substance: boron compounds with group iii...

34
substance: boron compounds with group III elements property: properties of boron-yttrium compounds: YB 66 Structure: cubic Space group: Fm3c [69R, 97H]. Crystal chemistry of YB 66 and YB 41 Si 1.2 [99H]. A simplified schematic representation of the structure is shown in Fig. 1. lattice parameter (in Å) a 23.440(6) T = 300 K YB 66 , X-ray diffraction, 97H 23.4364(6) YB 62 23.4600(9) YB 56 23.4...23.5 T = 300 K X-ray diffraction, electron 76K, microscopy 77S The structure (Fig. 2) contains giant (B 12 ) 13 icosahedra (Fig. 3), B 80 clusters (Fig. 4), and Y-Y pairs. All the sites of the non-icosahedral B 80 cluster are partially occupied, thus the cluster contains about 42 B atoms only. In total, there are 1584 B atoms and 24 Y atoms per unit cell. The majority of the B atoms (1248) belongs to eight (B 12 ) 13 , and the remaining 336 B atoms form the non-icosahedral B 80 cages, which are accommodated in the large holes resulting from the arrangement of the giant icosahedra. The Y atoms are statistically distributed over 48 sites per unit cell with 0.5 occupancy [97H]. In early publications the homogeneity range was said to be YB n (100 > n > 20) [69R, 75B1, 76K, 77S]. Recent results show that single crystals of highest quality can be obtained for the compounds YB 56 and YB 62 [93K, 94T]. Preparation of single crystals with a floating zone method [85T, 86T1]. Growth of high quality single crystals [90T]. Floating zone growth of monochromator grade crystals of YB 66 [93K]. Direct observation of (B 12 ) 13 supericosahedra in [96P]. AFM pictures of cleaved YB 66 surfaces [96K]. Atomic structures of YB 56 studied by digital high-resolution electron microscopy and electron diffraction [99O]. Physical properties Electronic structure and properties For the discussion of the electronic properties of YB 66 the new structure determination [97H] is essential. In particular must be taken into account that the B 48 units, which were previously assumed to be largely compact clusters, in reality consist of 80 boron sites, all of which are occupied at about 50 % only. Hence in this unit a considerable content of unsaturated bonds exist, which may influence the electronic properties decisively and could be the reason for the similarity of the electronic properties to those of amorphous semiconductors. Density of states calculations for the B 156 framework, B 48 and B 36 clusters, and addition to that of the whole structure in Fig. 5 [94B]. B K α spectrum in Fig. 6 [94G2].

Upload: others

Post on 14-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

substance: boron compounds with group III elements property: properties of boron-yttrium compounds: YB66

Structure: cubic

Space group: Fm3c [69R, 97H].

Crystal chemistry of YB66 and YB41Si1.2 [99H].

A simplified schematic representation of the structure is shown in Fig. 1.

lattice parameter(in Å)

a 23.440(6) T = 300 K YB66, X-ray diffraction, 97H

23.4364(6) YB62

23.4600(9) YB56

23.4...23.5 T = 300 K X-ray diffraction, electron 76K,microscopy 77S

The structure (Fig. 2) contains giant (B12)13 icosahedra (Fig. 3), B80 clusters (Fig. 4), and Y-Y pairs. All thesites of the non-icosahedral B80 cluster are partially occupied, thus the cluster contains about 42 B atoms only.In total, there are 1584 B atoms and 24 Y atoms per unit cell. The majority of the B atoms (1248) belongs toeight (B12)13, and the remaining 336 B atoms form the non-icosahedral B80 cages, which are accommodated inthe large holes resulting from the arrangement of the giant icosahedra. The Y atoms are statistically distributedover 48 sites per unit cell with 0.5 occupancy [97H].

In early publications the homogeneity range was said to be YBn (100 > n > 20) [69R, 75B1, 76K, 77S]. Recentresults show that single crystals of highest quality can be obtained for the compounds YB56 and YB62 [93K,94T].

Preparation of single crystals with a floating zone method [85T, 86T1].

Growth of high quality single crystals [90T].

Floating zone growth of monochromator grade crystals of YB66 [93K].

Direct observation of (B12)13 supericosahedra in [96P].

AFM pictures of cleaved YB66 surfaces [96K].

Atomic structures of YB56 studied by digital high-resolution electron microscopy and electron diffraction[99O].

Physical properties

Electronic structure and properties

For the discussion of the electronic properties of YB66 the new structure determination [97H] is essential. Inparticular must be taken into account that the B48 units, which were previously assumed to be largely compactclusters, in reality consist of 80 boron sites, all of which are occupied at about 50 % only. Hence in this unit aconsiderable content of unsaturated bonds exist, which may influence the electronic properties decisively andcould be the reason for the similarity of the electronic properties to those of amorphous semiconductors.

Density of states calculations for the B156 framework, B48 and B36 clusters, and addition to that of the wholestructure in Fig. 5 [94B].

B Kα spectrum in Fig. 6 [94G2].

Page 2: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

energy gap( in eV)

Eg 2.73 T = 180...280 K sum of opt. and therm. excitation energy 97S10.8 T > 500 K estimated from el. cond. 77S1.0 derived from el. cond. 87G0.8 T > 500 K electrical conductivity (estimated 77S

from Fig. 7; YB61.5)

critical points of YB52 in the interband transition range obtained from structure-modulated reflectivityspectra(energy in eV)

Ecrit 1.42 T = 300 K YB52 used for reference 99W1.501.572.432.642.803.083.393.673.784.084.324.574.815.195.99

Optical absorption edge spectrum in Fig. 8 [94K2].

Absorption edge also in [87W1].

thermal excitation energy of photoconduction

E 0.19 eV T = 180...280 K 97S1

Amplitude and phase shift of the modulated photoconductivity depending on the modulation frequency in Fig. 9[97S1].

binding energies(in eV)

Eb 187.8(2) B(1s) 97P157.1(2) Y(3d) (+3 oxydation state)159.1(2) Y(3d) (+3 oxydation state)

Impurities and defects

Effects of transition metal element (Cu, Ni) doping in YB66 [99T].

Page 3: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Lattice properties

elastic moduli

c11 3.80(3)·1012 dyn cm–2 T = 300 K, from longitudinal-wave sound 77S

c44 1.60(8)·1012 dyn cm–2 ν = 60 MHz velocity

c12 0.4(5)·1012 dyn cm–2 derived value

sound velocity

vt 7.89·105 cm s−1 YB66 71S

8.54·105 cm s−1 YB63, from torsion 94M

v1 1.18·106 cm s–1 T = 300 K 77S

Temperature dependent change of the transverse sound velocity in Fig. 10 [94M].

electrical conductivity(in Ω−1cm−1)

σ 10−2 T = 300 K 77S3·10−2 T = 300 K 86G4·10−6 T = 300 K 87W27·10−3 T = 300 K 87G1.5·10−4 T = 300 K 94G1

Temperature dependence of the dc electrical conductivity in Fig. 11 [87W2, 91W].

Temperature dependence of the ac electrical conductivity in Fig. 12 [90W].

For temperature dependence of the electrical conductivity see also [94G1].

resistivity

ρ 3.6·102 Ω cm T = 300 K For temperature dependence, see 77SFig. 7

activation energies

EA 0.3 eV T = 500 K derived from Hall effect 91W1.00 eV derived from electrical conductivity 87G

Hall mobility

µH 5·10−2...2 cm2V−1s−1 T = 300 K 91W

Temperature dependence of the Hall mobility in Fig. 13 [91W].

thermoelectric power(in µV K−1)

S 850 T = 300 K 91W340 T = 300 K 87G780 T = 300 K 94G1

Thermoelectric power in Fig. 14 [87W2, 91W].

For the temperature dependence of the thermoelectric power see also [94G1].

magnetoresistance

∆ρ/ρ 1·10−4 T = 300 K B = 1 T 91W

Temperature dependence of the magnetoresistance in Fig. 15 [91W].

resonance frequencies of IR-active phonons of YB66 at different temperatures(uncertain data in parantheses)(ν/c in cm−1)

30 K 160 K 300 K 450 K

31 29 30 94K173 72 72

Page 4: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

100112 (114) (116) 113137 133 131 131163 165 164 164195 189 189 187238254272 273 273 276291327 334 338 345(5)341 (344) (352) (362)363380 379 (389)399 402 402 (400)413 (418) (418) (417)436 433

476487 489 488 488(5)507 (507) (507) (511)523 (527) (524) (525)

(581) (575) (581)596 598 598 600

644 633 635673(10) 677(10) 673(10) 667(10)(783) (787) (781) (773)847 845 843 845907 907 905 903986(5) 988(5) 984(5) 984(5)1026(10) 1030(10) 1022(10) 1022(10)1146(5) 1148(5) 1140(5) 1144(10)

IR absorption spectra of YB66 at different temperatures in the range of phonon frequencies in Fig. 16 [94K2,94K1].

Absorption index in [91W].

IR reflectivity spectra showing the influence of dynamical conductivity at low wavenumbers in Fig. 17 [96S].See also [97S3, 98S].

IR reflectivity spectra in [87W1, 87W2, 91W, 94K1, 94K3].

FT Raman spectrum of YB66 in Fig. 18 [94K2; 94K1, 91W].

far infrared optical absorption: see Fig. 19

refractive indices

n∞ 3.19 T = 300 K from interferences in opt. spectra 94K2n0 3.66 T = 300 K from interferences in opt. spectra

∆n 0.47 error of sample thickness eliminated 94K1

dielectric constants

ε∞ 10.2 T = 300 K from interferences 94K2ε0 13.38 T = 300 K from interferences

∆ε 3.18 error of sample thickness eliminated 94K1

thermal conductivity

κ 2...3·10−2 W cm–1K–1 T = 300 K 87C,91M

≈ 20·10–3 T = 300 K 71S W cm–1 K–1

0.58 W cm–1 K–1 computed value for T = 0 K 71SFor temperature dependence, see Fig. 20

Temperature dependence of the thermal conductivity of different compositions in Fig. 21. [71S, 77S, 87C, 89C,92R, 94M].

Page 5: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Thermal conductivity of YB66 and YB61 in [86T2], of YB61.7 and YB66 (results of different authors) in [94M],of YB63 in [98M], of YB58 and YB66 in [87C, 89C, 91M].

phonon mean free path

Λ 23.44·10–8 cm T = 300 K For temperature dependence, see Fig. 22 71S

Heat capacity in Fig. 23 [87C, 89C].

Dependence of the specific heat capacity divided by T3 on temperature in Fig. 24 [87C, 74B, 75B1].

For specific heat (comparison of different samples) see also [91M].

For a comparison of the thermal conductivity with numerous amorphous solids and disordered crystals see[97M].

Debye temperature

ΘD 1300(50) K ~ calculated from elastic constants 71S,77S

1200 K heat capacity (preliminary 77Smeasurements)

density

d 2.568 g cm−3 T = 300 K YB66 94M

2.5687(50) g cm–3 T = 300 K pycnometric 77S,71S

2.482 g cm–3 T = 300 K X-ray 71S

acoustic phonon cutoff

80 cm−1 71S

acoustic attenuation: see Fig. 25.

melting point

Tm 2100oC 77S

Page 6: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

internal friction

Q−1 1.7·10−4 T = 10 K YB66 94M

7·10−4 YB61.7

2.2·10−4 YB63

Temperature dependence of the internal friction of YB66, YB63 and YB61.7 in Fig. 26 [94M].

Structure and chemistry of the YB66 (100) surface in [97P]; surface reconstruction determined by AFMinvestigation [96K].

Application of YB66 single crystals for monochromators of synchrotron radiation in [94T].

Page 7: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

References:

69R Richards, S.M., Kasper, J.S.: Acta Crystallogr. B 25 (1969) 237.71S Slack, G. A., Oliver, D. W., Horn, E. H.: Phys. Rev. B 4 (1971) 1714.74B Bilir, N.: in: Ph.D. Thesis, Stanford University ed., Stanford, 1974 .75B1 Benesovsky, F.: Ullmanns Enzyklopädie der techn. Chemie 8 (1975) 657.75B2 Bilir, N., Phillips, W.A., Geballe, T.H.: in: Low Temperature Physics LT 14, M. Krusius and M.

Vuorio ed., North-Holland: Amsterdam, 1975, p. 9.76K Kasper, J. S.: J. Less-Common Met. 47 (1976) 17.77S Slack, G. A., Oliver, D. W., Brower, G. D., Young, J. D.: J. Phys. Chem. Solids 38 (1977) 45.85T Tanaka, T., Otani, S., Ishizawa, Y.: J. Cryst. Growth 73 (1985) 31.86G Golikova, O.A., Tadzhiev, A.: J. Non-Cryst. Solids 87 (1986) 64.86T1 Tanaka, T., Otani, S., Ishizawa, Y.: J. Less-Common Met. 117 (1986) 293 (Proc. 8th Int. Symp.

Boron, Borides, Carbides, Nitrides and Rel. Compounds, Tbilisi, Oct. 8 - 12, 1984).86T2 Türkes, P.R.H., Swartz, E.T., Pohl, R.O.: in: Boron-Rich Solids (AIP Conf. Proc. 140), Albuquerque,

New Mexico 1985, D. Emin, T.L. Aselage, C.L. Beckel, I.A. Howard ed., American Institute ofPhysics: New York, 1986, p. 346.

87C Cahill, D.G., Fischer, H.E., Warson, S.K., Pohl, R.O., Slack, G.A.: in: Proc. 9th Int. Symp. Boron,Borides and Rel. Compounds, University of Duisburg, Germany, Sept. 21 - 25, 1987, H. Werheit ed.,University of Duisburg: Duisburg, 1987, p. 113.

87G Golikova, O.A.: Phys. Status Solidi (a) 101 (1987) 277.87W1 Werheit, H.: in: Proc. 9th Int. Symp. Boron, Borides and Rel. Compounds, University of Duisburg,

Germany, Sept. 21 - 25, 1987, H. Werheit ed., University of Duisburg: Duisburg, 1987, p. 142.87W2 Werheit, H., Haupt, H., Kuhlmann, U., Siejak, V., Tanaka, T.: in: Proc. 9th Int. Symp. Boron, Borides

and Rel. Compounds, University of Duisburg, Germany, Sept. 21 - 25, 1987, H. Werheit ed.,University of Duisburg: Duisburg, 1987, p. 383.

89C Cahill, D.G., Fischer, H.E., Watson, S.K., Pohl, R.O., Slack, G.A.: Phys. Rev. B 40 (1989) 3254.90T Tanaka, T., Otani, S., Ishizawa, Y.: J. Cryst. Growth 99 (1990) 994.90W Werheit, H., Kuhlmann, U., Tanaka, T.: (unpublished results).91M Medwick, P.A., Cahill, D.G., Raychaudhuri, A.K., Pohl, R.O, Gompf, F., Nücker, N., Tanaka, T.: in:

Boron-Rich Solids, Proc. 10th Int. Symp. Boron, Borides and Rel. Compounds, Albuquerque, NM1990 (AIP Conf. Proc. 231), D. Emin, T.L. Aselage, A.C. Switendick, B. Morosin, C.L. Beckel ed.,American Institute of Physics: New York, 1991, p. 363.

91W Werheit, H., Kuhlmann, U., Tanaka, T.: in: Boron-Rich Solids, Proc. 10th Int. Symp. Boron, Boridesand Rel. Compounds, Albuquerque, NM 1990 (AIP Conf. Proc. 231), D. Emin, T.L. Aselage, A.C.Switendick, B. Morosin, C.L. Beckel ed., American Institute of Physics: New York, 1991, p. 125.

92R Raychaudhuri, A.K., Pohl, R.O.: Phys. Rev . B 46 (1992) 10657.93K Kamimura, Y., Tanaka, T., Otani, S., Ishizawa, Y., Rek, Z.U., Wong, J.: J.Cryst. Growth 128 (1993)

429.94B Bullett, D.W.: Proc. 11th Int. Symp. Boron, Borides and Rel. Compounds, Tsukuba, Japan, August 22

- 26, 1993, Jpn. J. Appl. Phys. Series 10 (1994), p. 31.94G1 Golikova, O.A.: Proc. 11th Int. Symp. Boron, Borides and Rel. Compounds, Tsukuba, Japan, August

22 - 26, 1993, Jpn. J. Appl. Phys. Series 10 (1994), p. 43.94G2 Golikova, O.A., Domashevskaya, E.P., Kazanin, M.M., Terekhov, V.A.: Proc. 11th Int. Symp. Boron,

Borides and Rel. Compounds, Tsukuba, Japan, August 22 - 26, 1993, Jpn. J. Appl. Phys. Series 10(1994), p. 56.

94K1 Kuhlmann, U.: Zusammenhänge zwischen den Phononenspektren borreicher Festkörper mitIkosaederstruktur und ihren strukturellen und elektronischen Eigenschaften, Thesis, Gerhard-Mercator University, Duisburg, Germany, 1994.

94K2 Kuhlmann, U., Werheit, H., Hassdenteufel, J., Tanaka, T.: Proc. 11th Int. Symp. Boron, Borides andRel. Compounds, Tsukuba, Japan, August 22 - 26, 1993, Jpn. J. Appl. Phys. Series 10 (1994), p. 82.

94K3 Kobayashi, M., Higashi, I., Matsuda, H., Kimura, K.: J. Alloys Compounds 221 (1994) 120.

Page 8: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

94M Medwick, P.A., Pohl, R.O., Tanaka, T.: Proc. 11th Int. Symp. Boron, Borides and Rel.Compounds,Tsukuba, Japan, August 22 - 26, 1993, Jpn. J. Appl. Phys. Series 10 (1994), p. 106.

94T Tanaka, T., Ishizawa, Y., Wong, J., Rek, Z.U., Rowen, M., Schäfers, F., Müller, B.R.: Proc. 11th Int.Symp. Boron, Borides and Rel. Compounds, Tsukuba, Japan, August 22 - 26, 1993, Jpn. J. Appl.Phys. Series 10 (1994), p. 110.

96K Kuhlmann, U., Werheit, H., Tanaka, T., Ishizawa, Y.: (presented at the 12th Int. Symp. Boron,Borides and Rel. Compounds, Baden, Austria, 1997.

96P Perkins, C.L., Trenary, M., Tanaka, T.: Phys. Rev. Lett. 77 (1996) 4772.96S Schmechel, R., Werheit, H.: J. Phys.: Condens. Matter 8 (1996) 7263.97H Higashi, I., Kobayashi, K., Tanaka, T., Ishizawa, Y.: J. Solid State Chem. 133 (1997) 16 (Proc. 12th

Int. Symp. Boron, Borides and Rel. Compounds, Baden, Austria, 1996).97M Medwick, P.A., Pohl, R.O.: J. Solid State Chem. 133 (1997) 44 (Proc. 12th Int. Symp. Boron, Borides

and Rel. Compounds, Baden, Austria, 1996).97P Perkins, C.L., Trenary, M., Tanaka, T.: J. Solid State Chem. 133 (1997) 31 (Proc. 12th Int. Symp.

Boron, Borides and Rel. Compounds, Baden, Austria, 1996).97S1 Sakairi, Y., Takeda, M., Kimura, K., Tanaka, T.: J. Solid State Chem. 133 (1997) 195 (Proc. 12th Int.

Symp. Boron, Borides and Rel. Compounds, Baden, Austria, 1996).97S2 Simeone, D., Deschanels, X., Berthier, B., Tessier, C.: J. Nucl. Mater. 245 (1997) 27.97S3 Schmechel, R., Werheit, H.: J. Solid State Chem. 133 (1997) 335 ( Proc. 12th Int. Symp. Boron,

Borides and Rel. Compounds, Baden, Austria, Aug. 25 - 30, 1996).98M Medwick, P.A., White Jr., B.E., Pohl, R.O.: J. Alloys Compounds 270 (1998) 1.98S Schmechel, R.: Thesis, Gerhard-Mercator University Duisburg, Germany, 1998.99H Higashi, I., Ishii, T., Kobayashi, K., Tanaka, T.: J. Solid State Chem. (2000) (Proc. 13th Int. Symp.

Boron, Borides and Rel. Compounds, Dinard, France, Sept. 1999).99O Oku, T., Bovin, J.-O., Higashi, I., Tanaka, T., Ishizawa, Y.: J. Solid State Chem. (2000) (Proc. 13th

Int. Symp. Boron, Borides and Rel. Compounds, Dinard, France, Sept. 1999).99T Tanaka, T., Shi, Y., Mori, T., Leithe-Jasper, A.: J. Solid State Chem. (2000) (Proc. 13th Int. Symp.

Boron, Borides and Rel. Compounds, Dinard, France, Sept. 1999).99W Werheit, H.: in: Electric Refractory Materials, Y. Kumashiro ed., Marcel Dekker: New York, 1999 (in

press).

Page 9: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 1.

YB66. Simplified schematic representation of the crystal structure looking down along the [100] axis. Thehorizontal and vertical directions are [010] and [001]. Different shading of the spheres representing B156 groupsindicate different orientation. The B48 groups are situated at a/4, the Y atoms at 0.054 a below the surface. TheY sites are believed to be statistically occupied [77S].

Page 10: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 2.

YB66 structure group. Structure containing (B12)13 giant icosahedra, B80 clusters (80 B sites, about 42 of whichare statistically occupied) and Y-Y pairs [97H].

c

b

a

YB structure group66

(B )12 13 B -cluster80 Y-Y pair

Page 11: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 3.

YB66. Arrangement of the (B12)13 units as seen along the c axis (−0.25 < z < + 0.25) [97H].

YB66b

a

m

m

m

m

m m m

0

0

0.5

0.5

1.0

1.0

Page 12: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 4.

YB66. B80 cluster as seen along the fourfold axis. The cluster consists of 80 B sites belonging to four crystallo-graphically different positions. All the sites are partially occupied so that the actual number of B atoms withinthe cluster is about 42 [97H].

YB66

Page 13: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 5.

YB66. Calculated electron density of states. (a) B156 framework, (b) assumed B48 cluster; (c) sum of B156

framework and B48 cluster, (d) ) sum of B156 framework and an assumed B36cluster [94B].

– 24 – 20 –16 –12 – 8 – 4 0 4Energy [eV]E – EF

Dens

ityof

stat

es

d

c

b

a B framework156

B clusters48

B + B156 48

B +156 B36 EF

YB66

Page 14: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 6.

YB66. B Kα spectrum; insert: high energy tail [94G2].

0

0.2

0.4

00.6

0.08

0.06

0.04

0.02

0.8

1.0

YB66

170

188 190

175

189 191

180 185 190 195Relative energy [eV]Er

Er [eV]

Inte

nsity

[arb

.uni

ts]

I

I[ar

b.un

its]

0.10

Page 15: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 7.

YB61.5. Electrical resistivity vs. reciprocal temperature [77S].

Page 16: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 8.

YB66. Optical absorption edge; absorption coefficient vs. photon energy. The agreement between the resultsobtained with monochrome and polychrome radiation shows that the measured absorption is not remarkablyinfluenced by photoeffect [94K2].

0.1 0.2 0.3 0.4 0.5 0.70.6 0.8 0.940

102

4

5

5

2

2

3

6

6

7

7

8

8

9

9

YB66

monochrome radiation(dispersion spectrometer)

polychrome radiation(FTIR spectrometer)

103

3 10⋅ 3

Abso

rptio

n co

effic

ient

[cm

–1

Photon energy [eV]hν

Page 17: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 9.

YB66. Photoconductivity depending on the modulation frequency; (a) current, (b) phase shift [97S1].

4

4

4

4

4

4

4

4

2

2

2

2

2

2

2

2

2

2

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

4

4

4 10⋅ 3

4 10⋅ 3

10

10

103

103

102

102

a

b

10–6

10–4

10–2

10–5

10–3

55°

75°

40°

60°

80°

45°

65°

85°

50°

70°

90°

Phot

ocur

rent

[arb

.uni

ts]

I phPh

ase

shift

T = 280 K

T = 280 K

Modulation frequency [Hz]f

Modulation frequency [Hz]f

260

260

240

240

220

220

200

200

180 K

180 K

YB66

Page 18: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 10.

YB66. Relative change of the transverse sound velocity of YB63 vs. T; solid line, calculation based on specific

assumptions on the slope of δv/v vs. T at intermediate temperatures (δv/v = C lnT for T<< Tc0; δv/v = −C/2 lnTfor T>>Tc0) (for details see ref.) [94M].

– 0.5

0

0.5

1.0

1.5

2.0

2.5

10Temperature [K]T

10–114 10⋅ –2

Rel.s

ound

vel

ocity

[10

]∆

v/v t

0–4

YB63

22 44 66 88

Page 19: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 11.

YB66, DyB66. dc electrical conductivity; σ vs. reciprocal T. Insert σ T1/2 vs. T−1/4 (Mott’s law). Sample a:single crystal, double zone-melted; sample b: single crystal, zone melted; sample c: polycrystalline, industrialproduction [91W].

1 2 3 4 5 6 97 10 118 12

Cond

uctiv

ity[

cm]

σΩ

–1–1

σT[K

cm]

Ω½

½–1

–1

Inv. temperature [10 K ]T –3 –1–1

T K ]–¼–¼ [

10–8

10–6

10–4

10–1

10–2

10

10–10

10–9

10–7

10–5

10–3

1

10–8

10–6

10–4

102

1

10–2

0.19 0.270.23 0.310.21 0.290.25 0.33

YB (a)66YB (b)66YB (c)66DyB66

Page 20: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 12.

YB66. ac electrical conductivity up to 2016 Hz [90W].

1 2 3 4 5 6 97 10 118 12Inv. temperature [10 K ]T –3 –1–1

10–8

10–6

10–4

10–1

10–2

10

10–9

10–7

10–5

10–3

1

dcf = 8 Hz

30 Hz227 Hz571 Hz

2016 Hz

YB66

Cond

uctiv

ity[

cm]

σΩ

–1–1

Page 21: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 13.

YB66. Hall mobility vs. reciprocal T. Sample a: single crystal, double zone-melted; sample b: single crystal, zonemelted; sample c: polycrystalline, industrial production [91W].

1 810–2

10–1

1

10

102

4

4

4

4

2

2

2

2

6

6

6

6

8

8

8

8

2 3 54 6 7

YB66

Hall

mob

ility

[cm

H2

–1(V

s)

Inv. temperature [10 K ]T –3 –1–1

(c)(b)(a)

Page 22: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 14.

YB66. Thermoelectric power S vs. T [91W].

Ther

moe

lect

ricpo

wer

[V

K]

–1

300

400

500

600

700

800

900

1000

0 100 200 400300 500 600 700Temperature [K]T

heatingcooling

YB66

Page 23: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 15.

YB66. Magnetoresistance ∆ρ/ρ vs. reciprocal T (B = 1 T) Squares: negative sign, open circles: positive sign[91W].

2 31 94 5 6 7 810–6

10–1

10–2

10–3

10–4

10–5

Mag

neto

resis

tanc

e∆

ρ/ρ

YB66

Inv. temperature [10 K ]T –3 –1–1

Page 24: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 16.

YB66. Absorption index vs. wavenumber for 30, 160, 300, and 450 K [94K1, 94K2].

0 400 800 1200 1600 2000

0.4

0.8

1.6

1.2

2.0

Abso

rptio

n in

dexk

YB66

Wavenumber [cm ]ν –1

T = 450 K (shifted by 0.6)

300 K (shifted by 0.4)

160 K (shifted by 0.2)

30 K

Page 25: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 17.

YB66.Reflectivity spectra at 90, 300, and 450 K. The influence of the dynamical conductivity increasing withincreasing temperature is clearly seen at low wavenumbers [98S].

200.30

Refle

ctiv

ityR

0.35

0.40

0.50

0.55

0.45

YB66

Wavenumber [cm ]ν –1

T = 450 K (shifted by 0.1)

300 K (shifted by 0.05)

90 K

5 10⋅ 3102 103

44 2 266 88

Page 26: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 18.

YB66. Typical FT Raman spectra averaged over different numbers of scans [94K2].

0 200 400 600 800 12001000 1400 1600

0.01

0.03

0.02

0.04

0.05

YB66

Wavenumber [cm ]ν –1

C: cleaved surface, 10000 scans (shifted by 0.015)

A: 6300 scans

B: 10000 scans (shifted by –0.005)

Ram

an in

tens

ity[re

l.uni

ts]

I R

Page 27: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 19.

YB66. Far infrared optical absorption coefficient at 4.2 K vs. wavenumber [77S].

Page 28: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 20.

YB66. Thermal conductivity vs. temperature for two samples [71S].

Page 29: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 21

YB66 structure group. Temperature dependence of thermal conductivity. Open symbols: YB66±X (squares,YB61.7 [92R, 94M]; triangles, YB66 [71S, 94M], circles, YB66 [87C, 89C, 94M], diamonds, YB66 [77S, 94M]);closed symbols: GdB66±X (circles, GdB66 [86G], triangles down, GdB62.5 [94M]).

YB structure group66

101 102 103

Temperature [K]T

10–6

10–1

10–4

10–3

10–1

10–5

10–2

Ther

mal

cond

uctiv

ity[W

cm]

κ–1

–1 K

Page 30: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 22.

YB66. Phonon mean free path vs. temperature [71S]. The dashed line represents the behavior of the acousticphonons only and corresponds to the mean free path of the actual carriers with thermal energy.

Page 31: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 23.

YB66. Specific heat capacity c vs. T. Insert: Low temperature c/T vs. T2, dashed line: Debye prediction [87C,89C].

2 24 46 68 810–6

1 10 102

10–1

10–2

10–3

10–4

10–5

T [K]

T2 2

[K ]

2

0

2

4

6

8

4

20 40

6

60

8

80

10

100

10

Spec

ific h

eat c

apac

ity[J

gK

]c

–1–1

CT/

[J g

K]

–1–2

Temperature [K]T

YB66

Page 32: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 24.

YB66. Specific heat capacity divided by T3 vs. T. Full circles:YB66 [87C], open circles: YB66 [74B, 75B2],crosses:YB61.7 [74B, 75B2], dashed line, Debye model.

2

2 2

3

3

5

5

7

7

7

9

9101 40

9

4

4

6

6

8

8

8

10–7

10–6

2 10⋅ –6

6 10⋅ –8

Spec

ific h

eat c

apac

ity/

[J g

K]

cT3

–1–4

YB66

YB , Debye66

YB61.7

,

Temperature [K]T

Page 33: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 25.

YB61.7, YB66. Acoustic attenuation α vs. temperature for transverse waves propagating in the [100] direction atdifferent frequencies. At a frequency of 1.15 GHz the attenuation becomes unmeasurably large at temperaturesabove 11 K [77S]

Page 34: substance: boron compounds with group III elementsextras.springer.com/2000/978-3-540-64966-3/41d_pdf/3s15d01.pdf · Absorption index in [91W]. IR reflectivity spectra showing the

Fig. 26.

YB66, GdB62.5. Internal friction Q−1 vs. T for YB66, YB63, YB61.7 and GdB62.5 [94M].

10–1 1 10 102

Inte

rnal

fric

tion

Q–1

10–6

10–5

10–4

10–3

Temperature [K]T

4 10⋅ –3

4 10⋅ 24 10⋅ –2

YB66

YB63

YB61.7

GdB62.5