surface-plasmon waveguides for biosensor applications

60
Surface-plasmon waveguides (Fourth Lecture) Techno Forum on Micro-optics and Nano-optics Technologies for biosensor applications 한양대학교 물리학과 http://optics anyang ac kr/~shsong , 한양대학교 물리학과, http://optics.anyang.ac.kr/~shsong metal strip metal slab Y-branch S-band metal slab Metal SPP waveguide 300 350 Output signal 50 100 150 200 250 Intensity (uW) 1. How do we define the dispersion relations of SPPs excited on thin metal films and stripes? 1.330 1.331 1.332 1.333 1.334 1.335 1.336 0 Refractive index of water Reference arm Sensing arm 2. What are the long-range SPPs and short-range SPPs? 2. How can we implement LRSPP waveguide devices? 4. What are the merits of the LRSPP waveguide-type sensors? Key notes

Upload: others

Post on 13-Mar-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Surface-plasmon waveguides (Fourth Lecture) Techno Forum on Micro-optics and Nano-optics Technologies

p gfor biosensor applications

송 석 호 한양대학교 물리학과 http://optics anyang ac kr/~shsong송 석 호, 한양대학교 물리학과, http://optics.anyang.ac.kr/~shsong

metal stripmetal slab

Y-branchS-band

metal slab

Metal SPP waveguide

300

350

Output signal

50

100

150

200

250

Inte

nsity

(uW

)

1. How do we define the dispersion relations of SPPs excited on thin metal films and stripes?

1.330 1.331 1.332 1.333 1.334 1.335 1.3360

Refractive index of waterReference arm Sensing arm

p p2. What are the long-range SPPs and short-range SPPs?2. How can we implement LRSPP waveguide devices?4. What are the merits of the LRSPP waveguide-type sensors?

Key notes

Biosensors

시료 전달 채널

바이오시료

박테리아

바이러스

target

바이오바이오//환경환경//화학화학 센서센서 SchematicSchematic

시료 전달 채널바이러스

공해물질

화학물질

… Detector

Transducer표적시료 신호/data

처리

Receptor

전기식 광학식 표면음파식 열방식

표적물질의함량정보

L S f Pl idLong-range Surface Plasmon waveguideGood probing evanescent tailIntegrated Optics

in MZI configurationHigh sensitivityg y

Very compact & sensitive sensor!

휴대폰용 Biosensors당뇨폰

음주측정폰

입냄새폰

Conventional prism-type SPR sensorsConventional prism type SPR sensors

Surface Plasmon Resonance Sensors시료 불감지 시

Convergentlight beam

Photodiode array

시료 감지시

Prism coupler

SPR-active metal

SPSample

Biomolecularrecognition

elements

시료 농도 변화 ~ sensing layer 유전율 변화 ~ SPR 공명각 변화량- Angle interrogation- Wavelength interrogation

Best SPR sensor:

BiaCoreAngle interrogationΔnmin~3x10-7

Large sizeLarge sizeExpensive (장비:2억, chip 10만원)

Surface plasmon resonance (SPR) sensor

Concept of SPR Biosensing

Re{ } Im{ }M D

cω ε εβ β β

ε ε= = +

+M Dc ε ε+

R { } kβ k f bRe{ } k nβ ≅ ⋅ k: free-space wavenumber

Concept of SPR BiosensingThe propagation constant k of the SPW can be determined by measuring changes in one of these characteristics.

angular modulation intensity modulation

wavelength=682nm Angle of incidence 54o

SPR imaging

• Spatially-filtered, expanded, l i d H N lp-polarized HeNe laser

beam illuminates the gold sample through a prism couplercoupler.

• Reflected light from the gold surface, containing the SPR image, is monitored with a CCD camera.

• The angle of incidence can be changed by rotating the g y gentire sample assembly.

A.J. Thiel et. al., Anal. Chem. 69 (1997), pp. 4948–4956.

2D and 3D Images of ssDNA

•Shows the 5 spots of selfShows the 5 spots of self assembled thio-oligonucleotide DNA probes immobilized on the gold surfacegold surface

Color variation indicates•Color variation indicates variation in the thickness of the self assembled monolayer (SAM)

•R. Rella, et al. Biosensors and Bioelectronics. 20 (2004), pp.1140-1148.

Surface plasmon-polaritons excited on thin metal filmsSurface plasmon polaritons excited on thin metal filmswith IMI (insulator-metal-insulator) structures

IMI (insulator-metal-insulator) structuresIMI (insulator metal insulator) structures

Dielectric – ε33

Metal – ε2

Dielectric – ε1

When the film thickness becomes finite.

modeoverlap

Long-range SPP and short-range SPPg g g

Long-Range SPP:Long-Range SPP: weak surface confinement, low loss

yeq

uenc

yfr

e

Short-Range SPP:strong surface confinement, high loss

in-plane wavevector

Extremely long-range SPPs?

Symmetrically coupled LRSPPcy

requ

enc

fr

Anti-symmetrically coupled LRSPP

in-plane wavevector

Dependence of dispersion on film thickness

0 75

1

0 75

1

0 75

1

0 75

1

200 400 600 800

-0.25

0.25

0.5

0.75

200 400 600 800

-0.25

0.25

0.5

0.75

250 500 750 1000 1250 1500

-0.25

0.25

0.5

0.75

250 500 750 1000 1250 1500

-0.25

0.25

0.5

0.75

practically forbidden-1

-0.75

-0.5

-1

-0.75

-0.5

60h nm=-1

-0.75

-0.5

-1

-0.75

-0.5

10h nm=

Surface-polariton-like waves guided by thin, lossy metal films

G S ( )J.J. Burke, G. I. Stegeman, T. Tamir, Phy. Rev. B, Vol.33, 5186-5201 (1986).

Dispersion relations for waves guided by a thin, lossy metal film surrounded by dielectric media

Characteristic of "spatial transients" : Usual symmetric and antisymmetric branches each split into a pair of waves

one radiative (leaky waves) and the other nonradiative (bound waves).

Symmetric modes : the transverse electric field does not exhibit a zero inside the metal filmAntisymmetric modes : the transverse electric field has a zero inside the film.

εm = - εR – i εIhx

ε1

m R I

zε3

Burke, PRB 1986

Dispersion relation for thin metal films (3 layers)obtained from the Maxwell equationsobtained from the Maxwell equations

( )0( , , ) ( )expyi iH x z t e H f z i x tβ ω= −⎡ ⎤⎣ ⎦

[ ] ( )[ ] [ ] ( )

[ ] ( )

3

2 0 2

1

exp ( ) in medium 3

( ) exp ( ) exp in medium 2 0

exp in medium 1 0i h

B s z h z h

f z A s z h A s z z h

s z z

⎧ − − ≥⎪

= − + − ≤ ≤⎨⎪ ≤⎩

2 2 20j j js kβ ε= −

[ ]( )jHi i df z∂⎧ − − [ ]

[ ]

0

0

exp

0

( )

( ) exp

yx

j

y

z y

j

j

Hi iE H i xz

i E

E H

d

H i x

f zdz

f z

βωε ωε

ωεβ β β

∂⎧= =⎪ ∂⎪

⎪= ∇× → =⎨⎪ − −⎪ = =⎪

E H

[ ]0 ( ) pz yj

jf βωε ωε⎪⎩

[ ] ( )3 ( )s B h h⎧−

≥⎪

[ ]

[ ] ( )

[ ] [ ]{ } ( )

[ ] ( )

33

3

20 2 0 2

2

1

exp ( )

exp exp ( ) exp 0x h

B s z h z h

siE H i x A s z h A s z z h

s

ε

βω ε

− − ≥⎪⎪⎪− ⎪= × − − − ≤ ≤⎨⎪⎪⎪ [ ] ( )1

11

exp 0s s z zε

≤⎪⎪⎩

From the boundary conditions,

( )( )

1 2 2 0

2 3 2 0

0 : exp[ ] 1

: exp[ ]x x h

x x h

z H H s h A A

z h H H A s h A B

= = ⇒ − + =⎧⎪⎨

= = ⇒ + − =⎪⎩

2 11 2 2 0

1 2

2 32 3 2 0

0 : exp[ ]

: exp[ ]

x x h

x x h

sz E E s h A As

sz h E E A s h A B

εεε

⎧ = = ⇒ − − =⎪⎪⎨⎪ = = ⇒ − − = −⎪⎩ 3 2sε⎪⎩

⎧⎛ ⎞

From the equations at z = 0, Ah, Ao, and B can be determined by,

[ ] [ ] [ ] ( )

[ ] [ ] ( )

2 12 2 3

1 2

2 12 2

1 2

cosh sinh exp ( ) 3:

( ) cosh sinh 2 : 0j

ss h s h s z h j z hs

sf z s z s z j z hs

εεεε

⎧⎛ ⎞+ − − = ≥⎪⎜ ⎟

⎝ ⎠⎪⎪⎪= + = ≤ ≤⎨⎪

[ ] ( )1exp 1: 0s z j z⎪⎪ = ≤⎪⎪⎩

Therefore, anther equations at z = h gives the dispersion relation,

( ) [ ] ( )2 21 3 2 2 1 3 2 2 2 3 1 1 3tanh 0s s s s h s s sε ε ε ε ε ε+ + + =( ) [ ] ( )1 3 2 2 1 3 2 2 2 3 1 1 3

2 2 20j j js kβ ε= −

ε1

εm

Hy

ε1

εm

Hy

Two nonradiative, Fano modes

ε3 Bound (a)

m

ε3Bound (s)

1 3(1) : 0 & 0S S> >

Symmetric bound (sb) Asymmetric bound (ab)y ( b) Asymmetric bound (ab)

Surface plasmon dispersion for thin filmsDrude model

ε1(ω)=1-(ωp/ω) 2Two modes appear

L-(asymmetric)

Thinner film:

L+(symmetric)

Thinner film:Shorter SP wavelength

Propagation

L

Example:λHeNe = 633 nm

λSP = 60 nm

Propagationlengths: cm !!!(infrared)

L-λSP = 60 nm

2 1 31.55 , 118 11.58 2.25 , m iλ μ ε ε ε= = − + = =Ex)

( ) [ ] ( )2 21 3 2 2 1 3 2 2 2 3 1 1 3tanh 0s s s s h s s sε ε ε ε ε ε+ + + =

H

sb ab

2 2 20j j js kβ ε= − ε1

εm

ε3

Hy

Bound (a)

ε1

εm

ε3

Hy

Bound (s)

2.0

1

a

( )Bound (s)

1.8

1.9ab

sb

k 0 1E 3

0.01

0.1ab

sb

k 01.6

1.7 β r/k

1E-5

1E-4

1E-3

β i/k

0 50 100 150 200

1.5

( )0 50 100 150 200

1E-7

1E-6

thickness (h : nm) thickness (h : nm) thickness (h : nm)

Metal stripe waveguides usingMetal stripe waveguides usinglong-range surface plasmon polaritons(LRSPPs)

SPP waveguide schemes

Si waferSi waferSi wafer

(a) (c)(b)

<Single metallic waveguide> <Double symmetric metallic waveguide> <Double asymmetric metallic waveguide>

Thin metal stripes with a finite width

metal strip

dielectric

Finite film thickness and width

Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,P. Berini, Phy. Rev. B, Vol.61, 10484 (2000)

( )( , , , ) ( , ) i z tx y z t x y e β ω−= 0E E( )( , , , ) ( , ) i z tx y z t x y e β ω−= 0H H

E o, Ho : polarization direction

z-axis : propagation direction

From the Maxwell equations

1 2r 0( ) kε −∇× ∇× =H H

A th t ll di b i t i

1 1 2 2 1( ) ( ) ( ) 0kε ε β ε− − −∇ × ∇ × ∇ ∇H H H

Assume that all media be isotropic.The magnetic field on x-y (transverse plane) satisfies

r r 0 r( ) ( ) ( ) 0t t t t t t tkε ε β ε∇ × ∇ × − ∇ ∇ ⋅ − − =H H H

t i jx y

∧ ∧∂ ∂∇ = +

∂ ∂( )( ) i z t

t x yH i H j e β ω∧ ∧

−= +Hwherey

This eigenvalue problem can be solved by a numerical method with proper boundary conditions, such as one of FDM, FEM, MoL, …Here, we use the FDM (finite difference method).Here, we use the FDM (finite difference method).

FDM

2 1 31.55 , 118 11.58, 2.25, 5 m i w mλ μ ε ε ε μ= = − + = = =Ex)FDM

y

z

y

x

xy

1.60

1.62

1.64

sabo

ss o 1E-3

0.01

1.54

1.56

1.58

β r/k

o

ssbo

1E-5

1E-4

β i/k

0

sabo

0 50 100 150 200

1.50

1.52

1.54

0 50 100 150 2001E-7

1E-6 ssb

o

0 50 100 150 200

thickness of metal (nm)0 50 100 150 200

thickness of metal (nm)

Field profile of slab SPP modesSymmetric Mode

0.8

1.0

)

h=20nm h=40nm h=100nmh=200nm

0.8

1.0

Symmetric Mode

0.4

0.6

Hy(a

.u.) h=200nm

0.4

0.6

Hy(a

.u.)

h=20nm

-4 -2 0 2 4

0.0

0.2

length ( m)

-0.2 -0.1 0.0 0.1 0.20.0

0.2

length (μm)

h=40nm h=100nm h=200nm

Field enhancement at the boundary

1.0h 20

length (μm)

1.0

Anti-Symmetric Mode

y

Sensitive to environment

0.0

0.5

h=20nm h=40nm h=100nm h=200nm

y(a.u

.)

0.0

0.5

h=20nm h=40nm h=100nm h=200nm

Hy(a

.u.)

-1.0

-0.5

H

-0.2 -0.1 0.0 0.1 0.2

-1.0

-0.5

-4 -2 0 2 4

length (μm)

length (μm)

LRSPP waveguidesLongLong--Range Surface Plasmon Polaritons WaveguideRange Surface Plasmon Polaritons Waveguide

LR-SPPs W/G Structure LR-SPPs Waveguide Devices

SiO2

LR SPPs W/G Structure S s W vegu de ev cesOptical modulator & switch

Sergey I. Bozhevolnyi Group(Denmark)

Optical add/drop filter

SiO2Au

~ 20nm

~ 5um

mode SS0bMode profile of

Bragg grating filterPi B i i G (C d )

Vertical directional couplerPierre Berini Group (Canada)Seok Ho Song Group (Korea)

optical Sensor ?

Best measurements:

- Attenuation: 3.2 dB/cmAttenuation 3.2 dB/cm- Coupling to SMF: < 0.2 dB

Jung (ETRI), 40 Gbit/s light signal transmission on a long-range SPP waveguide, APL, PTL, 2007.

Plasmonic Flexible-wires for 40 GHz interconnections

LR-SPP waveguide

Drive IC

TIA & Pre amp ICTx

VCSEL array

SMA SMA

PD array

Rx

14 nm-thick, 2.5 μm-wide gold stripes

5

640 Gb/s

World best

2

3

4

Loss

(dB

)

λ= 1310 nm

0.5 1.0 1.5 2.0 2.50

1

Waveguide length (cm)

0.6 dB/cm : World best record in propagation loss. (Previous world record : 3.2 dB/cm by Berini, 2006)

Double-electrode metal waveguides : Lines, S-band, Y-branchJoo, Long-range surface -plasmon--polaritons on asymmetric double-electrode structures, APL, 2008.

εd3 ε2D

wSPP mode

metal strip

εd3

D

metal slab

core

cladding

εd1

metal strip

Y-branchS-band

pmetal slab

LRSPP waveguide sensorsLRSPP waveguide sensors

LRSPP bio-sensor chips

D

SPP mode

metal strip

Bio-fluidics

SPP mode

metal slab

SERS & 대장균

Silver nanoparticle

Silver colloid Analyte

Laser & detection point

Nano 구조물

Analog

Analog WGPD

LD (TM polarized)

폴리머 or 실리카도파로

AnalyteSilver

nanoclusters

3737

gM-WGPD

실리콘 기판

Sensing area (Cr 10nm, Au 50nm)

NPIC chip

LRSPP Waveguide Sensors

LongLong--Range Surface Plasmon Polaritons Waveguide SensorRange Surface Plasmon Polaritons Waveguide Sensor

Output signal

150

200

250

300

350

nsity

(uW

)

p g

M t l id

1.330 1.331 1.332 1.333 1.334 1.335 1.3360

50

100

Inte

Refractive index of water

R f S iMetal waveguide Reference arm Sensing arm

Metal waveguide sensor Dielectric waveguide sensor

- Air or water background

- Polarizing waveguide

- Higher waveguide sensitivity

g e ec c w vegu de se so- Air or water background

- Non polarizing waveguide

- Higher waveguide loss

: Hybrid waveguide structure

- Added functionality

: In situ heating or electric field

- Low waveguide sensitivity

- Lower waveguide loss

- No added functionality: In situ heating or electric field y

LRSPP Waveguide Sensors

Region 1 Region 2 Region 1 Cross Section

,em emdε ,Au Audε

~ 1.47( )cladn dielectric

R f S i

Region 2 Cross Section

d ,A Adε

Metal waveguide

Reference arm Sensing arm ,em emdε ,Au Audε

~ 1.33( )sensn waterLiquids(ex. Bio-molecules)( )

Sensitivity of LR-SPP Waveguide Sensor

, (variable)a adε

Index change

by thermal/densitydε

,em emdε

,Au Audε

Index change(varialbe)cε

,em emdε

,Au Audε

by thichness

Almost 1

1 3317

1.3318

d =50nm1 340

1.342

d =50nm

51.91 10 /eff

a

nnm

d−∂

= ×∂0.99465eff

c

nn

∂=

1.3316

1.3317 dem=50nm

Nse

ns

1.336

1.338

1.340 dem 50nm

Nse

ns

0 2 4 6 8 10 12 14 16 18 20 22

1.3314

1.3315

1.330 1.332 1.334 1.336 1.338 1.3401.330

1.332

1.334

thickness of da(nm)1.330 1.332 1.334 1.336 1.338 1.340

index(nc)

Mach-Zehnder Interferometer type

4~20μm

SiO2

Carrier fluidSensing arm

SiO2

Au 15~25 nm

SiO2

Au15~25 nmSi3N4 membrane

Receptor

Carrier fluid with analyteSubstrate Substrate

Laser Detector

Receptor

300

350

Carrier fluid with analyte

Reference arm50

100

150

200

250

Inte

nsity

(uW

)

I

Reference arm compensates- thermal and strain variations along the device- changes in carrier fluid index

1.330 1.331 1.332 1.333 1.334 1.335 1.3360

Refractive index of waterRefractive Index

g- non-specific binding

Monolithic integration of micro-fluidic and electronics potentially possible

MZI Sensor sensitivitySensing armSensing arm

L250

300

350

uW)

I

1.330 1.331 1.332 1.333 1.334 1.335 1.3360

50

100

150

200

Inte

nsity

(uI

0 2 3

Reference arm

Binding of bio-molecules on sensing armMode effective index change sensing arm

Refractive index of waterΔφ0 π 2π 3π

LneffΔ=Δ πφ 2

Mode effective index change sensing armMode propagation phase difference (Δφ) between sensing and reference arms

Phase difference is converted to intensity variation

( )( )⎥⎦⎤

⎢⎣⎡ +Δ+= 0cos121log10 φφI

Phase difference is converted to intensity variation

Sensitivity

Ca

an

nI

CIySensitivit eff

eff ∂∂

∂∂

∂∂

∂∂

=∂∂

φ

MZI 2πL/λ waveguide receptor

MZI-LRSPP Sensor Design1000 mμ

2

In Out40 mμ

1

1000 mμ 1000 mμ2000 mμ500 mμ 500 mμ 500 mμ 500 mμ

Cross section Cross section21 Metal

SiO2

5 mμ

20nm 100nmSiO2

Receptor

dielectric

dielectric

SiO2(1.47) Air(1.0)

SiO2

water metal

SiO2

membrane 1

substrate

membrane 2

Sensitivity

400

500

300

350

300

400

ity (u

W)

200

250

300

ty (u

W)

100

200

Inte

ns

50

100

150

Inte

nsit

0 10 20 30 40 500

Thickness of water (nm)1.330 1.331 1.332 1.333 1.334 1.335 1.336

0

Refractive index of water

If a detector has 0.1 uW sensitivity, 3 pm thickness variation can be detectable

If a detector has 0.1 uW sensitivity,3x10-7 index difference can be detecteddetectable. detected

Dielectric/metal Hybrid MZI

1000 mμ

In Outλ=780 nm: 5mW

dielectric dielectricmetal

1000 mμ 1000 mμ2000 mμ1000 mμ 1000 mμ 1000 mμ 1000 mμ

Coupling Loss : Fiber-Dielectric WG : ~ 1.26 dB 3 mμ3 mμ

1.45sn =

a

Loss Layer structures

Insertion Loss : Y-junction : ~ 0.5dB

Coupling Loss : Dielectric WG-Metal WG : ~0.6dB

1.45sn =

1.49coren = 0.4 mμ50nm

50nm15nm

1.333cln =

1.49emn =

ha

Y-Branch : ~ 3dBPropagation Loss of Metal WG : ~ 8.5dB/mmPropagation Loss of Dielectric WG : ~ 0.02dB/mm

10 mμ510 mμ5 mμ5 mμTotal Loss : ~ 15 dB

Double-layered LRSPP waveguide type

Biocontents SAMcontents

Channelarea

Dielectric material

Cladding

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y

< Double LR-SPP biosensor >

Metal (Au)Substrate

Cladding

Strip configurations

Mach-zender interferometers

Directional couplersDirectional couplers

DFB gratingsSubstrate

Bragg grating

y

LRSPP waveguides sensors with a μ-fluidic channel

(a)

yz

x

μ-fluidicchannel

metal strip

core

cladding

silicon wafer

core

claddingmetal slab

450 nm

(b) (c)cladding cladding

450 nm

cladding cladding

(d) (e) (f)

Bragg gratingμ-fluidicchannel

Bragg grating

2 2 2loss maxTotal Loss, T (dB) = 10 log( )c w g Rη η η× × × ×

Ci l

loss max, ( ) g( )c w gη η η

Propagation loss in waveguide region

Lw LL

CirculatorInput signal

Reflectance of grating ( Rmax )

Lw LwLg

SubstrateLgLw Lw

Output

signal

Coupling loss Propagation loss in grating region Detectable range

45

50

" (d

B)

20nm 40nm60 0 8

1.2

1.6

, Δt m

in (n

m) 20nm

40nm 60nm 80nm

1 nm

30

35

40

oss

"Tlo

ss 60nm 80nm

Detectionlimit

0.0

0.4

0.8

Res

olut

ion

0 2 4 6 8 1015

20

25

Tota

l Lo 0 2 4 6 8 10

0 0

Grating length, Lg (mm)

grating length : 2 mm ~ 5.5 mm0 2 4 6 8 10

Grating length, Lg (mm) resolution : 0.36 nm with a 40 nm grating depth.

1.6×10-5 RIU

Comparison of sensor types SPR in ATR LRSP Waveguide MZI Dielectric Waveguide MZI

Archi-

tecture

angle/wavelength scan in ATR Phase difference detection in MZI Phase difference detection in MZI

Sensing

layer

PolarizatiTM TM TE and TM

Metal on high index prism

Metal on membrane waveguide

Dielectric waveguide

onTM TM TE and TM

Sensitivity High Higher Higher

Optical High Lower LowestOptical loss

High

(ATR required)

Lower

(MZI possible)

Lowest

(MZI)

size

Bulk optics

(Larger amount of analyte

Integrated Optics

(Smaller amount of analyte,

Integrated Optics

(Smaller amount of analyte,

Difficult to make array) Easy to make array) Easy to make array)

Sensing

SurfaceAu Au Dielectric

Added function

-In situ heating

Electrical signal transmission-

Final comments

1. How do we define the dispersion relations of SPPs excited on thin metal films and stripes?2. What are the long-range SPPs and short-range SPPs?2. How can we implement LRSPP waveguide devices?

Key notes

SPP wires : Bio-sensorsERC OPERA

p g4. What are the merits of the LRSPP waveguide-type sensors?

SPP wires : Inter-chip interconnects

Next lecture at 07/21(06/23) Introduction: Micro- and nano-optics based on diffraction effect for next generation technologies(06/30) Guided-mode resonance (GMR) effect for filtering devices in LCD display panels(07/07) Surface-plasmons: A basic(07/14) Surface-plasmon waveguides for biosensor applications(07/21) Efficient light emission from LED, OLED, and nanolasers by surface-plasmon resonance

(Appendix) GMR grating sensors(Appendix) GMR grating sensors

Guided-mode resonance sensorsConcept

I R Link LayerReceptor

Chemical Agents

I RGrating Link Layer

GMR Structure

Selective sensing enabled with standard biochemical recognition i

Structure

reactions

-Antigen/antibody, enzyme-substrate, ligand-receptor, DNA

- No fluorescent/absorption tags required

Guided-mode resonance sensorGuided mode resonance sensor technology

Fast - instant resultsOutstanding accuracy – cross referenced

data (1) (2)High sensitivity – detection of small

molecules to large bacteriaHigh resolution – sharp detection peaks,

high signal to noise

( )Baseline

(2) After analyte

bindsΔλ

tanc

e

Mass producible – high density formats

Initial market applications in drug discovery and proteomics:

i ib d id d

Ref

lect

Sensor element

• Antigen-antibody assays, peptides and cell-based assays, DNA arrays

Wavelength (λ)

Captured biomolecules ⇒

Change in reflected color of light

g ( )

g g

Prototype sensor systemPrototype sensor systemA biosensor system consisting of a disposable array plate integrated with guided-modeA biosensor system consisting of a disposable array plate integrated with guided-mode

resonance (GMR) elements, and(sensor in bottom of array plate)

a fiber-optic detection instrument for read-out and quantified binding response

array plate)

Incident b db d

Narrowbandreflected light

Sensor element

Optical fiber-lens assembly

broadband light

reflected light

SpectrumAnalyzerInput

Broadband Light

Water test of sensor head

0.80.9

1

0.80.9

1

0.30.40.50.60.7

Tra

nsm

issi

on

Resonant shift ~ 16.5 nm

air

water

0.30.40.50.60.7

Tra

nsm

issi

on

Resonant shift ~ 16.5 nm

air

water

air

waterTheory

00.10.20.3

735 745 755 765 775 785 795 805 815 825

Peak in water ~ 797 nmPeak in air ~ 780.5 nm

00.10.20.3

735 745 755 765 775 785 795 805 815 825

Peak in water ~ 797 nmPeak in air ~ 780.5 nm

Wavelength (nm)Wavelength (nm)

0.8

0.9

) 0 16

0.17

u.)0.8

0.9

) 0 16

0.17

u.)

0.4

0.5

0.6

0.7

sion

in a

ir (a

.u.)

0.14

0.15

0.16

on in

wat

er (a

.u

air

water0.4

0.5

0.6

0.7

sion

in a

ir (a

.u.)

0.14

0.15

0.16

on in

wat

er (a

.u

air

water

air

water Experiment

0.1

0.2

0.3

0.4

Tra

nsm

iss

0.12

0.13

Tra

nsm

issi

Peak in water ~ 797.6 nmPeak in air ~ 780.5 nm

Resonant shift ~ 17.1 nm

0.1

0.2

0.3

0.4

Tra

nsm

iss

0.12

0.13

Tra

nsm

issi

Peak in water ~ 797.6 nmPeak in air ~ 780.5 nm

Resonant shift ~ 17.1 nm

Peak in water ~ 797.6 nmPeak in air ~ 780.5 nm

Resonant shift ~ 17.1 nm

pe e

0735 755 775 795 815

Wavelength (nm)

0.110735 755 775 795 815

Wavelength (nm)

0.11

B t i l tt h t hBacterial attachment scheme

Blocking protein

Antibody

S. aureus bacteria (1 μm)

Silane layer xxxGrating element

P Sil t d ti f bi d tib di th t tt h t t i A ( f t i SProcess: Silane-coated grating surface binds antibodies that attach to protein A (surface protein on S. aureusbacteria). Milk protein added to block nonspecific binding of S. aureus to unoccupied silane sites.

Chemistry steps provided in Magnusson et al, Proc SPIE vol. 6008, pp. 60080U 1-10, 2005.

Measured resultsMeasured resultsPeriod~500 nm

6

7~1.5 nm shift

4

5

bitra

ry u

nits

)

Phosphate buffered saline After S. aureus+milk incubation

3

4

ecta

nce

(arb

1

2

Ref

le

780 782 784 786 788 790 792 794 796 798 8000

W l th ( )Wavelength (nm)

M d ti th dMass production methodImprint lithography in polymers

Master: Si grating via UV holographic interferometry

59

Next generation: Integrated GMR biochipsAngular addressing, laser source, transmission

Microwell plates

Platform holding an NxM detector matrix

GMR Sensor

Microlens Array

Plane Wave

Estimated density~100x100 elements/cm2

60