supercritical natural laminar flow airfoil optimization for regional aircraft wing design

Upload: snada

Post on 26-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    1/13

    Aerospace Science and Technology 43 (2015) 152164

    Contents lists available at ScienceDirect

    Aerospace

    Science

    and

    Technology

    www.elsevier.com/locate/aescte

    Supercritical

    natural

    laminar

    flow

    airfoil

    optimization

    for

    regional

    aircraft

    wing

    design

    Yufei Zhang a,1,Xiaoming Fang a,2,Haixin Chen a,,3,Song Fu a,3,Zhuoyi Duan b,4,Yanjun Zhang b,5

    a TsinghuaUniversity,Beijing,100084,Chinab AVICTheFirstAircraftInstitute,Xian,710089,China

    a

    r

    t

    i

    c

    l

    e

    i

    n

    f

    o a

    b

    s

    t

    r

    a

    c

    t

    Article

    history:

    Received29September2014

    Receivedinrevisedform26February2015

    Accepted27February2015

    Availableonline4March2015

    Keywords:

    Airfoil

    Optimization

    Naturallaminarflow

    Pressuregradientconstraint

    Favorablepressuregradient

    An

    optimization

    design

    method

    of

    supercritical

    natural

    laminar

    flow

    airfoil

    based

    on

    Genetic

    Algorithm

    and

    Computational

    Fluid

    Dynamics

    is

    tested

    in

    this

    paper.

    Class

    Shape

    Transformation

    method

    is

    adopted

    as

    geometry

    parameterization

    method.

    Constraints

    on

    pressure

    distribution

    are

    applied

    to

    gain

    appropriate

    flow

    field

    in

    addition

    to

    the L/D performance. A fixed transition computation method

    is

    used

    in

    the

    optimization

    process

    to

    save

    computation

    time

    while

    giving the

    reasonable

    friction

    drag

    estimation

    and

    predicting the

    influence

    of

    the

    laminar

    boundary

    layer

    on

    airfoil

    performances.

    Specified

    favorable

    pressure

    gradient

    constraints

    are

    used

    to

    guarantee

    the

    expected

    laminar

    length.

    Objective

    of

    optimization

    is

    set

    to

    weaken

    the

    shock

    wave

    and

    minimize

    the

    pressure

    drag.

    Such

    a

    simplified

    NLF

    optimization

    process

    is

    verified

    by

    natural

    transition

    computation.

    The

    optimal

    setting

    of

    the

    favorable

    pressure

    gradient

    constraint,

    which

    is

    important

    for

    the

    trade-off

    between

    drag

    reduction

    and

    laminar

    stability,

    is

    then

    studied

    via

    numerical

    investigation.

    Results

    show

    that

    the

    airfoil

    optimized

    by

    constraining

    a

    favorable

    pressure

    gradient

    larger

    than

    0.2

    is

    good

    for

    both

    cruise

    efficiency

    and

    robustness.

    A

    natural

    laminar

    wing

    is

    then

    designed

    based

    on

    the

    optimized

    airfoil.

    Numerical

    verifications

    show

    that

    the

    wing

    has

    good

    natural

    laminar

    performance

    and

    low

    speed

    behavior.

    2015ElsevierMassonSAS.All rights reserved.

    1. Introduction

    NaturalLaminarFlow(NLF)airfoilhasalreadybeenstudiedfor

    severaldecades[15].However, itstilldrawshighattention inre-

    cent years. As the friction drag is about half of the total drag

    for modern civil aircrafts [10], laminar technology has great po-

    tential to increase lift todragratio.Althougha lotofflight tests

    had successfully validated the efficiency of NLF airfoil on mod-

    ern large civil aircrafts [16,6], the technology is only realized on

    wingsofseverallightbusinessaircraftsinthecommercialmarket

    until

    now,

    such

    as

    the

    Honda

    Jet

    [11,13] and

    the

    Aerion

    Super-

    SupportedbyNationalKeyBasicResearchProgramofChina(2014CB744801)

    andNationalNaturalScienceFoundationofChina(11102098and11372160).

    * Correspondingauthor.E-mailaddresses:[email protected](Y. Zhang),

    [email protected](H. Chen).1 Assistantprofessor,SchoolofAerospaceEngineering.2 Masterstudent,SchoolofAerospaceEngineering.3 Professor,SchoolofAerospaceEngineering.4 Researchprofessor,GeneralDesignandAerodynamicDepartment.5 Seniorengineer,GeneralDesignandAerodynamicDepartment.

    sonicBusinessJet[14,31].ParameteranalysisresultsofLammering

    etal. [19] showed that,NLFdesignofaBoeing777-sizeairplane

    could not show improvements on airplane direct operating costs

    than conventional turbulent design unless the drag reduction is

    morethan40counts.Inordertopreservelaminarregion,alower

    leadingedgesweepangle isadopted in theNLFwing [19].Con-

    sequently, thecruiseMachnumber isquite lower than turbulent

    wing.IncreasingcruiseMachnumberisasimportantasreducing

    skinfrictionforNLFwingdesign.Benefitandpenaltyof theNLF

    technologyneedtobeclearlyquantified.

    Airfoil

    is

    a

    fundamental

    element

    of

    a

    wing.

    Many

    investigatorshavefocusedonthesupercriticalNLFairfoildesignbecauseofits

    importanceforthehigh-subsonicNLFwing.BiberandTilmann[4]

    developedasupercriticalNLFdesignmethodbasedon thepanel

    and Euler codes coupled with boundary layer equation, and at-

    temptedtoincreasethedragbucketoftheNLFairfoilinorderto

    extend the operational speed range. Eggleston et al. [9] showed

    that the peak Mach number, pressure gradient, and aft loading

    werecriticalfactorsofafavorablepressuredistributionofanNLF

    airfoil.Cellaetal. [5] successfullyused the ruleofcosine tode-

    signahigh-subsonicNLFwingwithamulti-objectiveoptimization

    method.Theyseparatelydesignedtheroot/kink/tipairfoilsandgot

    http://dx.doi.org/10.1016/j.ast.2015.02.024

    1270-9638/ 2015ElsevierMassonSAS.All rights reserved.

    http://dx.doi.org/10.1016/j.ast.2015.02.024http://www.sciencedirect.com/http://www.elsevier.com/locate/aesctemailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.ast.2015.02.024http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2015.02.024&domain=pdfhttp://dx.doi.org/10.1016/j.ast.2015.02.024mailto:[email protected]:[email protected]://www.elsevier.com/locate/aesctehttp://www.sciencedirect.com/http://dx.doi.org/10.1016/j.ast.2015.02.024
  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    2/13

    Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164 153

    Nomenclature

    TurbulenceintermittencyfactorRe Reynolds number based on boundary layer momen-

    tumthickness

    Ma Machnumber

    Cp Pressurecoefficient

    Cf

    Frictioncoefficient

    Cl Liftcoefficient

    Cd Dragcoefficient

    Cd,p Pressuredragcoefficient

    Cd,f Frictiondragcoefficient

    Cm Pitchingmoment

    L/D Lifttodragratio

    dCp/dX Pressurecoefficientgradientofairfoil

    t/c Airfoilrelativethickness

    c Chord length

    QFPG quantityoffavorablepressuregradient,dCp/dX

    anNLF wingwithgoodlaminarperformance.KhalidandJones[17]

    showedthesupercriticalNLFairfoilswithdifferentthicknessesde-

    signedattheNationalAeronauticalEstablishment,andtheexperi-

    mentvalidatedgoodperformancesoftheairfoilsatReynoldsnum-

    ber up to12.5million.Streit etal. [30] provideda new method

    ofconvertingpressuredistributionoftwo-dimensionalNLFairfoil

    tothree-dimensionalwingbyconsideringthesweepandtapered

    effects. The pressure distribution of the Hondajet [12] provided

    some new concepts of supercritical NLF airfoil design, on which

    thetailingedgebubbleoftheuppersurfacewasadoptedtosup-

    press

    low

    speed

    flow

    separation,

    and

    the

    leading-edge

    shape

    was

    carefullydesignedtocausetransitionathighanglesofattack(AoA)

    to obtain higher maximum lift coefficient. Shockwave/boundary

    layerinteractionisamajorcauseoftransonicdragrising.Aircraft

    designerswouldhaveanopportunitytoraisecruiseMachnumber

    iftheycoulddecreaseshockwavedrag.Thatisamainobjectiveof

    supercriticalairfoildesign.Apparently,anotherobjectiveofsuper-

    criticalNLFairfoildesignistodecreasethefrictiondrag.Inrealistic

    high-subsonicdesignpractice,aerodynamicdesignerusuallyhasa

    target(oranexpectation)oflaminarlengthforacertaincondition

    based on experience or literature survey. Consequently, the po-

    tentialof frictiondragreduction isapproximatelyconfirmed.The

    designproblembecomeshowtoachievelaminarlengthandhow

    toreduceshockwavedrag.Laminarflowlengthcouldbeachieved

    through

    maintaining

    Favorable

    Pressure

    Gradient

    (FPG,

    or

    negative

    pressuregradient)[8].However,theFPGshouldnotbesogreatas

    toavoidexcessiveshockstrength [8].Nevertheless, thequantita-

    tive influenceofFPGondragofsupercriticalNLFairfoil isnotso

    clear.Trade-offbetweenwavedragandfrictiondragisaproblem

    ofNLFairfoildesign,whichiscloselyrelatedtotheFPG.

    With the help of modern optimization methods, the applica-

    tionofNLFtechnologycouldbepushedforward.Geneticalgorithm

    [35,2] and adjoint method [21,22] are two kinds of widely used

    optimization methodsonairfoildesign.Bothmethods have their

    inherent problems. The latter is lack of global optimization abil-

    ity and difficult to treat realistic design constraints. The former

    hastheprobabilitytoachieveglobaloptimizationsolution,butre-

    quires lots of computation costs. Computation cost of CFD must

    be

    carefully

    controlled

    in

    genetic

    algorithm

    optimization.

    Man-in-loopdesignprocessisapracticalcompromiseforengineering

    applications, for example, introducing some pressure distribution

    constraints in a design problem to guide optimization direction

    [34,33]andartificiallyadjustingtheconstraintsandobjectivesdur-

    ingdesigniteration.

    Inthispaper,supercriticalNLFairfoilisoptimizedforthehigh-

    subsonicNLFwingofaregionaljet.AReynoldsAveragedNavier

    Stokes CFD solver is used as aerodynamic analysis tool. An in-

    house developed optimization platform [27] based on the Non-

    dominatedSortingGeneticAlgorithm-II(NSGA-II)[7]isadoptedas

    backgroundschedulingsoftware.Classshapetransformation(CST)

    methodisemployedasairfoilparameterizationmethod.Optimiza-

    tion process is controlled by a series of realistic constraints. Su-

    percritical

    NLF

    airfoil

    is

    obtained

    through

    optimization

    based

    on

    RAE2822 supercritical airfoil. Effect of FPG on laminar character-

    isticsisinvestigatedbysixairfoilswhichareoptimizedbydiffer-

    entpressuredistributionconstraints.Agoodcompromisebetween

    pressuredragand frictiondrag isachievedwhentheFPGon the

    uppersurfacebefore50%chordislargerthan0.2.Ahigh-subsonic

    NLFwingisgotbyassemblingandsimplymodifyingtheoptimized

    airfoil.Numericalresultsdemonstratethatthewinghasbothlarge

    laminarregionandgoodrobustness.

    2.

    Numerical

    method

    and

    validation

    2.1. Turbulencemodeling

    AerodynamicanalysisinthispaperisbasedonaReynoldsAver-

    agedNavierStokesCFDcode.Itisusedtocomputefixedtransition

    flowfield in theoptimization, and tocalculatenatural transition

    flowfieldafteroptimization.

    InNLFwingdesign,theaccuracyoftransitionpredictionisan

    important factor of design quality. Based on Shear Stress Trans-

    port(SST)model[23],atransitionmodelhadbeendevelopedby

    Menteretal. [24,25] through adding an intermittency factor ()equationandamomentumthicknessbasedReynoldsnumber(Re)

    equationtotheturbulencemodels,calledasSSTRe model.Because

    of

    the

    strong

    source

    terms

    in

    the

    SST

    Re model,

    the

    computation time of the SSTRe model is much longer thantheSSTmodel,as theCourantFriedrichsLewynumbermustbe

    smaller.However, thecomputation time isacritical factorofge-

    neticalgorithmoptimization.Analternativemethodisusedinthe

    presentoptimizationprocesstoreducecomputationcost.Thepres-

    suredistributionofairfoilispredictedbytheSSTturbulencemodel

    with fixed transition when optimizing the airfoil shape and the

    accurate transition location isvalidatedby theSSTRe modelafter optimization. The fixed transition location is located based

    on thedesignexpectationof laminar length.Thefixed transition

    computationcouldconsidertheinfluenceofthelaminarboundary

    layerandaccuratelypredictthepressuredrag.Thelaminarlength

    isachievedthroughmaintainingtheFPG.Inthenextsub-section,

    the

    code

    is

    validated

    by

    two

    cases

    with

    experimental

    data.

    The

    pressuredistributionsofthefixedtransitionandnaturaltransition

    computationsarealsocompared.

    2.2.

    Validation

    Inthispaper,wemainlyfocusontransitionpredictioncapabil-

    ityoftheSSTRe transitionmodelforsupercriticalNLFairfoil.The transitionpredictionaccuracy isvalidatedby two testcases.

    The first is a low speed NLF airfoil, NLF 0416. It is used to test

    grid convergence, as well as fixed transition computation to en-

    sure itasacheapersubstitution intheoptimizationprocess.The

    secondcaseNLR7301isusedtovalidatethetransitionprediction

    accuracy

    of

    transonic

    flow.

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    3/13

    154 Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164

    Fig. 1. Computation grid of NLF 0416 airfoil (257 97 points).

    2.2.1. NLF0416airfoil

    NLF0416 isa lowspeednatural laminarflowairfoil.TheNa-

    tionalAeronauticsandSpaceAdministrationprovidedalotofex-

    perimentaldataoftheairfoil[29].Inthepresentstudy,flowcondi-

    tionsarefreestreamMach number=0.1 andReynolds number=

    1.0 106 .Freestreameddyviscosityissetas0.1timesofdynamic

    viscosity,andturbulenceintensityis 0.1%.Fig. 1showsagridwith

    25797 points.Thegrid isgeneratedbyan in-housedeveloped

    gridcode.Generatedbysolvinganellipticequationwithasource

    term,themeshisingoodorthogonalwiththesolidwall.Thefirst

    layerinthenormaldirectionislessthan3.0E6toensureY+ less

    than 1.0, and increasing rate of the boundary layer grid height

    is 1.15.

    Far-field

    boundary

    is

    set

    at

    80

    times

    of

    the

    chord

    length

    awayfromtheairfoil.

    Threemesheswithdifferentgridnumberareusedtotestgrid

    convergence.Fig. 2showspressureandfrictiondistributionsofthe

    three meshes at the same AoA by SST Re transition model,as well as the fixed transition result of 25797 points grid by

    SSTmodel.Thepressuredistributionsof thedifferentgridscom-

    puted by the SST Re transition model are almost the same,andthefrictiondistributionsalsoshowaconvergenttendency.The

    fixedtransitionpositionsofupperand lowersurfacesarelocated

    at40%and60%,respectively.Thepressuredistributionofthefixed

    transition matches wellwith theothers. The friction distribution

    isa littledifferentwith thenatural transitionbecauseof inaccu-

    ratefixedtransitionlocation.Thefixedtransitioncomputationhas

    quite

    a

    little

    influence

    on

    the

    drag

    prediction,

    as

    in

    Table 1.

    The

    fixed transition computation of the 257 97 grid costs about 2

    minutesonanIntel2.8 GHzCPUcore.However,thenaturaltran-

    sitioncomputationonthisgridneedsabout10minutes.Therefore

    intheoptimization,thefixedtransitioncomputationcouldbeused

    tominimizetheshockdraginordertoincreaseoptimizationeffi-

    ciency.

    Fig. 3 shows liftandlift-dragpolarcurvesofthecomputation

    results and experimental data. The CFD results are computed by

    the 257 97 points grid. Results of transition computations are

    ingoodagreementwithexperimentaldata.However, thedragof

    fullturbulencecomputationismuchhigherthanexperiment.Fig. 4

    showstransitionlocationsofthecomputationcomparedwithex-

    perimentaldata.Theexperimentcouldnotprovideexacttransition

    locations. It employedmicrophones,whichconnected to the ori-

    ficesontheairfoil,todeterminethetransitionlocation.Transition

    locationsofpresentcomputationarealllocatedbetweenthelam-

    inarand turbulenceorificesof theexperiment, whichshows the

    Retransitionmodelsgoodcapabilityofcapturingnaturaltran-sition.

    2.2.2.

    NLR

    7301

    airfoil

    NLR

    7301

    airfoil

    is

    a

    typical

    supercritical

    airfoil

    with

    large

    thick-ness.TheAdvisoryGroupforAerospaceResearchandDevelopment

    providedaseriesoftransitionexperimentaldata[26].Computation

    results are also available in publications [32,36]. In this section,

    the airfoil is adopted to test the transition prediction accuracy

    for transonic flow, especially with shock/boundary layer interac-

    tion.Computationgrid isthesameasthe361137 gridofSec-

    tion2.2.1.SeveralfreestreamMachnumbersarecalculatedtotest

    dragrising.ReynoldsnumbersandAoAsintheexperimentareall

    2.2106 and 0.85 . However, AoAs in the present computation

    arecorrectedaccordingtocorrectionsintheexperiment,referring

    toliterature[32].Freestreameddyviscosityissetas0.1timesof

    dynamicviscosity,andturbulenceintensityis0.1%.

    Fig. 5 shows the aerodynamic coefficients compared with ex-

    periment,

    including

    lift,

    drag

    and

    pitching

    moment

    coefficients.

    All

    of

    the

    curves

    match

    quite

    well

    before

    Mach

    number

    0.75.

    However,

    theshockwave/boundarylayerinteractionbecomesverystrongaf-

    terdragrising (Ma=0.75), leadingtodeviationof theRANSre-

    sults. Nevertheless, the Mach number of drag divergence is well

    captured.Fig. 6 showstransitionlocationscomparedwithexperi-

    mentaldataatdifferentMachnumbers.Onbothupperandlower

    surfaces, the computed transition locations match well with the

    experimental data. Results of NLR 7301 validated the transition

    predictioncapability for transonicflow,and theaccuracyofboth

    pressureandfrictiondrag.Suchacapabilityprovidesthebasisfor

    supercriticalNLFvalidation.

    The 257 97 points grid is having a good accuracy together

    withanacceptablecomputationcost.Inthefollowingsection,this

    gridischosenasthedesigngridintheoptimizationprocess,and

    the

    361

    137 points

    grid

    is

    employed

    as

    a

    natural

    transition

    vali-

    dationgridafteroptimization.

    3. Naturallaminarairfoiloptimization

    3.1. DesignrequirementsofNLFairfoil

    The NLF wing in this paper is designed for a high-subsonic

    regionaljet.The objectivesandconstraintsof NLFairfoil arede-

    rived from the needs of the wing. Cruise Mach number of the

    regionaljet is 0.76, and flight altitude is 37000 ft. Fig. 7 shows

    theplanformof thewing.Sweepanglesof leadingedgeand1/2

    chord are 17.50 and 13.60 , respectively. Airfoil optimization is

    focusedonprofilesoftheoutboardwing.Ruleofcosine[5]canbe

    Fig. 2. Results of three different grids of NLF 0416 (Ma = 0.1, Re =1.0E6, AoA= 1 ).

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    4/13

    Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164 155

    Table 1

    AerodynamiccoefficientsofdifferentcomputationsofNLF0416airfoil(Ma = 0.1,Re = 1.0E6,AoA =1).

    187 69 grid

    Natural transition

    257 97 grid

    Natural transition

    361 137 grid

    Natural transition

    257 97 grid

    Fixed transition

    Lift coefficient, Cl 0.528 0.541 0.544 0.551

    Drag coefficient, Cd 0.0089 0.0086 0.0087 0.0091

    Pressure drag, Cd,p 0.0036 0.0034 0.0035 0.0036

    Friction drag, Cd,f 0.0053 0.0052 0.0052 0.0055

    Transition positions (upper/lower surfaces) 42%/62% 45%/62% 45%/63% 40%/60% (fixed)

    Fig.3. Liftandlift/dragpolarcurvesofNLF0416airfoil(Ma = 0.1,Re =1.0E6,257

    97 grid).

    usedto transformwingparameter toairfoilrequirement. Ingen-

    eralspeaking,anysweepanglefromleadingedgetotrailingedge

    ofataperedwingcouldbeusedfor3Dto2Dparametertransfor-

    mation.However,Streitetal.[30]suggestthatthesweepangleat

    shockwavelocationcouldbeagoodchoicefortransonicairfoil.In

    thispaper,theshockwavelocationisfoundtobenearthe1/2c,so

    thesweepangleofthe1/2 chordisusedtodecidetheairfoilde-

    signMachnumber.Relativethicknessoftheairfoilistransformed

    from

    the

    kink

    location.

    The

    parameters

    of

    airfoil

    design

    are

    listed

    inTable 2.

    Therearethreetypesoftransitionmechanismsonsweepwing,

    whichareTollmienSchlichting (TS) instability,crossflow instabil-ityandattachmentlineinstabilityorcontamination.TSinstability

    could be suppressed by FPG. In this paper, the TS instability is

    controlledbypressuredistributionconstraintsinoptimizationandpredicted by the SSTRe transition model after optimization.Crossflowinstabilityandattachmentlinecontaminationcouldnot

    bedirectlycapturedin2-Dcomputation.Referringtoflighttestsof

    AndersonandMeyer[1],thetransitionlocationisalmostthesame

    whenthesweepangleislessthan20 .Therefore,crossflowinsta-

    bilitycouldbeexcludedinthepresentplanform.Attachmentline

    contaminationisalsoacauseofprematuretransition.Itisprimar-

    ily influencedby leadingedgeradius.A leadingedgemomentum

    Reynolds

    number

    is

    often

    used

    to

    estimate

    the

    leading

    edge

    con-

    tamination [28,3]. In the present optimization, the leading edge

    radiusisrestrictedtobelessthan0.035cbecausetheleadingedge

    momentumReynoldsnumbershouldbelessthan100[28,3].

    3.2. Class-shapetransformationmethod

    Parameterization method should have fewer variables and

    larger design space. In recent years, Class-Shape Transformation

    (CST)[18,20] methodiswidelyusedinaerodynamicoptimization.

    In themethod,anairfoilwithablunt trailingedge isdefinedas

    theproductofaclass functionand ashape function,plusa lin-

    eartermoftailthickness,asinEq. (1).The =Y/c,= X/c are

    thenormalizedcoordinatesoftheairfoil.Thete isthetailthick-

    ness.

    The

    CN1N2 () is

    a

    class

    function,

    as

    in

    Eq.(2).

    Round

    nose

    and

    Fig. 4. Transition locations of the computation compared with experiment.

    pointedaftendairfoilscouldbedefinedbysetting the N1 = 0.5

    and

    N2=1.0.

    In

    this

    paper,

    the

    shape

    function

    S() is

    defined

    byacombinationofBernsteinpolynomials B in(),as inEq. (3).The

    bi isdesignvariablevector,whichrepresentsweightsofBernstein

    polynomials.Upperandlowersurfacesofairfoilaregeneratedby

    two independentpolynomials. Thus it is difficult to explicitly fix

    theairfoilthicknessinthemethod.Whendesigninganairfoilwith

    acertainthickness,Ycoordinateoftheairfoilisscaledtocontrol

    thickness.

    () =CN1N2()S() +

    te

    2 (1)

    CN1N2()=N1(1 )N2 (2)

    S() =

    n

    i=0

    bi Bin()

    whichB in() =Kin

    i(1 )ni, Kin =n!

    i!(n i)!(3)

    Sixthorder(n=6)CSTpolynomialisusedforbothupperand

    lowersurfacesinthispaper.Table 3showsrangesoftheCSTvari-

    ables in the optimization. The first variables of both upper and

    lowersurfaces aredifferent with theothers in order toobtaina

    large leadingedge radius.Thesixthandseventhvariablesof the

    lowersurface areadjusted to obtainaft loading.Eachvariable is

    separatedby201stepsintheoptimization,thuspossibleparame-

    tercombinationsareabout20114 1.76 1032.

    3.3.

    Airfoil

    optimization

    with

    pressure

    distribution

    constraint

    For

    supercritical

    NLF

    airfoil,

    wave

    drag

    is

    primarily

    determined

    by theMachnumberbefore theshockwave,and frictiondrag is

    controlledbythelengthoflaminarregion.SufficientFPGlengthin

    the front part of NLF airfoil is needed to maintain laminar flow.

    However,FPGwouldraise theMachnumberaheadofshockand

    increasewavedrag.ThereforetheappropriateFPGisthekeyissue

    ofNLFsupercriticalairfoildesign.

    In the authors previous publications [34,33], pressure distri-

    bution constraints can be applied on the airfoil or wing design

    process to gain a good overall supercritical performance. Such a

    pressuredistributionconstraintprovidesuswitha tool toobtain

    airfoilswithdifferentpressuregradientsandcomparetheirperfor-

    mances.

    Inordertonotonlydesignanairfoilwithminimumdrag,but

    also

    separately

    study

    the

    effects

    of

    the

    FPG

    on

    pressure

    drag

    and

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    5/13

    156 Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164

    Fig. 5. Aerodynamic coefficients of the NLR 7301 airfoil varying with Mach number (Re = 2.2E6).

    Fig. 6. Transition locationofNLR7301airfoilvaryingwithMachnumber(Re=

    2.2E6).

    Fig. 7. Planform of the natural laminar flow wing.

    Table 2

    NLFairfoildesignparameters.

    Value

    Cruise Mach number 0.739

    Reynolds number 1.0E7

    Lift coefficient 0.55

    Relative thickness 12.35%

    frictiondrag,astrategyisdesignedinthispaper.First,bysetting

    different

    pressure

    gradient

    constraints,

    based

    on

    fixed

    transition

    computation

    and

    a

    reasonable

    transition

    location,

    corresponding

    low pressure drag airfoils are designed by optimization [34,33].

    Then the transitioncomputationsareconductedon theseairfoils

    tovalidatethereallaminarflowlength,andtoinvestigatetheef-

    fects of the pressure gradient, and at the same time, get overall

    optimaldesign.

    In this section, the fixed transition points of both upper and

    lowersurfacesaresettobeatX= 0.52c,aswesupposethatthe

    laminar region of the final design should be longer than 50%. It

    alsoassumes that theshockwaveshould locateafter X= 0.52c,

    because the computation would not be stable if flow after the

    shock wave is still laminar. Such a setting is reasonable for su-

    percriticalNLFairfoildesign.Objectiveofoptimization istomin-

    imize

    the

    pressure

    drag.

    Shock

    wave

    drag

    will

    be

    implicitly

    mini-mizedwiththisobjective.NSGA-IIisemployedastheoptimization

    method.The257 97 pointsgriddiscussedinSection2.2.1isused

    intheoptimizationprocess.

    Theoptimizationproblem isdefinedas inEq. (4).Thedesign

    conditionsarefromSection3.1.LeadingedgeradiusRLE islimited

    tobe less than0.035 in order to avoid leading edge contamina-

    tion, and larger than 0.010 to ensure a good enough low speed

    stallbehavior.PitchingmomentCm isexpectedtobe largerthan

    0.10 to restrict trimdrag.Becauseoffixed transitioncomputa-

    tion,thefrictiondragvariationofairfoilsisquitesmall.However,

    ifflowseparationexists intheflow,frictiondragwouldbesmall

    becauseof the reverseflowdirection.Consequently, frictiondrag

    constraint Cd,f

    > 0.0025 is employed to rule out designs with

    flow

    separation.

    In

    order

    to

    maintain

    laminar

    flow,

    and

    to

    im-

    proveoptimizationefficiency,thequantityoftheFPG,denotedas

    QFPG = dCp/dX, are applied in the optimization. On the front

    partofairfoil,whereX< 0.50,forbothupperandlowersurfaces

    QFPG shouldbelargerthan0.0.dCp/dX islimitedtobelessthan

    3.0 on the pressure recovery region (X>0.70) to avoid trailing

    edgeseparation [8].

    Table 3

    ParameterrangesoftheCSTdesignvariables.

    Upper surface parameter number 1 27

    Parameter range [0.05,0.3] [0.0,0.3]

    Lower surface parameter number 1 25 6 7

    Parameter range [0.3,0.05] [0.3,0.0] [0.2,0.1] [0.0,0.3]

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    6/13

    Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164 157

    Fig. 8. IterationhistoryoftheNLFsupercriticalairfoiloptimization.(Forinterpretationofthereferencestocolorinthisfigure,thereaderisreferredtothewebversionof

    thisarticle.)

    Fig. 9. Airfoil shapes and pressure distributions of the airfoils.

    min Cd,p

    s.t. Ma=0.739; Re =1.0E7; Cl= 0.55

    t/c=12.35%

    RLE0.70< 3.0 (4)

    Inthegeneticalgorithm,32individualsformthepopulationof

    each

    generation.

    The

    first

    generation

    contains

    the

    CST

    parameters

    of the RAE2822 airfoil and 31 random parameter combinations.

    Optimizationisterminatedafter100generations.Totalnumberof

    individualsgeneratedinthisprocessis3200.However,onlyabout

    2100individualsarecomputedbyCFDbecauseduplicatedindivid-

    uals could be generated due to the elite strategy of NSGA-II [7].

    Total computation time is about 6 hours on a 32-core 2.8 GHz

    workstation.

    Fig. 8showstheiterationhistoryoftheoptimization.Eachair-

    foil is given a Design ID, which is equal to generation pop-

    ulation + individual number. Fig. 8(a) shows all results of the

    optimizationprocess.Theredpointsareunfeasibledesignswhich

    donotfullysatisfyallconstraintsofEq. (4).Theblackpointsare

    feasibledesignsthatsatisfyalloftheconstraints.Theresultsshow

    that

    feasible

    designs

    first

    appear

    after

    ID> 250,

    and

    a

    lot

    of

    un-

    feasibledesignshavelesspressuredragthanthefeasibledesigns.

    Fig. 8(b)showsthehistoryoffeasibledesigns.Aclearconvergent

    tendencycouldbeseenwhenID> 1500.Furthermore,feasiblede-signs become less and less when ID> 2500 because individuals

    identicaltoalreadyexistdesignsareproducedmoreandmorefre-

    quently,whichmeansconvergentsolutionisapproached.Threeairfoilshapesandpressuredistributionsintheoptimiza-

    tion process are shown in Fig. 9. Corresponding Mach numbercontours are presented in Fig. 10. The original design (called as

    ORD)inthefiguresisthescaledRAE2822airfoilofthefirstgen-

    eration.TheORDisunfeasiblebecauseFPGonthelowersurfaceis

    notsufficientforNLFdesign,andthepitchingmomentisalsotoo

    large.Thefirstfeasibledesign(calledasFFD)istheairfoilwhichfirst

    satisfies all constraints. The maximum thickness location of FFD

    movestowardsthetrailingedgetoobtaina longerregionofFPG

    onthelowersurface,asinFig. 9(b).However,Machnumberahead

    ofshockexceeds 1.2,asinFig. 10(b),andtheshockwaveisverystrong.Theoptimizeddesign(calledasOPD) isthedesignwhich

    hastheminimumpressuredraginallofthefeasibledesigns.Itis

    fromthe97thgeneration.LowersurfacesoftheFFDandOPDare

    similar. TheFPG region is longer than50%of the chordonboth

    upperandlowersurface.Resultshowsthat,atthecurrentdesign

    Machnumberand liftcoefficient,shockwavemightbeunavoid-

    able.However,theshockwaveoftheOPDisobviouslyweakerthantheORDandFFD.TheMachnumberaheadofshockis 1.12,asin

    Fig. 10(c),

    which

    is

    an

    acceptable

    value

    for

    transonic

    airfoil.

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    7/13

    158 Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164

    Fig. 10. Machnumbercontoursofthethreeairfoilsinoptimizationprocess.(Forinterpretationofthecolorsinthisfigure,thereaderisreferredtothewebversionofthis

    article.)

    Table 4

    Aerodynamiccoefficientsofthethreeairfoils(Ma = 0.739,Re =10.0 million,Cl = 0.55).

    Computation meth od Aerodyn amic coefficient Original design (ORD) First feasible design (FFD) Optimized design (OPD)

    Fixed transition Pressure drag Cd,p 0.00314 0.00738 0.00195

    Friction drag Cd,f 0.00303 0.00300 0.00315

    Pitching moment Cm 0.117 0.0739 0.0894

    Natural trans ition Pres sure dragCd,p 0.00314 0.00757 0.00212

    Friction drag Cd,f 0.00316 0.00288 0.00299

    Total drag Cd 0.00630 0.01045 0.00511

    Lift to drag ratio L /D 87.36 52.63 107.52

    Transition positions (upper/lower surfaces) 57%/44% 59%/55% 57%/54%

    Fig. 11. Pressure distributions and friction coefficient distributions of the ORD and OPD.

    Thethreeairfoilsarevalidatedbynatural transitioncomputa-

    tion.Resultsofthefixedtransitionandnaturaltransitioncompu-

    tationsarecomparedinTable 4.Itcouldbeseenthatthepressure

    dragfrombothcomputationmethodsareclosetoeachother.After

    optimization,the L/D isincreasedbyabout20.Mostofthedrag

    reductioncomesfromthepressuredrag.Thefrictiondrag isalso

    reducedbya little,althoughsuchareduction isnotexpectedby

    usingsuchaprocess.

    Fig. 11(a) shows pressure distributions of natural transition

    computation and fixed transition computation. Pressure distribu-

    tionsofthetwomethodsshowonlyalittledifference.Theresults

    provethatthefixedtransitioncomputationcouldwellpredictthe

    pressure

    distribution

    of

    the

    airfoils.

    Fig. 11(b)

    shows

    friction

    coef-

    ficient distributions of the ORD and OPD airfoils which are both

    computedby theSSTRe transitioncomputations.The transi-

    tion location isclosely related to the lengthofFPGregion.As in

    Fig. 11(b),laminarregionofthelowersurfaceisincreasedbyalot

    afteroptimization.However,laminarregionontheuppersurfaceis

    alittlebitreducedbecausetheshockwavelocationismovedback

    towards the leading edge. However, it is necessary penalty paid

    toweaken theshockwave.Nevertheless, laminarregion lengthof

    theOPD ismore than55% for bothupperand lowersurfaces. It

    isalittlelongerthanthepre-assumedtransitionlocationsforthe

    fixedtransitioncomputation,whichmeansthattheFPGconstraint

    isadequatetogeneratesuchalaminarflowregionatthisReynolds

    number.

    The

    optimization

    method

    with

    fixed

    transition

    computa-

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    8/13

    Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164 159

    Fig. 12. Design histories of drag coefficients of different FPG constraints.

    Fig. 13. Shapes and pressure distributions of the airfoils with different QFPG constraints.

    Fig. 14. Friction coefficient distributions of the six airfoils at different Reynolds numbers (Ma = 0.739, Cl = 0.55).

    tionandpressuregradientconstraintcanproducereasonableand

    satisfactorydesigns.

    3.4. EffectofQFPG ontransition

    Inlastsection,theexpectedpressuregradientcanbeobtained

    bysettingaconstrainton QFPG throughtheoptimizationprocess,

    and

    the

    expected

    laminar

    length

    can

    be

    achieved

    by

    maintaining

    a

    reasonablyFPG.Aquestionisraised,whatshouldbeagood QFPGconstraint.Isitthelargerthebetter?IsitrelatedtoReynoldsnumbers?

    Withthepressuregradientconstrainedoptimization,weare

    abletodesignandcompareaseriesofairfoilswithdifferentpres-

    sure distribution gradients, or different length of FPG. With the

    pressuredragminimizedbytheoptimization,suchaprocesscould

    provideaninsightintohowthepressuregradientisaffectingthe

    transition performance, taking into account not only the friction

    drag,

    but

    also

    the

    robustness

    and

    Reynolds

    number

    effects.

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    9/13

    160 Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164

    The optimization problem is defined as in Eq. (5). Different

    pressuregradients from QFPG > 0.0 to QFPG> 1.0 aresetbefore

    the50%chordofupper surface.The lengthofFPG on the lower

    surfaceisexpectedtobemorethan 60%.Intheoptimizationpro-

    cess,thefixedtransitionlocationsoftheupperandlowersurfaces

    aresetat52%and62%,respectively.TheoptimizeddesigninSec-

    tion3.3 isputintothefirstgenerationastheoriginaldesigninthe

    followingoptimizations.

    min Cd,p

    s.t. Ma=0.739; Re =1.0E7; Cl= 0.55

    t/c=12.35%

    RLE0.70

    0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 airfoils, respectively. Fig. 12 shows

    thedragcoefficienthistoriesofthedifferentFPGconstraints.Only

    thefeasibledesignsareplottedinthefigures.Allcasesareiterated

    about90100 generations.WiththeincreaseofQFPG ,feasiblede-

    signsarelessandless.ItisclearthatthedragincreaseswithQFPGincreasing, because the shock wave drag is increased, while the

    frictiondragisalmostunaffectedinthefixedtransitioncomputa-

    tion.

    Fig. 13 compares theshapesand thepressuredistributionsof

    fourairfoilsoutofthesixandtheoriginalairfoil.Shapesandlower

    surface pressure distributions are similar. Lengths of the FPG on

    the lowersurfacearemore than60%chord.Theshockwavebe-

    comes stronger and stronger as the specified limitation of QFPGincreases.

    Basedontheabovesixairfoils,fiveReynoldsnumbersranging

    from10millionto20millionarecomputedbytransitionmodelto

    testthesensitivityofpressuredistributiontotheFPGconstraints.

    Different Reynolds numbers could represent flow conditions of

    different types of aircrafts with different size, configuration and

    speed. Reynolds number less than 1.0107 could be the flight

    conditionof businessjet, andReynoldsnumber 1.5107 repre-

    sentsthetypicalconditionofregionaljet,whileReynoldsnumber

    higherthan2.0 107 mightcorrespondtothenarrowbodyairlin-

    ers.Inthepresentcomputation,thefreestreameddyviscosity is

    0.1timesofdynamicviscosity,andturbulenceintensityis 0.1%,as

    theairfoilsaresupposedtobeinflightratherthaninwindtunnel.

    Fig. 14 shows friction coefficient distributions of the six air-

    foils

    at

    three

    Reynolds

    numbers

    with

    the

    same

    lift

    coefficient.

    As shown in Fig. 14, all of the airfoils have quite large areas of

    laminarflow,whichindicatesthattheconstraintsof QFPG aread-

    equatetoobtainlaminarflow.FromallthefiveReynoldsnumber

    studied,wecouldfigureoutsometransitiontendenciesfromthe

    results:

    (1)WhentheReynoldsnumberis1.0 107 ,transitionlocations

    ontheuppersurfacearealllaterthan50%chord.Rememberthat

    theFPGregionisconstrainedtobelongerthan50%,actuallength

    ofFPGontheuppersurfaceisdeterminedbyshockwavelocation,

    so are the transition locations. Transition locations on the lower

    surfaceskeepthesamefordifferentairfoils,noshock isdetected

    on the lower surface. All these facts indicate that the transition

    location is not sensitive to the quantity of FPG at this Reynolds

    number

    range,

    but

    only

    to

    the

    shock

    location.

    Fig.15. FrictiondragandtotaldragofthesixairfoilsvaryingwithReynoldsnumber

    (Ma = 0.739,Cl = 0.55).

    (2)ForReynoldsnumberRe=1.5107,transition locationof

    theuppersurfaceismostlybefore50%chord.Thedifferencesare

    hence

    not

    produced

    by

    the

    shock,

    but

    by

    the

    intensity

    of

    FPG.Transition locationsmovedownstreamwith the QFPG increasing.

    TheonlyexceptionistheQFPG>1.0 airfoil.Theshockwaveofthis

    airfoilisverystrongandinducesasmallseparationbubble,which

    mightinfluencethetransitionlocation.FromairfoilsofQFPG> 0.0

    toQFPG>0.8,transitionlocationsoftheuppersurfacesmovefrom

    35%to53%chords.Forlowersurfaces,transitionlocationsarealso

    all before 60% chord, which is also less than the assigned FPG

    range. At this Reynoldsnumber, thepressure gradient should be

    carefullydesignedtogetadequatelaminarlength.

    (3)WhentheReynoldsnumberis2.0 107 ,theeffectofQFPGbecomessmall.Variationsoftheuppersurfacetransitionlocations

    arelessthan6%chord.Thelongestlaminarregionislessthan30%

    chord,whichisontheQFPG> 0.8 airfoil.ForsuchalargeReynolds

    number,alargerangeofNLFisdifficulttorealize.HybridNLFand

    laminar

    control

    measures

    must

    be

    considered.

    Fig. 15 showsfrictiondragandtotaldragofthesixairfoilsat

    different Reynolds numbers. Friction drag of the QFPG > 0.0 air-

    foil isthe largest.By increasingthe QFPG from0.0to 1.0,benefit

    of friction drag achieved is about 4 drag counts with Reynolds

    number less than 1.5107. However, the benefit drops to less

    than 2 drag counts when Reynolds is 2.0107. Total drag of

    the QFPG >1.0 airfoil is much larger than other airfoils, as the

    shockwaveisquitestrong.Thetotaldragsofthe QFPG> 0.0 air-

    foilandtheQFPG> 0.4 airfoilarealmostthesamewhenReynolds

    numbers less than1.5107 ,whichmeansthevariationsoffric-

    tion drag and pressure drag are balanced on these two points.

    However, when Reynolds number is 2.0107 , the total drag of

    QFPG> 0.0 airfoiland QFPG> 0.2 airfoilareaboutthesame.The

    QFPG>0.2 airfoil

    is

    the

    best

    one

    which

    has

    the

    least

    total

    drag

    for

    allReynoldsnumbers. Itworth tobementioned thatconstraints

    oftherecoveryregion(X> 0.70)andthepitchingmomentgreatly

    limittheapplicationofaftloading,whichhasthepotentialoffur-

    therreducingshockwavedrag.

    Robustnessoftransitionlocationisalsoanimportantcriterion

    fortheevaluationofNLFairfoil.Flightcouldbeunsafeifaerody-

    namicforcesarenotstable.Flightcontrolproblemwouldarise if

    theaerodynamicderivativeschangeincruiserange.Inthepresent

    computation, the airfoils are computed at different AoAs to test

    robustness.Fig. 16 showspolarcurvesofthe QFPG> 0.0,0.2and

    0.4airfoils,whosecruisedragcoefficientsareclose.Fig. 17shows

    thecorresponding transition locations.Cleardragbucketscanbe

    seen on the curves of Fig. 16. The lower extent (Cl about 0.1

    to 0.2)

    of

    the

    drag

    bucket

    of

    QFPG > 0.0 airfoil,

    which

    is

    dom-

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    10/13

    Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164 161

    Fig. 16. Polar curves of three airfoils at Reynolds number 10.0M and 12.0M.

    Fig. 17. Transition locations varying with angles of attack.

    Fig. 18. Pressure distributions varying with angles of attack (Ma =0.739, Re = 10.0M).

    inated by the lower surface transition, is larger than the other

    twoairfoils;however, the liftcoefficientsmaynotappear in real

    flight. The upper extents of the drag buckets are quite different.

    Dragofthe QFPG> 0.0 airfoilshowsasuddenrisewhenCl > 0.4

    (AoA> 0.75),whichdemonstrates thatpremature transitionoc-

    cursontheuppersurface.AsshowninFig. 17,theuppersurface

    transitionlocationsof QFPG> 0.0 airfoilatAoAsfrom0.5 to1.0

    arenotstable,whichmeanspoorrobustness.Theothertwoairfoils

    show better performance near the lift coefficient ofcruise range

    (0.6

    >Cl> 0.4).

    The cause of the premature transition could be explained by

    looking into thepressuredistribution.Fig. 18 shows thepressure

    distributionsvaryingwithAoAs.WiththeAoAdeviatingfromthe

    designpoint,thepressuredistributioncannotalwayskeepthefa-

    vorablegradient. There willbean adverse regionon thesuction

    roof-top. The adverse pressure gradient should be the cause of

    premature transition.For the QFPG> 0.0 airfoil,adversepressure

    gradient is strong when AoA is less than 1; However, for the

    QFPG> 0.2 and0.4airfoils,theadversepressuregradientsonlyap-

    pear

    at

    0.5 and

    are

    much

    weaker.

    Besides

    the

    increase

    in

    friction

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    11/13

    162 Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164

    Fig. 19. Lift coefficient curves of the QFPG> 0.0 and QFPG> 0.2 airfoils.

    Fig. 20. Control airfoil locations of the NLF wing.

    Fig. 21. Control airfoils of the NLF wing.

    drag,theprematuretransitionalsochangestheslopeofliftcoef-

    ficient,asshowninFig. 19.Fromtheaboveresults,wecouldsee

    thatthe QFPG> 0.2 airfoilisthebestairfoilwithbothlowcruise

    dragandgoodrobustness.

    4.

    High-subsonic

    NLF

    wing

    design

    Inthissection,theQFPG> 0.2 airfoilisusedasthebaselineair-

    foil

    of

    high-subsonic

    wing.

    Based

    on

    the

    conclusions

    in

    Section 3,

    theFPG regionof the lowersurface isexpectedbeforeonly50%

    chord.Thebaselineairfoilisoptimizedagainwiththenewdesign

    constraints.Fig. 20showsthecontrolprofiles,whicharelocatedat

    theroot,kinkandtiplocations.Therelativethicknessesoftheroot,

    kinkandtiplocationsare15%,12%and 10%,respectively.Ruleof

    cosine[5] isusedtoobtainthe2-Dairfoilthickness.Spline-based

    surface is adopted to ensuresmoothness in thespan-wisedirec-

    tion.Thebaselineairfoilisinstalledatthekinklocation.Thewing

    isinstalledontoawing-bodyconfigurationtovalidatetheperfor-

    mance.Cutandtrymethod isemployed toadjusttherootand

    tip airfoils. At the beginning of wing design, the upper surfaces

    oftherootandtipairfoilsarecopiedfromthekinkairfoil,while

    thelowersurfacesarescaledfromthekinkairfoiltofitthethick-

    ness

    requirements.

    The

    kink

    airfoil

    is

    kept

    unchanged

    during

    the

    designprocess.Afterabout30 iterationsofmanualmodifications

    andCFDcomputations,anNLFwingisobtained.Fig. 21showsthe

    controlairfoilsof theNLFwing.Theuppersurfaceshapesof the

    airfoilsaresimilarwitheachother.Incontrast,thelowersurfaces

    arequitedifferentbecauseofthedifferencesoftherelativethick-

    ness.

    Fig. 22 showssurface pressure contour and pressure distribu-

    tions at the cruise condition Ma = 0.76, Cl = 0.42, Re= 1.6E7

    (based on mean aerodynamic chord). The computation grid in-

    volves15millionpoints,andtheY+ ofthefirstgridlayerisless

    than 1.0. The isolines of the pressure in the span-wise direction

    arealmoststraight,asshowninFig. 22(a).ClearFPGcanbeseen

    in the stream-wise direction, as in Fig. 22(b). Fig. 23 shows the

    skin

    friction

    contour

    and

    friction

    contours

    of

    the

    wing/body.

    Both

    theupperandlowersurfaceshavelargeareasofthelaminarflow.

    Performancesof the cruise Mach number0.76 and low Mach

    number0.2arealsovalidatedby theCFDmethod.Fig. 24 shows

    lift and lift-drag ratio curves of the two Mach numbers. At the

    cruiseMachnumber,theliftcoefficientremainslinearlyincreasing

    untilAoA=3.5 ,onwhichtheliftcoefficientisabout 0.77,thatis

    larger than1.3 timesof thecruise liftcoefficient 0.42.Moreover,

    the lift-dragpolardoesnot haveunexpectedfluctuation.The lift

    Fig. 22. Surfacepressurecontourandpressuredistributionsatfoursections(Ma=0.76,Cl = 0.42,Re=1.6E7).(Forinterpretationofthecolorsinthisfigure,thereaderis

    referred

    to

    the

    web

    version

    of

    this

    article.)

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    12/13

  • 7/25/2019 Supercritical Natural Laminar Flow Airfoil Optimization for Regional Aircraft Wing Design

    13/13

    164 Y. Zhang et al. / Aerospace Science and Technology 43 (2015) 152164

    [4] K.Biber,C.P.Tilmann,Supercriticalairfoildesignforfuturehigh-altitudelong-

    enduranceconcepts,J.Aircr.41 (1)(2004)156164.

    [5] U. Cella, D. Quagliarella, R. Donelli, B. Imperatore, Design and test of the

    UW-5006transonicnatural-laminar-flowwing,J.Aircr.47 (3)(2010)783795.

    [6] F.S.Collier,Anoverviewofrecentsubsoniclaminarflowcontrolflightexperi-

    ments,AIAAPaper1993-2987,1993.

    [7] K.Deb,A.Pratap,S.Agarwal,T.Meyarivan,Afastandelitistmultiobjective

    geneticalgorithm:NSGA-II,IEEETrans.Evol.Comput.6 (2)(2002)182197.

    [8] P.Edi,J.P.Fielding,Civil-transportwingdesignconceptexploitingnewtech-

    nologies,J.Aircr.43 (4)(2006)932940.

    [9] B.

    Eggleston,

    R.J.D.

    Poole,

    D.J.

    Jones,

    M.

    Khalid,

    Thick

    supercritical

    airfoils

    with

    lowdragandnaturallaminarflow,J.Aircr.24 (6)(1987)405411.

    [10] A.Filippone,Dataandperformancesofselectedaircraftandrotorcraft,Prog.

    Aerosp.Sci.36(2000)629654.

    [11] M.Fujino,DesignanddevelopmentoftheHondajet,J.Aircr.42 (3)(2005)

    755764.

    [12] M.Fujino,Y.Yoshizaki,Y.Kawamura,Natural-laminar-flow airfoildevelopment

    fortheHondajet,AIAApaper2002-2932,2002.

    [13] M.Fujino,Y.Yoshizaki,Y.Kawamura,Natural-laminar-flow airfoildevelopment

    foralightweightbusinessjet,J.Aircr.40 (4)(2003)609615.

    [14] G.A.Garzon,J.R.Matisheck,Supersonictestingofnaturallaminarflowonsharp

    leadingedgeairfoils.RecentexperimentsbyAerion corporation,AIAApaper

    2012-3258,2012.

    [15] B.J.Holmes,C.J.Obara,Observationsandimplicationsofnaturallaminarflow

    onpracticalairplanesurfaces,J.Aircr.20 (12)(1983)9931006.

    [16] R.D.Joslin,Overviewoflaminarflowcontrol,NASA/TP1998-208705,1998.

    [17] M.

    Khalid,

    D.J.

    Jones,

    A

    summary

    of

    transonic

    natural

    laminar

    flow

    airfoil

    de-velopment

    at

    NAE,

    Aeronautical

    note

    NAE-AN-65,

    NRC

    No.

    31608,

    1990.

    [18] B.M.Kulfan,AuniversalparametricgeometryrepresentationmethodCST,

    AIAApaper2007-62,2007.

    [19] T.Lammering,E.Anton,K.Risse,K.Franz,R.Hoernschemeyer,Gainsinfuelef-

    ficiency:multi-stopmissionsvs.laminaraircraft,AIAApaper2011-6885,2011.

    [20] K.A.Lane,D.D.Marshall,InverseairfoildesignutilizingCSTparameterization,

    AIAApaper2010-1228,2010.

    [21] J.D.Lee,A.Jameson,Natural-laminar-flow airfoilandwingdesignbyadjoint

    methodandautomatictransitionprediction,AIAApaper2009-897,2009.

    [22] J.Q.Luo,J.T.Xiong,F.Liu,Aerodynamicdesignoptimizationbyusingacontin-

    uousadjointmethod,Sci.China,Phys.Mech.Astron.57 (7)(2014)13631375.

    [23] F.R.Menter,M.Kuntz,R.Langtry,Tenyearsofindustrialexperiencewiththe

    SSTturbulencemodel,Turbul.HeatMassTransf.4(2003)625632.

    [24] F.R.Menter,R.B.Langtry,S.R.Likki,etal.,Acorrelation-basedtransitionmodel

    using localvariablesPart I:Model formulation,J.Turbomach.128(2006)

    413422.

    [25] F.R.Menter,R.B.Langtry,S.R.Likki,etal.,Acorrelation-basedtransitionmodel

    usinglocalvariablesPart II:Testcasesandindustrialapplications,J.Turbo-

    mach.128(2006)423434.

    [26] NLR

    7301

    Airfoil,

    Experimental

    data

    base

    for

    computer

    program

    assessment,AGARDRept.AR-138,NeuillysurSeine,France,1979.

    [27] A.Ni,Y.Zhang,H.Chen,AnimprovementtoNSGA-IIalgorithmanditsapplica-

    tioninoptimizationdesignofmulti-elementairfoil,ActaAerodyn.Sin.32 (2)

    (2014)252257.

    [28] H.L.Reed,W.S.Saric,Attachment-lineheatinginacompressibleflow,AIAApa-

    per2011-3242,2011.

    [29] D.M.Somers,Designandexperimentalresultsforanatural-laminar-flowair-

    foilforgeneralaviationapplications,TechnicalreportNASATP-1861,Langley

    ResearchCenter,1981.

    [30] T.Streit,G.Wichmann,F.Knoblauch,R.L.Campbell,Implicationsofconicalflow

    forlaminarwingdesignandanalysis,AIAApaper2011-3808,2011.

    [31] P.Sturdza,ExtensivesupersonicnaturallaminarflowontheAerion business

    jet,AIAApaper2007-685,2007.

    [32] G. Wang,H.H. Mian,Z.Y.Ye,J.D.Lee,Numerical studyof transitionalflow

    around NLR-7301 airfoil using correlation-based transition model,J. Aircr.

    51 (1)(2014)342349.

    [33] Y.

    Zhang,

    H.

    Chen,

    S.

    Fu,

    et

    al.,

    A

    practical

    optimization

    design

    method

    for

    transport

    aircraft

    wing/nacelle

    integration,

    Acta

    Aeronaut.

    Astronaut.

    Sin.

    33 (11)(2012)19932001(inChinese).

    [34] Y.Zhang,H.Chen,M.Zhang,etal.,Supercriticalwingdesignandoptimization

    fortransoniccivilairplane,AIAApaper2011-27,2011.

    [35] Y.Zhang,H.Chen,W.Zhang,etal.,Wing/engineintegratedoptimizationbased

    onNavierStokesequations,AIAApaper2012-1046,2012.

    [36] K.Zhao,Z.H.Gao,J.T.Huang,Robustdesignofnatural laminarflowsuper-

    criticalairfoilbymulti-objectiveevolutionmethod,Appl.Math.Mech.35 (2)

    (2014)191202.

    http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3130s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3132s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib34s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3234s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3136s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3131s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib32s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib35s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3135s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib36s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib37s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib31s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib33s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3133s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3335s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib39s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3336s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://refhub.elsevier.com/S1270-9638(15)00081-4/bib3139s1http://re