ly

    loaded

    box

    columns.

    For a l l

    values of

    m the column

    s t rength

    increases

    with

    the

    decrease in

    K

    values . For example consider column curves

    in

    Figures 11

    a) and

    13 a)

    in which K

    1.0 and

    -1.0

    r espec t ive ly . For

    A 0.6

    and

    m 0.3 the

    s t rength

    of

    column

    for

    K equal

    to

    1.0 i s 0.56 and the corresponding

    value for

    K equal to 1.0 is 0.72

    an increase of about

    29

    percent .

    I t

    i s

    a l so

    observed t ha t

    the

    columns under s ing le curvature bending

    K =

    0.0,

    1.0) are normally weaker than those under double curvature

    bending K = -1 .0 . This e f fec t

    i s

    found

    to

    be more signi f icant in the

    case of

    intermediate column

    range. Simi lar observat ions can

    be made

    for

    a l l values of K in the case

    of

    columns with other slenderness values

    a l so .

    t

    i s

    obvious from the

    f igures t ha t

    the column

    s t rength drops

    s ign i f i can t ly

    as the pla te s lenderness

    increases.

    For

    axia l ly loaded

    shor t

    columns th i s

    reduction i s

    approximately

    20 percent when

    the

    s lenderness

    ra t io of the component

    pla te i s

    increased from

    30

    to

    55.

    The

    f igures

    also show

    tha t the column s t rength

    i s independent

    of A in

    the

    lower range of

    column

    s lenderness , th i s range

    increasing

    with

    pla te

    s lenderness . At low b i t r a t i o

    the

    in terac t ive buckling fa i lu re occurs

    for the

    whole

    range of A, whereas for

    la rger

    b i t ra t ios

    the

    fa i lure i s

    mainly

    due to local

    buckling

    upto

    a ce r t a in value of A.

    The

    in terac t ive

    buckl ing becomes predominant t h e rea f t e r .

    CONCLUSIONS

    A simple ana ly t ica l

    method to

    the analysis

    of

    cold-formed s t ee l

    box

    columns

    pinned

    a t

    t he i r ends

    and

    subjected

    to

    axia l

    load and unequal

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    8/17

    135

    end

    moments has been presented. The method i s

    capable of predic t ing

    the

    load-carrying

    capaci ty

    of these columns which experience

    loca l

    buckling

    of

    component p la tes and may have i n i t i a l column imperfect ions. Resul ts

    presented in

    the form of column curves

    c lear ly show the adverse ef fec t

    of .

    the

    local buckl ing

    of

    component

    pla tes .

    The ult imate ca.pacity

    of

    these columns i s reduced

    s ign i f i can t ly

    for l arger b i t

    rat ios

    of

    component pla tes . The columns subjected to double curvature bending

    ha'le

    been found to be stronger than those

    under s ingle

    curvature

    bending.

    The

    column curves provide the means for

    est imat ing

    the

    ult imate

    s t rength of

    cold-formed s tee l

    box

    columns subjected

    to

    loads

    with unequal eccen t r ic i ty a t the

    ends.

    They should

    be

    usefu l design

    tools and in termediate values can

    be

    obtained by i n t e rpo la t ion .

    APPENDIX I - REFERENCES

    1 .

    AISI,

    Specif ica t ion

    for the

    design

    of

    cold-formed s t ee l

    s t ruc tu ra l members , American I ron and Steel Ins t i tu t e ,

    Washington

    D C

    1983,

    46

    pp.

    2.

    Austral ian

    Standard Rules for

    the use of

    cold-formed

    s tee l

    in

    s t ructures ,

    AS

    1538-1974.

    3.

    Bradfield,

    C.D. and

    Chladmy,

    E. (1979), A review

    of

    the

    e la s t i c -p la s t i c analys is of s t ee l p la tes loaded in in -p lane

    compression , Report

    CUED/D

    Struct /TR 77,

    Dept. of

    Engrs.

    Cambridge Univ. , Cambridge,

    U.K.

    4 . Bri t i sh

    Standard Struc tura l

    use

    of

    steelwork in building

    Part

    4

    Code

    of

    Pract ice

    for

    design

    of f loors with prof i led sheet ing,

    BS

    5950: Par t 4:

    1982.

    5 . Crisf ie ld , M.A. (1975), Ful l - range analys is

    of

    s tee l plates

    and

    s t i f fened

    panels

    under uni-axia l compression, Proc. Ins tn . Civ.

    Engrs . ,

    Par t

    2, 59, 595-625.

    6 . Dwight, J .B. and Moxham K.E. (1969), ' 'Welded s t ee l pla tes in

    compression , The Structural

    Engineer, 47(2) ,

    49-66.

    7. Frieze,

    P.A.,

    Dowling, P.J . and Hobbs, R.E. (1975),

    Steel

    box

    girder

    bridges parametric s tudy of

    p la t es

    in

    compression ,

    CESLIC

    Report

    BG39 Engrg. Struc tures Lab. , Civ. Engrg. Dept . ,

    Imperial

    CoI l . ,

    Londong, U.K.

    8. Harding,

    J .E . , Hobbs,

    R.E.

    and Neal, B.G.

    (1977),

    The

    e l a s to -p l a s t i c

    analysis of

    imperfect

    square

    p la t es under

    in-plane

    loading , Proc. Ins tn . Civ. Engrs . , Par t 2, 63, 137-158.

    9.

    Horne, M.R. (1956), The

    e l as t i c -p l as t i c

    theory

    of

    compression

    members , J l .

    Mech. Phys. Solids,

    Vol.

    4, 104-120.

    10.

    Lee,

    S.L. ,

    Shanmugam

    N.E.

    and Chiew,

    S.P.

    (1988),

    Thin-walled

    box columns under arb i t ra ry

    end

    loads ,

    J l .

    Struct . Engrs . , Am.

    Soc. Civ. Engrs . , 114, in press .

    11. Li

    t t l e , G.H. (1974), Rapid

    analys is of p la te

    collapse

    by l ive

    energy minimisat ion ,

    In t . J .

    Mech.

    Sci . ,

    19, 725-244.

    12. Moxham K.E. (1971),

    Theoret ical determinat ion

    of

    the s t rength

    of

    welded s t e e l

    p la t es

    in

    compression , Report No. CVED/C

    StructjTR2 •

    13. Nishino, F. , Kanchanalai ,

    T.

    and Lee, S.L. (1972), ·Ult imate

    s t rength

    of wide f lange and box columns ,

    Proc.

    Colloq. on

    Centra l ly Compressed Stru ts , Par is , France, IABSE 254-265.

    14.

    Rhodes, J . and Harvey,

    (1971),

    Pla tes

    in

    uniaxia l

    compression

    with

    various

    support condi t ions a t

    the

    unloaded boundaries · , . ..

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    9/17

    136

    J . Mech.

    Sci .

    13,

    787-802.

    15.

    Shanmugam N.E.,

    Chiew, S.P.

    and Lee, S.L. (1987),

    Strength of

    thin-walled

    square

    s tee l box

    columns ,

    . : J : . . : I : : . . : . ~ . : : : S . . : : t : . : r . . : : u ~ c : . . : t : . . : . ~ . : : : E : : . n : ; ; g . r : . . ; g L : . : . J , ~ . : ; A : : : m : . . : . . . .

    Soc. C i v ~ Engrs. ,

    113(4),

    818-831.

    16.

    Von Karman

    T.,

    Sechler, E.E. and Donnel,

    L.H.L.

    (1932), The

    strength

    of

    thin pla tes in compression ,

    ..=T..=r..=a:.;n;;;:s;..;.:..-.:.;Am=._S;:.o=c.:..--=M,::e ,c ,h;:..:...

    17.

    Engrs. , 54, No.2 .

    WalKer A.C. 1 ~ o ~ , rne

    post-oucKll.ng

    oehaviour

    supported square

    panels ,

    Aeronautical Quarterly,

    203-222.

    of

    silllfily

    20,

    August,

    18.

    Winter, G., (1947),

    Strength

    of thin

    steel compression

    flanges ,

    Trans. Am.

    Soc.

    Civ. Engrs. ,

    112, 527-54.

    APPENDIX NOT TION

    The following symbols are used

    in

    this

    paper:

    A

    area

    of

    column

    cross-sect ion ,

    b width

    of

    a compressed pla te element

    d

    depth of

    column

    cross-sect ion ,

    L length of

    simply-supported

    column,

    M moment a t

    any

    sect ion along

    the

    column,

    M

    f

    fixed end moment

    of

    cant i lever

    column,

    My plas t ic

    moment and equals to cryz

    n to ta l number

    of

    elements

    in

    cross-sect ion,

    P

    axial

    force,

    Py

    squash load

    and

    equals

    to

    cryA

    Q t ransverse shear force,

    r radius of gyration,

    W t ransverse

    deflection,

    X distance along

    the

    length of cant i lever column,

    Xl

    length

    of l e f t

    cant i lever

    column,

    X

    2

    length

    of

    r ight cant i lever column,

    Yi distance

    of

    the centre of element i from the centroidal axis,

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    10/17

      37

    z plas t ic sect ion modulus

    i

    area of

    element i ,

    E normal

    s t ra in ,

    EC

    s t ra in

    a t

    the

    centroidal

    axis

    of

    section

    Ei to ta l s t ra in

    a t

    element i ,

    Eri residual s t ra in a t element i ,

    Ey s t ra in

    a t

    yie ld

    point

    K moment

    ra t io ,

    normal s t ress ,

    rc compressive residual s t ress ,

    y

    yield s t ress ,

    curvature

    caused by

    bending

    i n i t i a l curvature

    curvature

    a t i n i t i a l yielding

    for

    pure bending moment and

    equals to 2E

    y

    /d ,

    t ~

    t ~ i / ~ y

    nondimensionalised

    slenderness

    ra t io

    of simply-supported

    column

    A X 1 / n r ) ~ ,

    A2 X 2 / n r ) ~ .

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    11/17

    I

    I

     

    I

    J

     

    I

     

    M

    P

    R

    O

    C

    M

    P

    R

    O

    .

    L

    T

     

    =

     

    C

     

    Z

     

    -

    U

    ·

    1

    C

    M

    P

    O

     

    ~

     

    T

    O

    P

    L

    T

     

    3

    T

    N

    O

    I

    J

     

    0

     

    N

    O

    F

    G

     

    1

     

    L

    n

    o

    C

    m

    p

    P

    a

    e

    n

    a

    B

    C

    u

    m

    n

    1

    5

    b

     

    b

    b

    1

    5

    b

    1

    0

    b

     

    b

    0

    5

    0

    5

    f

    T

    =

    1

    f

    o

    a

     

    b

    ;

    i

    1

    0

    1

    5

    E

     

    =

    E

    /

    E

    y

     

    a

    T

    o

    2

    0

    2

    5

    C

    0

    5

    +

    0

    4

    E

    +

    0

    0

    (

    b

    /

    -

    E

    )

    :

     

    b

    3

     

    b

    /

    =

    4

    0

     

    I

    I

     

    i

    =

    5

    I

    b

    =

    a

    D

     

    0

    0

    C

    .

    _

    L

    _

    L

    L

     

    _

    7

     

    0

    0

    0

    1

    0

    1

    5

    2

    0

    2

    5

    E

     

    :

    E

    /

    E

    y

     

    b

    C

    m

    p

    e

    o

    F

    G

     

    2

     

    S

    m

    p

    e

    P

    e

    w

    i

    s

    L

    n

    S

    e

    S

    a

    n

    C

    u

    v

      C

    ;

    >

    0

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    12/17

    c

    d

    ~

     

    p

    a

    p

    a

    e

    2

    p

    a

    J

    I

    b

    I

    l

    a

    c

    o

    o

    I

    b

    o

    u

    n

    s

    o

    s

    h

    w

    n

    l

    o

    n

    I

     

    1

    1

    ·

    ~

    ~

    ~

    1

    &

    ~ I

    _

    ~

     

    X

    i

    s

    I

    c

    s

    a

    n

    d

    s

    b

    o

    F

    G

    3

    T

    n

    W

    a

    e

    B

    C

    u

    m

    t

    e

    o

    w

    d

    t

    ~

     

    2

    r

    .

    ~

    d

    b

    n

    4

     

    T

    T

    l

     

    >

     

    F

     

    9

    1

    J

    >

     

    l

     

    ·

    F

    G

    4

    R

    d

    S

    t

    e

    D

    i

    s

    b

    o

    0

    9

    0

    8

    0

    7

     

    0

    5

    I

    0

    4

    E

     

    0

    3

    0

    2

    D

    p

    P

    =

    O

     

    b

    =

     

    i

     

    5

    b

    =

    o

    V

    ,

     

    i

    i

     

    i

    i

     

    ,

    D

    0

    2

    D

    0

    4

    0

    5

    0

    6

    0

    7

    0

    8

    0

    9

    ,

     

    2

    ,

    1

    4

     

    5

     

    6

    1

     

    J

    4

    1

    I

    4

    1

    y

    F

    G

    5

    T

    c

    C

    v

    v

    D

    o

    m

    C

    o

    d

    A

    s

    M

    ,

    t

    M

     

    p

    ~

     

    -

    -

    ~

    -

    ~

     

    .

    X

    F

    G

    6

    C

    a

    e

    C

    u

    m

    w

    h

    I

    n

    a

    C

    v

    u

    e

     

    c

    <

    D

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    13/17

     

    p

    P

    =

    3

    b

     

    3

    q

    =

    0

    1

    C

    c

    =

    0

    0

     

    E

     

    -

    j

     

    E

     

    0

    -

    0

    2

    e

    0

    4

    -

    0

    6

    -

    0

    8

    L

    w

    E

    o

     

    1

     

    I

     

    I

     

    o

    0

    2

    0

    4

    0

    6

    0

    8

    1

    1

    2

    1

    4

    1

    6

    1

    8

    2

    2

    2

    2

    4

    2

    2

    B

    3

    3

    2

    X

    =

    X

    /

    E

    Y

     

    L

    M

     

    I

    I

    M

     

    P

    .

     

    P

     

    1

     

    I

    X

    l

    X

    2

    I

    (

    a

    S

    n

    e

    -

    C

    v

    u

    e

    B

    e

    n

     

    <

    1

    0

    M

     

    t

    M

     

    P

    ;

    »

    ~

     

    ,

    t

    i

     

    (

    b

    I

    D

    e

    -

    C

    v

    u

    e

    B

    e

    n

     

    <

    -

    1

    0

    I

    F

    G

     

    7

    E

    b

    u

    m

     

    C

    u

    v

    a

    E

    o

     

    1 0

    0

    6

    0

    4

    ,

     

    E

     

    0

     

    E

     

    0

    0

    e

    0

    2

    -

    0

    4

    -

    0

    6

    -

    O

    ·

     

    -

    1

    -

    1

    2

    2

    L

    C

    e

     

    R

    g

    C

    e

    b

     

    3

    q

    =

    0

    1

    =

    C

    c

    =

    o

    0

    1

    6

    1

    O

    B

    0

    4

    0

    0

    4

    0

    8

    1

    2

    1

    6

    A

    =

    X

    /

    n

    f

     

    ,

    F

    G

     

    9

    E

    o

    o

    E

    b

    u

    m

     

    C

    u

    v

    F

    G

     

    8

    S

    m

    p

    y

    u

    e

    C

    u

    m

    n

     

    ~

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    14/17

    q

     

    p

    >

    >

    l

    a

     

    i

    =

    C

    c

    =

    c

    a

    m

     

    m

    l

    }

    g

    v

    t

     

    t

    e

    q

    L

    m

    I

    e

    A

    1

    >

     

    C

    T

    ;

    C

     

    c

    a

    m

     

    m

    i

     

    e

     

    e

    g

    v

    >

    0

    3

    >

    0

    m

     

    p

    p

    l

    e

    -

    R

    g

    C

    e

    >

    I

    b

    q

    =

     

    i

     

    C

    r

    c

     

    c

    a

    m

     

    m

    l

    }

    V

     

    e

     

    =

    e

    >

    I

    d

    e

    c

    u

    m

    n

    c

    v

    c

    b

    c

    u

    e

    F

    G

     

    1

    C

    o

    u

    o

    o

    C

    u

    m

    n

    C

    v

    I

    -

     

    HI

    -

     

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    15/17

    '

    2

     

    _

    0

    ·

    8

     

    Q

    .

    .

    Q

    .

    0

    ·

    6

     

    I

    0

    .

    O

    ·

    4

    O

    ·

    2

    0

    0

    0

    2

    0

    ·

    4

     

    0

    6

    '

    2

    _

    o

    ·

    a

    Q

    .

    .

    Q

    .

    0

    ·

    6

     

    I

    0

    0

    .

    4

     

    0

    ·

    2

     

    0

    °

    0

    2

    0

    ·

    4

     

    0

    6

    0

    ·

    8

     

    ,

    2

     

    '

    4

    ,

    6

    '

    8

     

    A

    =

    (

    L

    V

    E

    Y

     

    l

    a

    0

    ·

    8

     

    ,

    '

    2

     

    '

    4

    ,

    6

    ,

    8

    A

    =

    (

    L

    m

    l

    E

    I

    e

    '

    2

     

    -

    -

    -

    -

     

    -

    -

    r

    -

    -

    -

    -

     

    -

    -

    -

    -

    -

     

    -

    -

    -

    -

    -

     

    -

    -

    -

    -

    -

     

    -

    -

    -

    -

     

    -

    -

    .

    -

    -

    -

    -

    -

    .

     

    I

    0

    .

    0

    ·

    4

     

    0

    ·

    2

    1

     

    I

     

    :

    =

     

    _

    8

    Q

    .

     

    0

    ·

    6

     

    I

    e

    0

    ·

    4

     

    0

    ·

    2

     

    o

     

    ·

    2

     

    0

    ·

    4

     

    0

    ·

    6

     

    0

    8

    ,

    '

    2

     

    '

    4

    '

    6

     

    '

    8

     

    A

    =

    (

    L

    m

    l

    v

    £

    Y

     

    b

    r

    I

    I

    f

    -

     

    i

    =

    a

    -

    I

    e

    =

    1

    0

    _

    -

    .

     

    -

    M

    =

    D

     

    f

     

    .

    -

    0

    1

     

    -

    -

    -

    D

    ·

    I

    -

    J

    o

    0

    2

    0

    4

    0

    6

    0

    ·

    8

     

    ,

    '

    2

    1

     

    4

     

    '

    6

    ,

    8

    A

    =

    L

    T

    E

    y

    (

    d

    F

    G

     

    1

    1

     

    -

    C

    u

    m

    n

    C

    v

    (

    K

     

    1

    0

    .

    .

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    16/17

    I I

    ~

    c : ; : ~

    ..:.

    u;o

    ......

    ./

    J

    I II

    >----::::: .l

    7A

    7

    V

    /

    VJ/

    '-..,-

     t l

    -

    ...

    --

     

    \::

    0

    -

    ..

    ...J

    II

    c.

    I I

    J

    ..,t

    co CD -z

    c:::t

    C ~ d I ~

    =

    d

    1

    1

    Il

    ?

    t----

    L n c::"

    ' ' ' '

    j

    I ,

    I--

    V ~

    :

    i

    L/

    V

    /

    J

    "''. ..,

    I

    ~ ' .

    ~

    --

     

    \::

    -

    . ...J

    J

    I

    0 -

    I I

    t<

    f.O

    I

    C.

    6

    '"

    CD CD -z

    =

    =

    c:: Q

    d

    =d

    o

    o

    N

  • 8/17/2019 Strength of Cold-Formed Steel Box Columns

    17/17

    I

    I

    I ~ ~

    t - -

     

    /IA

    o J

    _

    II I

    - II

    :;; u

    v J

    I

    ?

    l ~ ' I i

    l i l l ~

    v

    .,

    -of

    c::

    c::

    =

    c::

    Ad

    d

    =d

    .. .

    ..,

    c::o

    c::

    c::

    c::

    Ad d

    =d

    00

    .......

    1=-

    ..........

    6-

    I I

    ,,?r