structural mechanics nonlinearity...geometric nonlinearity • for most material models, you can...

44
Structural Mechanics Nonlinearity Ed Gonzalez Comsol © Copyright 2017 COMSOL. COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. 構造力学と非線形性 日本語誤訳がある場合、英文を正とします。(KESCO)

Upload: others

Post on 09-Jul-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Structural MechanicsNonlinearity

Ed GonzalezComsol

© Copyright 2017 COMSOL. COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks.

構造力学と非線形性

日本語誤訳がある場合、英文を正とします。(KESCO)

Page 2: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Agenda• Sources of nonlinearity• Geometric nonlinearity• Nonlinear materials, overview• Nonlinear constitutive laws

– Hyperelasticity– Nonlinear elasticity– Plasticity

• Metal plasticity• Soil plasticity

– Creep and viscoplasticity– Shape memory alloys– User-defined materials

非線形性となる要因

幾何非線形

非線形材料、概観

非線形構成則

超弾性

非線形弾性

塑性

金属塑性

土壌塑性

クリープ、粘塑性

形状記憶合金

ユーザー定義材料

Page 3: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

The COMSOL® Product Suite

Page 4: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Sources of Nonlinearity• Geometric nonlinearity

– Finite rotation– Large strains– Stress stiffening– Deformation-dependent loads

• Materials– Elastoplasticity– Hyperelasticity – Nonlinear Elasticity– Creep– Viscoplasticity– etc.

• Contact– Possibly with friction

σ

ε

非線形性は何から生じるか

幾何非線形性

有限の大きさの回転

大ひずみ

応力硬化

変形依存荷重

材料

弾塑性

超弾性

非線形弾性

クリープ

粘塑性

その他

接触

摩擦によって可能

Page 5: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Geometric Nonlinearity• Use geometric nonlinearity when

– Displacements, rotations, or strains are large– Stresses cause a significant change in stiffness

• Geometric nonlinearity is a property of the study step

• Some features always force geometrical nonlinearity:– Hyperelasticity– User-defined (”External”) materials– Large strain plasticity– Contact

幾何非線形性

幾何非線形性を使うのは

変位、回転、あるいは歪が大きい場合

応力が剛性に重大な変化をもたらす場合

幾何非線形性はスタディステップの性質のひとつ

常に幾何非線形性を強制するものがいつくかある

超弾性

ユーザー定義の外部材料

大ひずみ塑性

接触

Page 6: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Geometric Nonlinearity• For most material models, you can select a

geometrically linear formulation, even though the study is geometrically nonlinear– Useful in, e.g.:

• Small strain contact analysis• Small strain formulation of External Material

• In a geometrically nonlinear formulation, inelastic strain contributions can be removed either by additive or multiplicative decomposition– As of COMSOL Multiphysics® version 5.3, multiplicative

decomposition is the default

スタディステップが幾何非線形でも、たいていの材料モデルは幾何線形を選ぶことができる、

小ひずみ接触解析

外部材料の小ひずみ定式化

幾何非線形定式化で、非弾性ひずみ寄与は追加あるいは乗法分解のいずれかで除去できる。5.3では、乗法分解がデフォルトになっている。

Page 7: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Material and Spatial Frame• A Lagrangian (“Total Lagrangian”) formulation is used for structural analysis• The constitutive relations and weak expressions (“virtual work”) are formulated in a material

configuration (material frame), rather than in the current position in space (spatial frame)• Material properties are always given for material particles and with tensor components referring to a

local coordinate system based on the material frame• The position in the spatial frame (x) is obtained by adding the displacement (u) to the position in the

material frame (X)

Deformation gradient, F:

材料フレーム(標構)および空間フレーム(標構)

ラグランジュ座標系を構造解析で使用

構成則と弱式(仮想仕事)を物質フレームで定式化している物質特性は常に物質粒子に対して付与している空間フレームでの位置は、変位ベクトルuと物質フレームの位置ベクトルXの和で与えられる

Page 8: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Material and Spatial Frame• Coordinates in uppercase (X, Y, Z, R, …) are Material

(reference position) coordinates• Coordinates in lowercase (x, y, z, r, …) are Spatial (current

position) coordinates• In a geometrically linear analysis, all distinctions between

the frames disappear

大文字の添え字は物質フレームでの座標であることを示す

小文字の添え字は空間フレームでの座標であることを示す

幾何線形解析では、フレーム間の差異は消失する

Page 9: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Material and Spatial Frame• Examples:

– solid.eXY is the Green-Lagrange strain where derivatives are computed with respect to the material frame (“along a material fiber”)

– solid.sxy is the Cauchy stress, having components in the fixed spatial directions

– A load written as 12*X varies in space, but does not change with deformation, while a load written as 12*x does

XYであるので、物質フレームに関する微分

xyであるので、空間フレームに関する微分

Page 10: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Strain Measures• Engineering (infinitesimal) strains

– Geometrically linear study, or– Force linear strains selected

• Linear with respect to displacements

• Green-Lagrange strains– Geometrically nonlinear study

• Nonlinear with respect to displacements• Can represent a finite rigid rotation

without strains appearing

工学ひずみ(無限小ひずみ)

幾何線形スタディ、あるいは荷重線形ひずみが選択された場合

変位に関して線形

グリーン-ラグランジュひずみ

幾何非線形スタディ

変位について非線形

ひずみのない有限な剛体回転を表現できる

Page 11: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Stress Measures• There are many possible representations of the stress state

– Force/(Original area) or Force/(Current area)?– Current or original orientations?

• Cauchy stress (”true stress”) (solid.sxy):– Force/(Current area); directions fixed in space

• First Piola-Kirchhoff stress (solid.PxY):– Force/(Original area); directions fixed in space

• Second Piola-Kirchhoff stress (solid.SXY):– Force along material directions– The area scale is complicated– For small strains, large rotations: as true stress, but rotating with the material

応力をどう見積もるか応力状態の表現はたくさんの方法が考えられる

コーシー応力

第一種ピオラ・キルヒホッフ応力

第二種ピオラ・キルヒホッフ応力

力を元の面積で割るか、現状の面積で割るか

向きを元の状態で考えるか、現状の向きで考えるか

材料の方向に沿った力

面積のスケールは複雑

小ひずみでは、大回転:真の応力であるが、材料とともに回転

Page 12: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Linear Elastic Material with Geometric Nonlinearity

• Second Piola-Kirchhoff stress is proportional to Green-

Lagrange strain through Hooke’s law (Saint Venant-Kirchhoff

material)

• Force is not proportional to displacement at larger strains!

• Few materials are linear in any sense at strains above 10%

– Not a problem in practice for constitutive modeling

• Under larger compressive strains, this material is highly

nonlinear and even singular for strains of about -40%

– Beware of singularities in corners, under point loads, and at small contact

surfaces

幾何非線形を持つ線形弾性材料

第二種ピオラ・キルヒホッフ応力はフックの法則を介してグリーン・ラグランジュひずみに比例する

力は大ひずみでは変位に比例しない

10%以上のひずみがある場合にはほとんどの材料は線形ではない

より大きな圧縮ひずみを受ける場合には 材料は高度に非線形であり 40%のひずみにおいても特異である

Page 13: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Material Models for Structural Mechanics

KeyS: Structural Mechanics ModuleM: MEMS ModuleA: Acoustics ModuleN: Nonlinear Structural Materials ModuleG: Geomechanics Module

S, M, A

S, M

S, M, A

N, GN

SN, GGN, G

GG

S, M, AS

N

GN ~75 built-in material

models, many of them with several options

Page 14: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Nonlinear Constitutive Laws

• Elastic– Linear Elastic– Nonlinear Elastic– Hyperelastic

σ

ε

σ

ε• Inelastic

– Plasticity– Creep– Viscoplasticity– ...

非線形構成則

弾性線形弾性非線形弾性超弾性

非弾性塑性クリープ粘塑性ほか

Page 15: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Hyperelastic Materials: Overview

Rubber velocity joint, model courtesy of Metelli S.p.A., Italy

超弾性材料: 概観

Page 16: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Hyperelastic Materials• Intended for large strains, like in rubber• Defined by a strain energy density Ws, which is a function of the strain state• Isotropic material: Ws is a function only of the three strain invariants

),,( 321 IIIWW ss =

C is the right Cauchy-Green deformation tensorC = FTF , where F is the deformation gradient tensor2

3

2212

3322111

)det(

))((21

)(

JCI

CtraceII

CCCCtraceI

==

−=

++==

ゴムのような大ひずみの解析用

ひずみエネルギー密度Ws(ひずみ状態の関数)を定義

等方材料の場合には、Wsは3つのひずみ不変量のみの関数になる

右コーシー・グリーン変形テンソル

Fは変形勾配テンソル

Page 17: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Hyperelastic Materials• The stress is computed using derivatives of the strain energy density function, Ws

• COMSOL Multiphysics uses the second Piola-Kirchhoff stress and the elastic part of the right Cauchy-Green deformation tensor

• Ws can be specified in terms of invariants of C, invariants of the elastic part of Green-Lagrange strain tensor, or principal elastic stretches

• Inelastic deformations (thermal expansion, hygroscopic swelling, plasticity) are removed by multiplicative decomposition

応力はWsの微分で計算される

COMSOLは第二種ピオラ・キルヒホッフ応力と右コーシー・グリーン変形テンソルを使う

Wsは、Cの不変量、グリーン・ラグランジュひずみテンソルの弾性部分の不変量、主軸方向の弾性のびの項で規定できる

非弾性変形(熱膨張、吸湿膨張、塑性)は、乗法分解によって除去される

Page 18: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Hyperelastic Materials• Neo-Hookean• St. Venant-Kirchhoff• Mooney-Rivlin: two, five, and nine parameters• Yeoh• Ogden• Storakers• Varga• Arruda-Boyce• Gent• Blatz-Ko• Gao• Murnaghan• User defined

Page 19: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Hyperelastic Materials• No checks for material stability• Strain energy density must satisfy

polyconvexity– Loosely expressed: Stress must increase with

strain • Problem: Material data/parameters are

measured for a given range of displacements, temperatures, etc. – Numerical simulations might be outside of that

range

dS:dε > 0

stretch

Wsunstable

材料安定についてチェック無し

ひずみエネルギー密度は多凸性を満たさなければいけない

おおそよの説明をすると、応力はひずみとともに増えなければならない

問題:材料のデータ/パラメタはある範囲の変位、温度にたいして測定されたものであることに注意する。数値シミュレーションはその範囲を超えることが多い。

Page 20: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Hyperelastic Materials• Often nearly incompressible

– Difficult to analyze using only displacement variables, leading to the locking problem

• The remedy is to introduce the pressure (mean stress) as an extra degree of freedom (DOF)– Often called a mixed formulation or a u-p formulation

ほぼ非圧縮性ということがしばしば生じる

変数として変位のみを使う解析は難しい。ロッキング問題を引き起こす。

解決策としては、圧力(平均応力)を追加の未知変数として導入することである。この方法は混合定式化、あるいはu-p定式化と呼ばれる。

Page 21: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Large-Strain Viscoelasticity• An extension to hyperelasticity• Similar to the linear viscoelastic

material– Generalized Maxwell– SLS– Kelvin-Voigt– Time-shift functions

• WLF• Arrhenius

大ひずみの粘塑性

超弾性への拡張

線形粘弾性材料に似ている

一般化Maxwell

Page 22: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Nonlinear Elastic Materials• Nonlinear stress-strain relation, even at infinitesimal

strains– Brittle materials (ceramics, metal alloys)– Soils– Approximate plasticity (Ramberg-Osgood)– Damage

• Can be combined with plasticity, creep, and viscoelasticity

非線形弾性材料

非線形応力-ひずみ関係、無限小ひずみでも非線形関係になる

脆性材料(セラミックス、合金)

土壌

近似的な塑性(ロンバーグ・オスグッド)

損傷

塑性、クリープ、粘弾性と組み合わせが可能

Page 23: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Nonlinear Elastic Materials• Nonlinear Structural

Materials Module• Geomechanics Module

非線形弾性材料

非線形構造材料モジュール ジオメカニクスモジュール

Page 24: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Nonlinear Elastic Materials• Small strains assumed• Bulk modulus, K, is a function of elastic

volumetric strain• Shear modulus, G, is a function of elastic

shear strain

• Scalar elastic shear strain, γel:

小ひずみを仮定

体積弾性Kは弾性体積ひずみの関数

せん断係数Gは弾性せん断ひずみの関数

スカラー弾性せん断ひずみ

Page 25: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Elastoplastic Materials• An elastoplastic material is defined by two main

behaviors: – The elastic part – The plastic part

• Below the yield stress σy, the material has a pure elastic behavior

• Above this limit, yielding of the material begins • In the plastic regime, there will be irreversible

plastic strains– Residual stresses and strains after unloading

σ

εεl

σy

弾塑性材料

弾塑性材料は2つの主な挙動によって定義される

弾性部分

塑性部分

降伏応力以下では、材料は純粋な弾性挙動を示す

降伏応力以上では、材料の降伏が始まる

塑性領域では、不可逆的な塑性ひずみが生じるであろう除荷しても残留応力、残留ひずみがある

Page 26: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Elastoplastic Materials• Two formulations:

– Small plastic strains – Large plastic strains (say > 10%)

• Small plastic strains: additive decomposition of strains – Engineering or Green-Lagrange strain tensors (depending on geometric

nonlinearity being on/off)

• Large plastic strains: multiplicative decomposition of deformation gradient tensor

2つの定式化

小さな塑性ひずみ

大塑性ひずみ (10%より大)

小塑性ひずみ:ひずみの乗法分解

工学ひずみorグリーン・ラグランジュひずみテンソル(幾何非線形性のOn/Offに依存)

大塑性ひずみ:変形勾配テンソルの乗法分解

Page 27: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Elastoplastic Materials• Usually, the yield stress exhibits dependence on the plastic strain

– This is called hardening

Perfect (or Ideal) Plasticity

σ1

σ2

σ3

Initial yield limit

Isotropic Hardening

σ1

σ2

σ3 σ1

σ2

σ3

Yield limit after plastic deformation

Kinematic Hardening

通常、降伏応力は、塑性ひずみに依存する

硬化と呼ばれている

初期降伏限界

塑性変形後の降伏限界

完全(理想)塑性

等方性硬化 運動学的硬化

Page 28: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Elastoplastic Materials• Many real materials exhibit a combination of isotropic and kinematic

hardening• You can combine isotropic and kinematic hardening models in an

arbitrary way

Mixed Hardening

σ1

σ2

σ3

多くの実際の材料は等方性硬化と運動学的硬化の組み合わせで生じる

等方性硬化と運動学的硬化のモデルは任意の方法で組み合わせ可能

Page 29: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Elastoplastic Materials• Elastoplastic models

– Linear Elastic and Nonlinear Elastic materials• Small-strain plasticity• Large-strain plasticity

– Hyperelastic materials• Large-strain plasticity

– Yield criteria (“metal plasticity”):• von Mises• Tresca• Orthotropic Hill plasticity• User defined

– Hardening: • Isotropic (Linear, Ludwik, Swift, Voce, Hockett-Sherby, User defined)• Kinematic (Linear, Armstrong-Frederick, Chaboche, User defined)• Mixed• Perfectly plastic

– Associated or non-associated flow rules• User defined

Pressure vessel with orthotropic

yield function

弾塑性モデル

線形弾性および非線形弾性の材料小ひずみ塑性大ひずみ塑性

超弾性材料

大ひずみ塑性

降伏判定(金属塑性)

硬化

随伴あるいは非随伴の流れ則

Page 30: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Elastoplastic Materials• Add plasticity to all kinds of elastic materials:

– Linear elastic• Isotropic• Orthotropic• Anisotropic

– Nonlinear elastic– Hyperelastic

• Enable plasticity in a small subdomain of the parent elastic material– Saves computational time and storage

• Combine with creep, thermal expansion, hygroscopic swelling, or viscoelasticity

全種類の弾性材料に塑性を追加

線形弾性

非線形弾性

超弾性親である弾性材料の中の小さな領域を塑性にすることができる

計算時間とメモリを節約できる

クリープ、熱膨張、吸湿膨張、粘弾性の組み合わせ

Page 31: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Porous Plasticity• Significant porosity and

volume changes– Powder compaction

多孔質塑性

空隙と体積の変化が大きい

粉末の圧密

Page 32: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Soil Plasticity• Soil plasticity is not volume preserving (as

opposed to metal plasticity)• The yield functions are cone-shaped in the

space of principal stresses (mean-stress dependent)

• Associated and non-associated plasticity models

• Possibility to add – Elliptic cap in compression– Tension cutoff

s1

s2s3

The sketch uses the common convention within geomechanics that compressive stresses are

positive. In COMSOL Multiphysics, positive stresses are always tensile.

土壌塑性

土壌塑性は体積保存ではない(金属塑性とは異なる)

降伏関数は主応力空間で円錐形をしている(平均応力依存)

随伴および非随伴の塑性モデル

追加オプション

圧密での楕円キャップ

張力カットオフ

Page 33: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Soil Plasticity• Add under Linear Elastic Material or Nonlinear Elastic Material

Triaxial compression test

線形弾性材料あるいは非線形弾性材料の下に追加

Page 34: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Elastoplastic Soil Model• Set of soil models with a combined

nonlinear elastic–plastic behavior

s1

s2s3

弾塑性土壌モデル

非線形弾性-塑性の組み合わせ挙動をもつ土壌モデルの設定

Page 35: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

More Geomechanical Materials• Concrete

– Bresler-Pister– Willam-Warnke– Ottosen– Tension cutoff

• Rocks– Hoek-Brown– Generalized Hoek-Brown

Stress distribution in a concrete beam with reinforcements

他のジオメカニカル材料

コンクリート

岩石

Page 36: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Creep• When operating at elevated temperatures, many materials will continue to deform

under a constant load— The strain rate depends on stress and temperature

• There are many constitutive models for creep, valid for different materials and under different conditions— One example is Norton’s law

• Viscoplasticity and creep are often used interchangeably to refer to rate-dependent plasticity

クリープ

高温環境下では、多くの材料が定荷重の下で変形し続ける現象が生じるひずみ状態は応力と温度に依存する

クリープに関して、材料と条件に応じた多くの構成モデルがある

粘塑性とクリープは速度依存の塑性を参照するために交互に用いられる。

Page 37: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Creep

Stress history using a combination of Norton and

Norton-Bailey material models

クリープ

Page 38: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Numerical Solution of Creep Problems• A number of extra DOFs are added at Gauss

points, representing the creep strains• An ODE is solved for the creep strains• The time-dependent solution does not need to

take inertial effects into account – Use Quasi-static equations

クリープ問題の数値解

クリープひずみを表現するために、余分な自由度(未知数)がガウス点に追加される

クリープひずみのために常微分方程式(ODE)を解く

時間依存解は慣性効果を考慮する必要はない

準定常方程式を用いる

Page 39: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Viscoplasticity

Viscoplastic creep in solder joints under thermal loading

粘塑性

熱負荷下でのハンダ接合部での粘塑性クリープ

Page 40: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Dissipated Energy• For plasticity, creep, viscoplasticity,

and viscoelasticity, you can compute the energy dissipation

• Adds an extra DOF to each Gauss point

散逸エネルギー

塑性、クリープ、粘塑性、粘弾性について、エネルギー散逸を計算できる

余分な自由度を各ガウス点に追加する

Page 41: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Shape Memory Alloy• Special alloys that have a “memory” (smart

metal; memory metal)– Nitinol

• A permanent “plastic” deformation can be removed by heating the object

• Phase transformation between martensite and austenite

形状記憶合金

記憶をもつ特別な合金(スマートメタル、メモリメタル)

ニチノール

永久“塑性”変形はその物体を加熱すると除去できる

マルテンサイトとオーステナイトの間の相転移

Page 42: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Combine Material Models• Subnodes of a top-level material

model are often contributing and can be combined into an advanced model– Exception: the plasticity type models

(Plasticity, Soil Plasticity, Porous Plasticity, Concrete, Rocks)

材料モデルの組み合わせ

最上位材料モデルのサブノードは寄与モードであり、詳細モデルとして組み込める

例外: 塑性タイプの下記モデル(塑性、土壌塑性、多孔質塑性、コンクリート、岩)

Page 43: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

Build Your Own Material Models• User Defined for Hyperelasticity, Nonlinear Elasticity,

Plasticity, and Creep models– Enter expressions in terms of variables like stress and strain

• Add distributed ODEs or PDEs to compute inelastic strains, and subtract using External Strain

• Program your own material model and include it using External Stress-Strain Relation or External Strain

自身の材料モデルの構築

超弾性、非線形弾性、塑性、クリープの各モデルのユーザー定義

応力とひずみのような変数を使った式の入力

分布ODE(常微分方程式)、PDE(偏微分方程式)を追加して、非弾性ひずみを計算し、External Strain(外部ひずみ)を利用して差し引く

自身の材料モデルをプログラムし、それをExternal Stress-Strain(外部応力-ひずみ関係)あるいはExternal Strain(外部ひずみ)を用いて組み込む

Page 44: Structural Mechanics Nonlinearity...Geometric Nonlinearity • For most material models, you can select a geometrically linearformulation, even though the study is geometrically nonlinear

External Material• C or other progamming language• Compile to library, which can be distributed

外部材料

C言語/他のプログラム言語

ライブラリに翻訳し、配布可能にする