supporting information quantitative analysis of step ... · 3 3. data evaluation (mmd fitting) the...

21
1 Supporting Information Quantitative Analysis of Step-Growth Polymers by Size Exclusion Chromatography Josef Brandt, Naomi L. Haworth, § Friedrich Georg Schmidt, Brigitte Voit , Michelle L. Coote,* § Christopher Barner-Kowollik,* Albena Lederer* Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden and Technische Universität Dresden, Organische Chemie der Polymere, 01062 Dresden, Germany Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, and Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany § ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia Evonik Industries AG, Paul-Baumann-Strasse 1, 45764 Marl, Germany Table of Contents 1. Synthetic procedure ................................................................................................................ 2 2. TD SEC Analysis scheme ......................................................................................................... 2 3. Data evaluation (MMD fitting) ............................................................................................... 3 4. Further chromatograms .......................................................................................................... 6 5. Error estimation....................................................................................................................... 7 6. Ab initio quantum chemical calculations............................................................................... 9 7. References .............................................................................................................................. 20

Upload: duongxuyen

Post on 12-Aug-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

1

Supporting Information

Quantitative Analysis of Step-Growth Polymers by Size Exclusion Chromatography

Josef Brandt,† Naomi L. Haworth,§ Friedrich Georg Schmidt, Brigitte Voit†, Michelle L. Coote,*§ Christopher Barner-Kowollik,*‡ Albena Lederer*†

†Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden and Technische

Universität Dresden, Organische Chemie der Polymere, 01062 Dresden, Germany

‡Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie,

Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, and Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

§ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian

National University, Canberra, ACT 2601, Australia

Evonik Industries AG, Paul-Baumann-Strasse 1, 45764 Marl, Germany

Table of Contents

1. Synthetic procedure ................................................................................................................ 2

2. TD SEC Analysis scheme ......................................................................................................... 2

3. Data evaluation (MMD fitting) ............................................................................................... 3

4. Further chromatograms .......................................................................................................... 6

5. Error estimation ....................................................................................................................... 7

6. Ab initio quantum chemical calculations ............................................................................... 9

7. References .............................................................................................................................. 20

Page 2: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

2

1. Synthetic procedure

For the preparation of the DA furan-maleimide 0.88 g of the furan monomer (3.11 mmol) and

1.3 g of the maleimide monomer (3.11 mmol) were dissolved in chloroform in a closed flask.

After 17 h of reaction at 70 °C the solvent was evaporated and the polymer was used as

obtained.

2. TD SEC Analysis scheme

The TD SEC experiments were carried out on the integrated PL-GPC 220 high temperature

chromatograph (Agilent Technologies, US) that allows performing SEC experiments at

temperatures up to 220 °C. DMSO (+ 1 g/L BHT) was employed as solvents at a flow rate of

1 mL/min with a ResiPore column (300 x 7.5 mm, 3 µm, Agilent Technologies, US) at

temperatures from 70 to 120 °C. For the measurements, 2.5 mg of the DA furan-maleimide

were dissolved in 1 mL DMSO and the sample vial was then placed into the autosampler (at

the same temperature as the column oven). After the desired time intervals a sample was

drawn for acquiring the MMD (see Figure S1). The data of the dRI detector was then exported

as an ASCII file and processed manually. After baseline correction the self-calibration was

established as described in the manuscript (see Figure 2 A and B). Then, the fitting of the

molar mass distribution was performed, as described in detail in the following chapter.

Figure S1: Schematic representation of the TD SEC analysis scheme. The DA furan-maleimide is kept in the autosampler at a desired temperature for letting the rDA reaction occur. After desired time intervals a sample is drawn and injected and measured at the same temperature. Figure adapted from Ref.

1, with

permission of WILEY VCH (2014).

Page 3: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

3

3. Data evaluation (MMD fitting)

The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

was carried out in Scilab 5.5.1.2 In the following section the script is generally described; the

entire script can be found at the end of this section.

At first the dRI trace is read from a file that contains lg M in the first column and the

normalized dRI trace in the second column (point as decimal separator). Next, the molar

masses of both monomers are specified (m1, m2) and a first estimate for the bonding

probability is made (p0). With these informations an array of degrees of polymerization up to

a maximum DPn is generated (MaxDPn) and for each DPn the weight fraction wDPn is

calculated according to Equation 1: 3–5

𝑤𝐷𝑃𝑛= 𝑝(𝐷𝑃𝑛−1) ∙ (1 − 𝑝) ∙ 𝑚(𝐷𝑃𝑛) Equation 1

Thus, the expected MMD for p0 is derived and eventually normalized. The script subsequently

takes each individual wDPn and searches the corresponding value from the experimentally

acquired MMD. Summing the differences between the predicted and experimentally acquired

MMDs gives the overall error and, thus, represents the quality of the fit. In an optimization

procedure p is varied until that error becomes minimal.

One problem is that the experimental MMD (i.e., the chromatogram) usually also contains

solvent peaks that contribute to the error, too. Therefore a “weight function” is introduced

that allows blending out unwanted parts of the chromatograms. It works by multiplying the

error at each DPn with a value that is obtained from a Gauss-type profile with specified center

and width (normalized from 0 to 1).

In Figure S2A, a screenshot from Scilab is shown where the script was run for a furan-

maleimide DA polymer. The figure shows where to input the relevant parameters and how the

results are displayed. In Figure S2B the effect of the weight profile is shown: It demonstrates

that regions outside the actual MMD are neglected in the optimization procedure. The

respective region can be adjusted with the center and width of the weight profile. Placing less

weight onto the lowest molar mass peaks is also advisable as the dRI signal does not

necessarily represent the concentration of the respective monomers/oligomers.6,7

Page 4: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

4

Figure S2: A: screenshot from the Scilab application, indicating where the relevant information have to be specified and where the output of the optimized p and the corresponding error is displayed. Furthermore, a graph is prepared showing the chromatogram jointly with the optimized MMD and the employed weight function. B: Representation of the effect of the weight function: The solvent peaks do not impact on the calculations as they are hidden by the weight function.

The script that can be copied into Scilab:

clear;

Data = fscanfMat('FILENAME.txt', "%lg"); //Name of Chromatogram file dRI in col. 1, lg m in col. 2!!

//Chemical Data; molar mass of monomers

m1 = 282;

m2 = 418;

p0 = 0.5; // first guess of p

ScaleFactor = 1; // Compensate for "non ideal" normalization of the chromatogram (the calculated MMD

is scaled by this value)

MaxDPn = 160; // Up to which DPn the MMD is being generated

//Data Weight // With these information the experimental MMD is weighted by a GAUSS profile curve

with indicated center and width. The "weight profile" can be generated for visual observation by setting

HighRes to 1.

Center = 3.2;

Width = 0.3;

HighRes = 1; // set to 1 for HighRes-WeightCurve (for color gradient plots in Origin), otherwise 0.

//Optimization Tuning

FunctionEvaluations = 200;

MaxIterations = 1000;

RelTolerance = 10;

x = [p0];

//Create Results Array

//DPn

Results = ones(MaxDPn)';

for i=1:MaxDPn-1

A

B

Page 5: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

5

Results(i+1, 1) = i;

Results(i+1, 3) = 1;

end

//lg M

Results(1, 2) = log10(m1);

Results(2, 2) = log10(m2);

for i=3:MaxDPn

Results(i, 2) = log10(Results(i, 1)*(m1 + m2)/2)

end

//Determine Weight Function

for i=1:MaxDPn

Weight(i) = exp(-(Results(i, 2) - Center)^2/(2*Width^2));

end

//High-Res Weight Function

if HighRes == 1 then

for i=1:(length(Data)/2)

HighResWeight(i) = exp(-(Data(i, 1) - Center)^2/(2*Width^2));

end

end

function [f, index]=CalcError(x, index)

p = x(1);

if p > 0.99 then

p = 0.99;

elseif p < 0.01 then

p = 0.01;

end

//Create Results Array

//DPn

Results = ones(MaxDPn)';

for i=1:MaxDPn-1

Results(i+1, 1) = i;

Results(i+1, 3) = 0;

end

//lg M

Results(1, 2) = log10(m1);

Results(2, 2) = log10(m2);

for i=3:MaxDPn

Results(i, 2) = log10(Results(i, 1)*(m1 + m2)/2)

end

//Calculate weight distribution

for i=1:MaxDPn

Results(i, 3) = p^(Results(i, 1)-1)*(1-p)*(Results(i, 1)*(m1 + m2)/2);

end

//normalize weight distribution

Maximum = max(Results(:,3));

Results(:,3) = ScaleFactor * Results(:,3) / Maximum;

clear Maximum

//Calculate Error or current parameter set

for i=1:MaxDPn

Page 6: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

6

temp = abs(Data(:, 1) - Results(i, 2))

[j, location] = min(temp);

clear temp j;

Error(i, 1) = abs(Data(location, 2) - Results(i, 3))*Weight(i);

end

f = sum(Error);

endfunction

[xopt, fval] = fminsearch ( CalcError , [p0] );

nm = neldermead_new ();

nm = neldermead_configure(nm, "-numberofvariables", 1);

nm = neldermead_configure(nm,"-function",CalcError);

nm = neldermead_configure(nm,"-maxfunevals",FunctionEvaluations);

nm = neldermead_configure(nm,"-maxiter",MaxIterations);

nm = neldermead_configure(nm,"-tolxrelative",RelTolerance*%eps);

nm = neldermead_configure(nm,"-x0",x);

nm = neldermead_search(nm);

nm

xopt = neldermead_get(nm,"-xopt");

nm = neldermead_destroy(nm);

p = xopt(1);

//Calculate optimized weight distribution

for i=1:MaxDPn

Results(i, 3) = p^(Results(i, 1)-1)*(1-p)*(Results(i, 1)*(m1 + m2)/2);

end

//normalize weight distribution

Maximum = max(Results(:,3));

Results(:,3) = ScaleFactor * Results(:,3) / Maximum;

clear Maximum

disp(fval, "Error");

disp(p, "optimized p");

clf();

plot2d(Data(:,1), Data(:,2));

plot2d(Results(:,2), Results(:,3), 5);

plot2d(Results(:,2), Weight(:, 1), 3);

a = gca(); // Get Current Axis (gca)

a.data_bounds(1,1) = 2; //xmin

a.data_bounds(1,2) = -0.1; //ymin

a.data_bounds(2,1) = 4.7; //xmax

a.data_bounds(2,2) = 1.1*ScaleFactor; //ymax

4. Further chromatograms

In Figure S3 to Figure S5 further chromatograms and their molar mass fits are shown:

Page 7: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

7

Figure S3: Acquired dRI and calculated chromatograms of the DA furan-maleimide at 90 °C.

Figure S4: Acquired dRI and calculated chromatograms of the DA furan-maleimide at 100 °C.

Figure S5: Acquired dRI and calculated chromatograms of the DA furan-maleimide at 120 °C.

5. Error estimation

In order to estimate the error of the determined rate coefficients and the resulting EA the

accuracy of the MMD fitting has to be taken into account. If the quality of the chromatogram

is good and the MMD spans a relatively large molar mass range p is determined with an

Page 8: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

8

accuracy of ±0.01. The propagation of the error into the determination of the kinetic

parameters k and EA was assessed by statistically varying the derived p in the range of ±0.01.

Plotting the varied values in a first order kinetic plot gives the image shown in Figure S6A.

There, five random alterations (in total, ten variations were performed but only five are

displayed) of the input data are shown and the resulting fits are displayed. The resulting

slopes represent a deviation of about 5 %. In Figure S6B, the experimentally obtained k values

were varied 10 times (only five variations are shown) randomly by 5 % and again the effect on

the determined EA can be studied. In our example, the overall confidence of the determined EA

value is ±3 %, hence, EA = 32.9 ± 1 kJ/mol.

Figure S6: A: An error of 1 % in p leads to a 5 % uncertainty in the rate coefficient k. B: That error results in an error of approx. 3 % in EA. The indicated values are averages of 10 individual tests.

Page 9: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

9

6. Ab initio quantum chemical calculations

Figure S7: The DA reaction of furan and maleimide dilinkers.

In order to obtain accurate predictions of the Gibbs free energy of the reaction, and hence the T(20%

debonding), it is necessary to identify the molecular conformations adopted by each of the reactants

and the Diels-Alder adduct. To compare the stabilities of the possible conformations, geometries were

optimised for each conformation of interest, harmonic vibrational frequencies calculated and absolute

energies determined using M05-2X density functional8 in combination with the 6-31G* basis sets

9,10 and

the SMD solvation model11

with dimethylsulfoxide solvent. Partition functions and hence entropies and

thermal corrections to the energies were calculated using standard textbook formulae for the statistical

thermodynamics of an ideal gas under the harmonic oscillator rigid rotor approximation (T = 298K).

Justification for the use of solution phase properties for this purpose can be found in reference.12

Vibrational frequencies were scaled using recommended scaling factors for the calculation of zero point

energies, thermal corrections and entropies.13

Approximate M05-2X solution-phase Gibbs free energies

(G°soln) could hence be calculated and compared to identify the most stable conformation for each

species.

For 1, all possible conformations were considered which have: bond a with the N-H group aligned with

a C-C bond, bond b with its substituents staggered, and bond c with the N-H group perpendicular to

bond b. Potential conformations for the connections between the ester groups and the furan moieties

(bonds d and f and bonds e and g) were considered separately, then the results of the three studies

combined to identify the overall lowest energy conformation for 1. This conformation was found to be

curled in on itself, with the two furan moieties interacting with each other. For 2, two conformations

were considered: with both maleimide groups rotated in the same direction with respect to the phenyl

Page 10: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

10

ring, and with these groups rotated in opposite directions. These two conformations were found to be

essentially degenerate. The conformational information derived for bonds a to g of 1 was assumed to

apply directly to 3. The “curled” nature of the most stable conformation of 1, however, means that only

one surface of one of the furan moieties (the furan on the “short” side) is readily accessible for reaction

with 2. In a real step-growth polymer synthesised from the two reactants, however, both furan groups

will be involved in linkages and the region between them is far more likely to be extended. As the

intention here is to model the debonding of such a polymer, we considered two possible sets of

conformations for bonds a to g of 3: those deriving from the most stable conformation of 1, as well as

those from the most stable conformation of 1 which had both arms extended. It was known from

previous studies of maleimide-furan reactions that the endo adduct is favoured. Hence, only two

possible structural isomers of the product were considered, with dienophile attaching in an endo

orientation to each of the accessible furan surfaces. For each of these isomers, four possible conformers

of the reactant 2 component were considered (the two relative orientations for the maleimide groups,

with the methyl group directed towards or away from the centre of the molecule).

In order to calculate equilibrium constants and T(20% debonding), more accurate values of G°soln were

determined at a range of temperatures for the selected conformations of each species. These were

obtained using accurate Gibbs free energies calculated in the gas phase, which were combined with free

energies of solvation via standard thermodynamic cycles. The large size of this molecules involved in

this reaction meant that it was not possible to perform highly accurate calculations on the whole

system. Instead, an isodesmic approach was used where the high-level composite G3(MP2) level of

theory14

was used to model a smaller system describing the critical bond forming reaction (the “core”,

see Figure S8), while effects of the remainder of the system were evaluated at a lower level of theory,

M06-2X/G3MP2Large.

Figure S8: The “core” of the furan-maleimide DA system that was modelled at the G3(MP2) level.

The total energy of each species could then be calculated via equation 1:

Ehigh-level(full system) = Elow-level(full system) + Ehigh-level(core) – Elow-level(core) (1)

For this purpose, all geometries were re-optimised in the gas phase using M06-2X/6-31G*, and gas phase

vibrational frequencies were also calculated. Gas phase partition functions and hence entropies and

thermal corrections to the energies were determined at the temperatures of interest, as described

above, and combined with the Ehigh-level(full system) energies to give G°gas(T). Temperature dependent

free energies of solvation ΔGsolv(T)) in dimethylsulfoxide were determined based on the M05-2X

solution phase geometries using COSMO(RS)15,16

. It was also important to consider the geometric

Page 11: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

11

relaxation associated with solvation; this was approximated as the energy difference between the

solution and gas phase geometries, calculated using M06-2X/6-31G* in the solution phase (Erelax).17,18

Solution phase free energies could hence be calculated according to equation 2:

G°soln(T) = G°gas(T) +ΔGsolv(T) – Erelax + ΔG°conc(T) (2)

where ΔG°conc(T) is a phase change correction.19

Finally, the equilibrium constant for the reaction could be calculated as a function of temperature, and

hence the %debonding could be obtained using equation (3)20

%𝑑𝑒𝑏𝑜𝑛𝑑𝑖𝑛𝑔 = (1 −2𝐾[𝐴]0+1−√4𝐾[𝐴]0+1

2𝐾[𝐴]0) × 100% (3)

where [A]0 is the starting concentration of the Diels-Alder product = 0.011M in this case. Solving this

equation, T(20% debonding) could be determined as the temperature at which log(K) = 3.3. In the

present work we have considered two isomers of the Diels-Alder product (3a and 3b): for simplicity we

average the %debonding results obtained for each isomer –this amounts to assuming they are present in

equal concentrations.

All calculations were carried out using the Gaussian 0921

, Molpro 2012.122,23

or ADF 2014.0124

software

packages on the NCI National Facility in Canberra, Australia.

Page 12: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

12

Results

In the initial conformational search, three low energy structures of 3 were identified for study at the

higher level of theory: the curled structure, as well as two extended conformations, with 2 reacted with

either the short or long “arm” of 1 (Figure S9). Curled and extended versions of 1 were also considered.

In all cases, the structure studied had been predicted to be the lowest free energy conformation of its

type.

Although the initial conformational searches showed curled conformations to have the lowest free

energies, the high level G°soln calculations predicted the extended conformations of both species to be

the most stable. This was entirely due to the much larger free energies of solvation predicted for

extended conformations. Reaction energies, and hence equilibrium constants and debonding

temperatures, were therefore calculated for the cleavage of the two extended isomers of 3 to give 2 plus

the extended conformer of 1.

3a Reaction on short “arm”

3b Reaction on long “arm”

Figure S9: Representation of the two DA cycloadducts after reaction on the short or long “arm” of the

furan monomer, respectively.

Page 13: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

13

Calculated key thermodynamic parameters and equilibrium constants in DMSO as a function of temperature for dissociation of the two isomers of 3, as well as the resulting temperatures at which log K = 3.3:

Table S1: Results of reaction 3a → 1 + 2 (TlogK=3.3 = 42°C)

Table S2: Results of reaction 3b → 1 + 2 (TlogK=3.3 = 33°C)

T (oC ) log K G*soln H(g) S(g) G*solv %Debonding

kJ mol-1 kJ mol

-1 J mol

-1 K

-1 kJ mol

-1

0 4.7 -24.5 -76.9 -218.2 -1.1 4.2

25 3.6 -20.5 -77.0 -218.4 -1.7 14.0

50 2.7 -16.4 -77.0 -218.5 -2.2 34.5

75 1.9 -12.4 -77.0 -218.5 -2.7 64.1

100 1.2 -8.3 -77.0 -218.4 -3.2 86.8

125 0.6 -4.2 -76.9 -218.3 -3.6 96.0

150 0.0 -0.1 -76.8 -218.0 -4.1 98.9

175 -0.5 4.0 -76.7 -217.7 -4.5 99.7

200 -0.9 8.0 -76.5 -217.4 -4.9 99.9

T (oC ) log K G*soln H(g) S(g) G*solv %Debonding

kJ mol-1 kJ mol

-1 J mol

-1 K

-1 kJ mol

-1

0 5.0 -26.4 -78.5 -214.9 0.0 3.0

25 3.9 -22.5 -78.6 -215.1 -0.6 10.1

50 3.0 -18.5 -78.6 -215.1 -1.1 25.9

75 2.2 -14.5 -78.6 -215.1 -1.6 52.3

100 1.5 -10.6 -78.6 -215.0 -2.1 78.5

125 0.9 -6.6 -78.5 -214.8 -2.6 92.5

150 0.3 -2.6 -78.4 -214.6 -3.0 97.9

175 -0.2 1.4 -78.3 -214.3 -3.5 99.3

200 -0.6 5.4 -78.1 -213.9 -3.9 99.7

Page 14: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

14

Table 3: Components of Solution Free Energy Calculations– values in Eh unless otherwise specified:

Species

S298

/ J mol-1

K-1

H298

-H0 ZPVE HLC

E [M05-2X/

6-31G* SMD,

gas geom]

E [M05-2X/

6-31G* SMD,

sol geom]

E [MP2/

6-31G*]

E [MP2/

G3MP2

Large]

E [CCSD(T)/

6-31G*]

E [M06-2X/

G3MP2

Large]

1 879.1 0.03176 0.49383 -0.77187 -1416.70899 -1416.70942 -1417.18093

2 578.4 0.01877 0.22020 -0.48948 -987.67023 -987.67104 -987.97913

3a 1242.4 0.04932 0.71879 -1.26134 -2404.41207 -2404.41349 -2405.18469

3b 1239.0 0.04930 0.71894 -1.26134 -2404.41236 -2404.41396 -2405.18420

4 296.5 0.00571 0.09555 -0.15061 -269.22708 -269.22711 -268.48295 -268.78631 -268.55186 -269.31723

5 449.8 0.01284 0.17277 -0.32946 -629.55585 -629.55620 -627.88085 -628.54117 -628.02227 -629.75188

6 543.8 0.01737 0.27386 -0.48006 -898.81683 -898.81731 -896.40303 -897.36552 -896.60989 -899.09484

Species E

el

[G3MP2,CC] E

0

[G3MP2,CC]

H298

[G3MP2,CC]

Ggas (298K)

[G3MP2,CC] Gsolv (298K)

[COSMO(RS)]

Erelax [M06-2X/

6-31G*, SMD]

G°sol (298K)

[G3MP2,CC]

1 -1416.71891 -1416.22507 -1416.19332 -1416.29314 -0.04578 -0.00042 -1416.33548

2 -986.90983 -986.68964 -986.67087 -986.73655 -0.03130 -0.00080 -986.76402

3a -2403.66222 -2402.94344 -2402.89411 -2403.03520 -0.07730 -0.00142 -2403.10805

3b -2403.66174 -2402.94279 -2402.89350 -2403.03420 -0.07772 -0.00159 -2403.10731

4 -268.85521 -268.75967 -268.75396 -268.78763 -0.00718 -0.00003 -268.79176

5 -628.68259 -628.50982 -628.49698 -628.54806 -0.01902 -0.00034 -628.56372

6 -897.57238 -897.29852 -897.28085 -897.34261 -0.02581 -0.00049 -897.36492

Page 15: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

15

Molecular Geometries:

1

1\1\GINC-R1101\FOpt\RM062X\Gen\C22H30N2O6\ROOT\05-Feb-2016\0\\# M062X/

Gen 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=348966092

8\\25-reopt\\0,1\C,9.7586414794,-0.8975263823,-0.4731301051\C,9.503546

4437,-0.5085374744,0.8015821863\C,8.0781085666,-0.40515365,0.898431198

3\C,7.5871366346,-0.7416803738,-0.3230778853\O,8.6069275106,-1.0463905

174,-1.1667826433\C,6.2120223726,-0.8388642809,-0.868672814\O,6.017677

3861,0.2335076803,-1.7983700284\C,4.7877147596,0.2518822937,-2.3653058

033\O,3.9033769317,-0.5350973596,-2.0979663956\N,4.6954338876,1.258807

0053,-3.2692135791\C,3.4345374096,1.5406004244,-3.9303226742\C,2.41191

98587,2.2530049537,-3.0395056509\C,2.9393409823,3.6015303806,-2.547305

7955\C,1.9362362812,4.3681097876,-1.6681923757\C,0.5858532735,4.451984

6682,-2.4058046931\C,0.0147779091,3.1477130455,-2.9968762416\C,1.10829

97057,2.4421128351,-3.8194799477\C,2.4415255265,5.8020945585,-1.462823

9398\C,1.8239991185,3.7169494181,-0.2815894296\C,-0.5841134247,2.20791

54609,-1.9415180574\N,-1.0652834898,3.593463418,-3.8951076561\C,-1.810

7399424,2.7598558929,-4.661011167\O,-1.6308140637,1.5695027514,-4.8248

753486\O,-2.8114188779,3.453371664,-5.2609880308\C,-3.6559363375,2.652

2240959,-6.094673779\C,-4.6905631656,3.5299664633,-6.6927200771\O,-5.6

497731757,4.0085027157,-5.8585555719\C,-6.4821566664,4.7728862192,-6.6

022356445\C,-6.0837151036,4.7932191349,-7.8991458951\C,-4.9068862628,3

.978381473,-7.9569974235\H,10.6658058799,-1.1049037226,-1.0190130878\H

,10.2323401044,-0.3193097331,1.5753225413\H,7.4944728419,-0.117778428,

1.7609663084\H,5.4819671164,-0.76523245,-0.0586585051\H,6.0528975533,-

1.7903150134,-1.3845840919\H,5.473236218,1.8971312576,-3.3400443173\H,

3.0169790436,0.5893609849,-4.2742409744\H,3.6529049815,2.1504957723,-4

.814352506\H,2.2367834109,1.5883636517,-2.1833148482\H,3.178162118,4.2

196469331,-3.4283926707\H,3.8754611407,3.4661261247,-1.9890310809\H,0.

7261449832,5.1388686842,-3.2537473656\H,-0.1652534329,4.9102579707,-1.

7455002934\H,1.3121602216,3.0624592907,-4.7050095432\H,0.7250712846,1.

4820642607,-4.1784644907\H,2.5385994864,6.3290235095,-2.4184264968\H,3

.4230606633,5.798172943,-0.9759953343\H,1.7535572559,6.37263664,-0.828

1591137\H,1.64582829,2.6413264103,-0.3235835961\H,1.0112869049,4.17095

7526,0.2966986199\H,2.756213797,3.8701066443,0.2736979554\H,0.18437536

56,1.7097415833,-1.3489607074\H,-1.1685050912,1.4335273755,-2.44418727

09\H,-1.2391274319,2.763538642,-1.2621579721\H,-1.4215128898,4.5336414

417,-3.789936309\H,-4.1054239128,1.8588829317,-5.4900369789\H,-3.06295

82246,2.1829563106,-6.8837359896\H,-7.3025632205,5.2285121348,-6.06998

77922\H,-6.5624156725,5.3184916829,-8.7118994694\H,-4.3001783124,3.756

063339,-8.822806351\\Version=ES64L-G09RevD.01\State=1-A\HF=-1416.68113

58\RMSD=4.088e-09\RMSF=2.289e-06\Dipole=0.5308153,1.5579949,0.1411671\

Quadrupole=10.180259,-12.5848379,2.4045789,-7.3656349,8.8458356,-3.179

843\PG=C01 [X(C22H30N2O6)]\\@

2

1\1\GINC-R41\FOpt\RM062X\Gen\C15H10N2O4\ROOT\04-Feb-2016\0\\# M062X/Ge

n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=2684354560\

\hhh\\0,1\C,-3.3936029315,1.8987924237,0.2714209348\C,-3.3378055955,0.

6263568624,-0.1087223439\C,-1.9941102259,2.4274045635,0.4065976445\N,-

1.1389774747,1.3613923355,0.0789284817\C,-1.8974118418,0.2234284284,-0

.2457818721\O,-1.4677059206,-0.8541223755,-0.5663159345\O,-1.661911424

4,3.538753085,0.7281508059\C,0.2811329798,1.4199807297,0.0793390845\C,

0.924845541,2.57884511,-0.3485870654\C,2.3162891818,2.6743829513,-0.34

26028347\C,3.0457705961,1.5517056893,0.0664843521\C,2.4041469003,0.391

5026197,0.4942477535\C,1.0200769483,0.3210841473,0.5175757426\N,4.4686

812622,1.5844370953,0.0768082567\C,5.2787930044,1.8135385245,-1.042406

Page 16: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

16

2899\C,6.6976876025,1.6900870827,-0.5605248139\C,6.6874236542,1.377965

6656,0.7324520667\C,5.2607633956,1.2743621575,1.1946517138\O,4.8972039

458,2.0520886515,-2.1593472272\O,4.8572003517,0.9781320356,2.288405988

5\C,2.9852651204,3.9550483509,-0.7639103691\H,-4.2521077157,2.52564413

18,0.471893867\H,-4.1380845194,-0.0737275747,-0.3076607135\H,0.3369066

528,3.4321774818,-0.665637404\H,2.9992919257,-0.4528141311,0.824434090

4\H,0.5195827123,-0.5781187852,0.8527390179\H,7.5352986135,1.837600100

9,-1.2291196189\H,7.5141061459,1.2036973615,1.4081515977\H,2.293626891

1,4.7945400608,-0.6653739158\H,3.3215909062,3.8960331417,-1.8029004557

\H,3.8643853175,4.1609010786,-0.1452635397\\Version=ES64L-G09RevD.01\S

tate=1-A\HF=-987.6427923\RMSD=7.866e-09\RMSF=8.966e-06\Dipole=-0.04187

23,0.0943168,-0.0397286\Quadrupole=26.1407387,-10.1492705,-15.9914683,

1.3596903,0.2404978,-2.8607315\PG=C01 [X(C15H10N2O4)]\\@

3a

1\1\GINC-R69\FOpt\RM062X\Gen\C37H40N4O10\ROOT\07-Mar-2016\0\\# M062X/G

en 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=3489660928

\\25hhh-25minext-short.M062X\\0,1\C,-9.1452941078,-14.0560015153,0.312

4558329\C,-8.4903019044,-13.7642886638,1.4645368849\C,-8.3834483276,-1

2.3362370869,1.499851336\C,-8.9834881506,-11.8805320168,0.3690489865\O

,-9.4540460762,-12.9244030332,-0.3612664916\C,-9.2095504181,-10.521137

4367,-0.1777452893\O,-8.3670015519,-10.3492158656,-1.3234917873\C,-8.4

552818146,-9.1226474154,-1.8910437173\O,-9.1493968578,-8.2234296131,-1

.4638335048\N,-7.6716569925,-9.0525383499,-2.9959722594\C,-7.510140443

6,-7.7962991944,-3.7048161074\C,-6.6114869625,-6.787691103,-2.98202808

46\C,-5.2047443452,-7.3457009732,-2.7624428638\C,-4.2574575253,-6.3588

664643,-2.0588970268\C,-4.2908560604,-5.011732817,-2.8068811526\C,-5.6

731852419,-4.4127832738,-3.1342219657\C,-6.5504514565,-5.4920000206,-3

.7946490868\C,-2.8225201148,-6.8961051156,-2.138196047\C,-4.6178663174

,-6.229131291,-0.571317962\C,-6.3744607566,-3.7897218803,-1.9197288794

\N,-5.3904239562,-3.3454010548,-4.1111607922\C,-6.3444905598,-2.595405

5727,-4.7123817444\O,-7.5461037591,-2.7540899569,-4.646449854\O,-5.763

4030059,-1.6093986784,-5.4471619119\C,-6.6845899194,-0.7863376153,-6.1

495542004\C,-5.8965315523,0.2629944354,-6.8797959887\O,-5.3419940074,1

.2573266596,-6.0195670222\C,-4.6603524233,1.9990010862,-7.0253852427\C

,-3.9059108327,0.9102210307,-7.7752223962\C,-4.6789805038,-0.171253247

1,-7.6885359695\H,-9.4570432523,-14.9787178832,-0.1515848247\H,-8.1289

120636,-14.4707154123,2.1966441871\H,-7.9209556568,-11.7278653037,2.26

35019224\H,-8.9676844664,-9.7690073509,0.5772831521\H,-10.2519434682,-

10.3790784191,-0.4781362042\H,-7.0737627979,-9.840274849,-3.1949569926

\H,-8.5039549587,-7.3610979493,-3.8478104032\H,-7.0988781488,-8.025581

5086,-4.6944209169\H,-7.0888323094,-6.5931219013,-2.0126998964\H,-4.77

85020325,-7.6011779511,-3.7465289511\H,-5.247862339,-8.2768758397,-2.1

817197146\H,-3.7868109774,-5.1688689049,-3.7721030293\H,-3.6958825085,

-4.2699601483,-2.2536775302\H,-6.1208097602,-5.7133101855,-4.783072961

3\H,-7.5536194241,-5.0883688166,-3.9613943395\H,-2.4978794269,-7.00806

76848,-3.1785337541\H,-2.7511526736,-7.8758152549,-1.6529961919\H,-2.1

226008882,-6.2194108365,-1.6343482819\H,-5.676204729,-6.0268767135,-0.

3993038378\H,-4.0402648539,-5.4258629404,-0.099913874\H,-4.3776984306,

-7.1634668589,-0.0515967723\H,-6.7581144057,-4.5455149789,-1.233110165

6\H,-7.2231796015,-3.1940789115,-2.2645603875\H,-5.6844041111,-3.14085

43395,-1.3701787738\H,-4.4432034096,-2.9999764912,-4.185759573\H,-7.38

5214876,-0.3170105816,-5.4519723409\H,-7.2579344472,-1.380184793,-6.87

01833622\H,-4.0905493652,2.8208392897,-6.5978068473\H,-2.9897719651,1.

0517636857,-8.3348792791\H,-4.5600779128,-1.1416569679,-8.1542394195\C

,-5.6382736771,0.4811157583,-17.8637556566\C,-4.6334085997,-0.33409641

75,-17.5599855314\C,-6.2101535799,1.0419429067,-16.5932114508\N,-5.454

2275916,0.4886145739,-15.5451027005\C,-4.4671972275,-0.3647734568,-16.

Page 17: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

17

0675905214\O,-3.6547974977,-0.9891603482,-15.435986356\O,-7.1307618288

,1.8094367687,-16.4837728051\C,-5.6530308181,0.7533053466,-14.16296824

49\C,-6.9460071023,0.9112467826,-13.6691715334\C,-7.1732307804,1.18663

84697,-12.3208351665\C,-6.060839985,1.26482456,-11.4761493542\C,-4.767

0657096,1.1054140688,-11.9660357707\C,-4.551841033,0.8608195155,-13.31

30357444\N,-6.23244013,1.520493458,-10.0831850149\C,-5.5561914805,2.54

88675928,-9.4035214132\C,-5.8799092052,2.4245613782,-7.9275320384\C,-6

.7692791563,1.1827900469,-7.8137056869\C,-6.9188897936,0.6556047342,-9

.2240580491\O,-4.8239288701,3.351366695,-9.9229835885\O,-7.4881431388,

-0.3527446048,-9.5633402276\C,-8.5770106258,1.384911246,-11.8164490941

\H,-6.0431157919,0.752793345,-18.8293668848\H,-3.9917531467,-0.9152502

547,-18.2085759933\H,-7.7900353719,0.8421632943,-14.3452947559\H,-3.92

87552406,1.1886255707,-11.2828949497\H,-3.5478855542,0.7383913848,-13.

698221755\H,-6.3336200395,3.3437974378,-7.5540959428\H,-7.7468773199,1

.361714892,-7.3593668253\H,-9.2400631809,1.6677510477,-12.6368647073\H

,-8.6147936269,2.1727528199,-11.057761177\H,-8.9551976903,0.4671562321

,-11.3570523895\\Version=ES64L-G09RevE.01\State=1-A\HF=-2404.3566758\R

MSD=7.986e-09\RMSF=1.769e-06\Dipole=1.5471955,-0.848536,-0.4170414\Qua

drupole=-20.1731776,-3.1130731,23.2862507,-5.9303863,6.7868116,-7.6978

423\PG=C01 [X(C37H40N4O10)]\\@

3b

1\1\GINC-R100\FOpt\RM062X\Gen\C37H40N4O10\ROOT\08-Mar-2016\0\\# M062X/

Gen 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=348966092

8\\25hhh-1a.M062X\\0,1\C,-3.7120181407,-4.2547682924,0.2784921669\C,-3

.6004189582,-3.2226328091,1.3895717938\C,-2.717736549,-2.3281268042,0.

9462120631\C,-2.2858865727,-2.8283664842,-0.4274988019\O,-2.4002382583

,-4.2432368922,-0.2757411685\C,-0.9517211538,-2.3948290227,-0.96418952

76\O,0.0092868199,-2.5694305586,0.0687126767\C,1.2866400648,-2.3116844

061,-0.3115601223\O,1.6018028179,-1.9556770195,-1.4270729924\N,2.13926

74215,-2.515000342,0.7206147722\C,3.5593205077,-2.2536118573,0.5666560

726\C,3.9153759916,-0.7640265674,0.5630119024\C,3.5046322903,-0.083927

0962,1.8695771624\C,3.8615212638,1.4118545182,1.9182849122\C,5.3504397

355,1.5833787488,1.5599070146\C,5.866262266,0.8677333587,0.2956147897\

C,5.4197914175,-0.6053214372,0.3286123182\C,3.6677633986,1.9281243491,

3.3499585216\C,2.9268738444,2.221263121,1.0067824549\C,5.4405303989,1.

5506995955,-1.0113089378\N,7.3342055529,0.9389522099,0.4066375161\C,8.

1914466169,0.3875647898,-0.4873087092\O,7.9037819924,-0.3502544697,-1.

4086933719\O,9.4639173408,0.7619076237,-0.1995859106\C,10.4454895848,0

.2232219197,-1.0920316692\C,11.7758885847,0.7398097548,-0.689929777\O,

12.0207970884,2.055367797,-0.9228407159\C,13.2765023945,2.3117445027,-

0.4897636584\C,13.8488477278,1.1886833652,0.0124706644\C,12.8624282974

,0.1580395884,-0.1179740743\H,-4.0245557372,-5.2629433208,0.540632368\

H,-4.2041636798,-3.1998149392,2.2883010497\H,-2.4087698328,-1.38856849

47,1.3880028557\H,-1.0021045035,-1.34290112,-1.2677115888\H,-0.6828503

012,-2.9947762909,-1.8387212037\H,1.7476785555,-2.7692672138,1.6143828

8\H,3.8878127105,-2.7080205803,-0.3735244521\H,4.0792241708,-2.7632523

076,1.3856287938\H,3.3629926964,-0.3201482018,-0.2753089986\H,4.018454

6615,-0.5952539915,2.7002059607\H,2.4261508017,-0.2024507282,2.0399406

4\H,5.9319093029,1.1784680329,2.4015437705\H,5.5903935562,2.6548964571

,1.493234266\H,5.9611451334,-1.1003406854,1.1486612496\H,5.7245227713,

-1.0940891205,-0.6017694094\H,4.3134434325,1.3932983298,4.05519155\H,2

.6288613719,1.7926909714,3.6705713413\H,3.9033947536,2.996622706,3.416

162833\H,2.8532011613,1.8176976775,-0.0042653598\H,3.2631974893,3.2614

748206,0.9305126063\H,1.9152261982,2.2270032001,1.4278521339\H,4.38614

14184,1.3875071078,-1.2381509158\H,6.0245939265,1.1368437723,-1.836882

2372\H,5.6190380589,2.629692053,-0.954968891\H,7.7346909672,1.61857502

09,1.0389811816\H,10.195896545,0.51585648,-2.1160771094\H,10.437292261

Page 18: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

18

4,-0.8685403419,-1.0392063937\H,13.6155572644,3.3291079716,-0.60792130

24\H,14.8435019014,1.1010874405,0.4231111014\H,12.9479673094,-0.878099

122,0.1757044897\C,-3.4827937792,-2.579799817,-1.418118197\C,-4.513640

6321,-3.5886483343,-0.9025564331\C,-4.1414163331,-1.2221192877,-1.3013

175654\N,-5.4242099934,-1.4122989544,-0.7673343932\C,-5.7169088569,-2.

7569502177,-0.4985450431\C,-6.3437906643,-0.3398085096,-0.5594407218\C

,-6.8302002235,-0.0515550229,0.7202255614\C,-7.7304464139,1.0051538382

,0.8513677871\C,-8.1318979,1.7506762427,-0.2554343593\C,-7.6247922595,

1.4639125778,-1.5228193891\C,-6.7256575438,0.4180357572,-1.6630749091\

N,-9.0570045764,2.8160978972,-0.0869472738\C,-10.145419275,2.808754942

1,0.803260827\C,-10.8386920805,4.1294803264,0.6289493601\C,-10.1899943

919,4.8377930582,-0.2897597726\C,-9.0262300811,4.0321922485,-0.7920198

749\O,-3.6625363356,-0.1551850672,-1.5919050153\O,-6.7497257653,-3.154

4018928,-0.0206784768\O,-10.4505802306,1.9181627869,1.5529933934\O,-8.

2244354937,4.3528682285,-1.6301569921\H,-4.8093207063,-4.3425004926,-1

.6340420793\H,-3.1545252145,-2.7537507086,-2.4459649446\C,-6.388462054

9,-0.8248146775,1.9322268283\H,-8.123964433,1.2468370778,1.831661706\H

,-7.9215408474,2.0540431157,-2.3799618196\H,-6.3138525444,0.1798407647

,-2.6379454587\H,-11.7206165954,4.3802982221,1.2029325589\H,-10.393151

4904,5.8289994314,-0.6723691411\H,-5.3131744492,-1.0248280953,1.890477

8995\H,-6.9035877459,-1.7887841286,1.983624284\H,-6.6025462404,-0.2629

300755,2.8440240803\\Version=ES64L-G09RevE.01\State=1-A\HF=-2404.35636

13\RMSD=5.043e-09\RMSF=4.709e-06\Dipole=-0.2148441,0.7303364,1.7479246

\Quadrupole=17.0271059,-2.8217301,-14.2053758,-14.2456594,14.9015067,2

.9284439\PG=C01 [X(C37H40N4O10)]\\@

4

1\1\GINC-R37\FOpt\RM062X\Gen\C5H6O1\ROOT\04-Feb-2016\0\\# M062X/Gen 6D

SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=671088640\\2\\0

,1\O,-2.7359664288,2.3002075358,-1.7584061092\C,-1.7831327945,1.444951

0825,-1.3021198595\C,-1.5644541389,1.6690166295,0.02116503\C,-2.443095

5111,2.7350950581,0.4046186225\C,-3.125934906,3.0742837673,-0.71587866

07\C,-1.2118130608,0.4934686773,-2.3002046721\H,-0.8623453695,1.139350

8301,0.6488499036\H,-2.5471536386,3.1828302573,1.3819762586\H,-3.88658

82283,3.8076313562,-0.9334757817\H,-1.6822963881,0.6583986625,-3.27161

13453\H,-1.3864115535,-0.5457114599,-2.0063895113\H,-0.132821676,0.633

8246665,-2.4132760108\\Version=ES64L-G09RevD.01\State=1-A'\HF=-269.222

1057\RMSD=3.131e-09\RMSF=1.103e-04\Dipole=0.147008,-0.1284764,0.080477

4\Quadrupole=-0.4899407,0.3439953,0.1459454,-2.557345,-0.2456633,1.282

9884\PG=CS [SG(C5H4O1),X(H2)]\\@

5

1\1\GINC-R41\FOpt\RM062X\Gen\C11H9N1O2\ROOT\04-Feb-2016\0\\# M062X/Gen

6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=1610612736\\

2h.M062X\\0,1\C,0.2923324606,1.4458245411,0.1993202784\C,0.9605469994,

2.6202615597,-0.1278260755\C,2.3545746261,2.6756089052,-0.2008552305\C

,3.0600329933,1.5019019026,0.092291895\C,2.4017520024,0.3161494323,0.4

133812384\C,1.0144159558,0.2848781688,0.4621577833\N,4.4844186129,1.49

27022287,0.0430596415\C,5.3236520754,2.2958678102,0.8240486748\C,6.729

5909866,1.8948929117,0.4716576455\C,6.6846512255,0.9104707942,-0.42163

04765\C,5.245665937,0.5939469768,-0.7212935152\O,4.9729970645,3.130296

2614,1.6186626136\O,4.8137326294,-0.2566364599,-1.4542601482\C,3.05046

28858,3.9515924684,-0.5914981539\H,0.3930852592,3.5206920421,-0.347167

3721\H,2.9872731405,-0.5746692546,0.6149033342\H,0.5024107124,-0.63945

18715,0.7083561326\H,7.5845288422,2.376098593,0.9276663969\H,7.4926078

871,0.3700554542,-0.8965463895\H,2.3662905197,4.6058221585,-1.13697426

25\H,3.9151607352,3.7506574606,-1.2320057462\H,3.4138553875,4.48468166

11,0.2917385663\H,-0.7923289385,1.4350262556,0.2397531692\\Version=ES6

Page 19: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

19

4L-G09RevD.01\State=1-A\HF=-629.5385711\RMSD=7.502e-09\RMSF=8.930e-06\

Dipole=0.4987849,0.0984542,-0.0355051\Quadrupole=11.0498,-3.0321907,-8

.0176094,-0.8349288,-0.5432619,-6.075867\PG=C01 [X(C11H9N1O2)]\\@

6

1\1\GINC-R91\FOpt\RM062X\Gen\C16H15N1O3\ROOT\04-Feb-2016\0\\# M062X/Ge

n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=2684354560\

\2h.M062X\\0,1\C,-0.6850129048,4.089630701,2.273146034\C,0.0385024923,

4.1929947378,0.9389717495\C,1.3136219612,3.9211456307,1.2149448347\C,1

.3676293196,3.653560899,2.7153248592\O,0.3188039775,4.5008727313,3.194

7938503\C,2.6704583618,3.8702519361,3.4362667306\H,-1.603712606,4.6571

260707,2.4046785068\H,-0.4339473486,4.3520019421,-0.0226477336\H,2.150

6806138,3.8049772128,0.5362641835\H,2.5262308226,3.7554949517,4.513954

5264\H,3.0563029572,4.872685518,3.235737188\C,0.6851129268,2.250324595

2,2.945641087\C,-0.7831379507,2.5635728363,2.6450006268\C,1.0816416752

,1.1726837844,1.9587416709\N,-0.039970607,0.8665223602,1.1799171905\C,

-1.1717216855,1.6282687157,1.5167100733\C,-0.0609175159,-0.1492335443,

0.1742817599\C,0.7673829827,-0.0547751482,-0.9498595483\C,0.7036418337

,-1.0926873575,-1.8824146624\C,-0.1598841726,-2.1699229552,-1.71717026

13\C,-0.9925910272,-2.2299342691,-0.6032711816\C,-0.9390485131,-1.2169

527146,0.3452002681\O,2.1709148687,0.6669803969,1.8358841507\O,-2.2463

484478,1.5357010975,0.9808876914\H,-1.4564256773,2.4278893124,3.493084

1055\H,0.8758148086,1.9129435801,3.967204626\C,1.6792441433,1.12136633

84,-1.1681029454\H,1.3409327516,-1.0417437095,-2.7611119902\H,-1.67778

2432,-3.0606223441,-0.4706086268\H,-1.5775934695,-1.239502932,1.222260

8424\H,1.1690134204,2.0575994978,-0.9202039034\H,1.9997511358,1.168251

7089,-2.2115422242\H,2.5657283597,1.0492404533,-0.5304764767\H,3.39937

08821,3.1276813526,3.0986992024\H,-0.1890119369,-2.9577853861,-2.46335

52037\\Version=ES64L-G09RevD.01\State=1-A\HF=-898.7942971\RMSD=3.977e-

09\RMSF=2.527e-05\Dipole=0.1976154,0.1611481,-0.0364841\Quadrupole=-5.

3888283,0.6244956,4.7643327,3.8702701,-3.9283394,0.3971265\PG=C01 [X(C

16H15N1O3)]\\@

Page 20: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

20

7. References

(1) Brandt, J.; Oehlenschlaeger, K. K.; Schmidt, F. G.; Barner-Kowollik, C.; Lederer, A. Adv.

Mater. 2014, 26 (33), 5758–5785.

(2) Scilab 5.5.1 (www.scilab.org).

(3) Flory, P. J. J. Am. Chem. Soc. 1936, 58 (10), 1877–1885.

(4) Flory, P. J. J. Am. Chem. Soc. 1939, 61 (12), 3334–3340.

(5) Carothers, W. H. J. Am. Chem. Soc. 1929, 51 (8), 2548–2559.

(6) Gridnev, A. A.; Ittel, S. D.; Fryd, M. J. Polym. Sci. Part A Polym. Chem. 1995, 33 (7), 1185–1188.

(7) Striegel, A. M. Anal. Bioanal. Chem. 2013, 405 (28), 8959–8967.

(8) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2 (2), 364–382.

(9) Hehre, W. J.; Ditchfield, R.; Pople, J. a. J. Chem. Phys. 1972, 56 (5), 2257–2261.

(10) Frisch, M. J.; Pople, J. a.; Binkley, J. S. J. Chem. Phys. 1984, 80 (7), 3265.

(11) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113 (18), 6378–6396.

(12) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2011, 115 (49),

14556–14562.

(13) Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111 (45), 11683–11700.

(14) Henry, D. J.; Sullivan, M. B.; Radom, L. J. Chem. Phys. 2003, 118 (11), 4849.

(15) Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799–805.

(16) Pye, C. C.; Ziegler, T.; van Lenthe, E.; Louwen, J. N. Can. J. Chem. 2009, 87 (7), 790–797.

(17) Ho, J.; Klamt, A.; Coote, M. L. J. Phys. Chem. A 2010, 114 (51), 13442–13444.

(18) Junming, H.; Coote, M. L.; Cramer, C. J.; Truhlar, D. G. In Organic Electrochemistry;

Hammerich, O., Speiser, B., Eds.; CRC Press: Boca Raton, Florida, 2016; pp 229–259.

(19) Ho, J.; Coote, M. L. Theor. Chem. Acc. 2010, 125 (1-2), 3–21.

(20) Zhou, J.; Guimard, N. K.; Inglis, A. J.; Namazian, M.; Lin, C. Y.; Coote, M. L.; Spyrou, E.; Hilf,

S.; Schmidt, F. G.; Barner-Kowollik, C. Polym. Chem. 2012, 3 (3), 628–639.

(21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;

Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;

Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; HadaM, M.; Ehara;

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,

H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;

Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;

Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene,

Page 21: Supporting Information Quantitative Analysis of Step ... · 3 3. Data evaluation (MMD fitting) The fitting of the molar mass distribution (MMD) according to linear step-growth statistics

21

M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.

E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;

Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,

Revis. D.012 2009, Gaussian, Inc., Wallingford CT.

(22) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wiley Interdiscip. Rev.

Comput. Mol. Sci. 2012, 2 (2), 242–253.

(23) Werner, H.; Knowles, P.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Lindh,

R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K.; Adler, T.; Amos, R.; Bernhardsson, A.;

Berning, A.; Cooper, D.; Deegan, M.; Dobbyn, A.; Eckert, F.; Goll, E.; Hampel, C.;

Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A.; Mata, R.;

May, A.; McNicholas, S.; Meyer, W.; Mura, M.; Nicklass, A.; O’Neill, D.; Palmieri, P.; Pflüger,

K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A.; Tarroni, R.; Thorsteinsson, T.;

Wang, M. .

(24) Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, www.scm.com.