swat introduction 2010 full

74
Dr. ir. Ann van Griensven Department of Hydroinformatics and Knowledge Management UNESCO-IHE, the Netherlands Soil and Water Assessment Tool (SWAT)

Upload: adrianbar

Post on 23-Dec-2015

20 views

Category:

Documents


2 download

DESCRIPTION

a few words about SWAT (Soil and Water Assessment Tools)

TRANSCRIPT

Page 1: SWAT Introduction 2010 Full

Dr. ir. Ann van GriensvenDepartment of Hydroinformatics and Knowledge ManagementUNESCO-IHE, the Netherlands

Soil and Water Assessment Tool (SWAT)

Page 2: SWAT Introduction 2010 Full

Course objectives

Get familiar with SWATWhat are the key processes, key parameters?What are the main application domains?

How can we set up a model (get a bit a feeling)?What are the main data needed?

Page 3: SWAT Introduction 2010 Full

Outline

IntroductionHydrologyEnvironmental processesSWAT for water policyDataApplications

Page 4: SWAT Introduction 2010 Full

SWATDeveloped by Jeff Arnold at USDA/ARS Temple, Texas, USAGIS interface (ArcView): DEM, Landuse, Soils maps Open sourcesUser and developers communityswatmodel.tamus.edu

Page 5: SWAT Introduction 2010 Full

What are the objectives of SWATSimulation of processes at land and water phaseSpatially distributed (different scales)Semi physically based / empirical approachesSimulation of changes (climate, land use, management etc.)Water quantities, incl. different runoff componentsWater quality: Nutrients, Sediments, Pesticides, Bacteria, (algae and oxygen), etc.

…. all that on a daily time step and at different spatial scales and (more or less) readily available data sets!!

Page 6: SWAT Introduction 2010 Full

wwwhttp://swatmodel.tamus.edu/

Download softwareDownload source code

DocumentationUser group mailing list !

Internet Forum

PublicationsApplications

Page 7: SWAT Introduction 2010 Full

Philosophy (1)Aims

Management analysisWater, sediments, crops, nutrients,

pesticides

Comprehensive –

Process Interactions

InputReadily available input

Physically based input

Page 8: SWAT Introduction 2010 Full

Philosophy (2)

• Semi-distributed model Conceptual model

Long term simulationsContinuous Time – Daily/hourly time step

Problem of computational efficiency

Page 9: SWAT Introduction 2010 Full

Upland Processes

SWAT Watershed System

Channel/Flood PlainProcesses

Page 10: SWAT Introduction 2010 Full

Interface

GRASS (open sources GIS)Mapwindow (open sources GIS)AVSwat-X (ArcView)ArcSWAT (ArcGIS)

Page 11: SWAT Introduction 2010 Full

BasinSubbasins (based on DEM)

Weather, Routing

Structure

Page 12: SWAT Introduction 2010 Full

Channel Processes

Page 13: SWAT Introduction 2010 Full

BasinSubbasins

Weather, RoutingHydrological Response Units

= Combination of soil type and land use properties

Structure

Page 14: SWAT Introduction 2010 Full

HRUHydrologicResponseUnit

A unique combination ofland use and soil type

Soil map

Land use map+

Page 15: SWAT Introduction 2010 Full

HRU (2)

NOT

GEO -

REFERENCED

Totaloutput

+

Output 1 x A x 6

Output 2 x A x 5

Output 3 x A x 8

Output 4 x A x 1

HRU6

581

1

2

3

4

# of pixels

input Output 1

input Output 2

input Output 3

input Output 4

1 unit area

SWAT

SWAT DATABASESHRU parameters

GIS subbasin

Pixels : 20Pixel area = A

GEO -

REFERENCED

ARCVIEW

Page 16: SWAT Introduction 2010 Full

HRU’s in model

Created on the basis of Land Use maps and Soil Maps + databases (with parameters)!!!

Soil map ↔ lookup table ↔ usersoil.dbf (swat2005.mdb)Land use map ↔ lookup table ↔ crop.dbf (swat2005.mdb)Slope classes (drived from DEM)

Page 17: SWAT Introduction 2010 Full

Preparing landuse dataLanduse Look up table Database (crop.dbf

Landuse legend (raw)

Page 18: SWAT Introduction 2010 Full

Reclassified/overlaid Landuse

Page 19: SWAT Introduction 2010 Full

HydrologyErosionPlant GrowthNutrient CyclingPesticide DynamicsAgricultural Management

HRU Processes

Page 20: SWAT Introduction 2010 Full

Root Zone

Shallow (unconfined)

Aquifer

Vadose(unsaturated)

Zone

Confining Layer

Deep (confined)

Aquifer

PrecipitationEvaporation and

Transpiration

Infiltration/plant uptake/ Soil moisture redistribution

Surface RunoffLateral Flow

Return FlowRevap from

shallow aquiferPercolation to

shallow aquifer

Recharge to deep aquifer

Flow out of watershed

Hydrologic Balance

How is SWAT solving the problems?

Page 21: SWAT Introduction 2010 Full

Curve Number Values (many more can be found in the manual)

Soil group Land use

% imper-vious A B C D

Residential 20 51 68 79 84 25 54 70 80 85 30 57 72 81 86 38 61 75 83 87 65 77 85 90 92 Parking, roads, rofs 100 98 98 98 98 Cobbles - 76 85 89 91 Commercia 85 89 92 94 95 Industria 72 81 88 91 93 Open ( park, grass...) > 75% grass cover - 39 61 74 80 50 tot 75% grass cover - 49 69 79 84 Meadow - 30 58 71 78 Woods Open - 45 66 77 73 Dense - 25 55 70 77 Agricultural land - 62 71 78 81

10) - CN

1000( 25.4 = S

1) Wetness condition 2

2) 5 % slopeEmpirical equations exist to adjust for different slopes

Key parameter!

Page 22: SWAT Introduction 2010 Full

Curve Number Value VariationsSoil Groups

Wetness conditions

ABCD

Deep sand, deep loess (low runoff potential)Sandy loam, shallow loess (low to moderate runoff potential)Clay-loam, shallow sandy loam (moderate to high runoff potential)Heavy plastic clay, swelling soil, silty soil (high runoff potential)

CN1CN2CN3

Dry but above wilting pointAverageAbove field capacity, near saturation

Empirical equations exists to calculate CN1 and CN3 from CN2

Page 23: SWAT Introduction 2010 Full

Subsurface flow

Upper soil layers

ShallowaquiferDeep

aquifer

lateral flowpercolation

infiltration

return flowloss

Page 24: SWAT Introduction 2010 Full

Groundwater flow

(Slide from W. Bauwens, 2006)

Page 25: SWAT Introduction 2010 Full

Erosion

Modified Universal Soil Loss Equation (MUSLE)

V = surface qp = is the peak flow rate K = erodibility factorC = crop management factorPE = the erosion control practice factorLS = slope length and steepness factor.

(LS) (PE) (C) (K) )q (V 11.8 = Y 0.56p

Page 26: SWAT Introduction 2010 Full

Crop processes

PlantingPlant growth: water, nutrient uptakeHarvesting, Grazing, Kill

Page 27: SWAT Introduction 2010 Full

2 108400

9

6

3

12

Month

LAI

126

Plant Growth

Page 28: SWAT Introduction 2010 Full

NO3- NH4

+

Soil Organic Matter

NO2-

manures, wastes and sludge

ammonium fixationclay

mineralization

immobilization

nitrification

immobilization

Symbiotic fixation

NO3-

anaerobicconditions

N2 N2 O

NH3Atmospheric N fixation

leaching

fertilizer fertilizer

Harvest

denitrification

ammonia volatilization

runoff

Nitrogen Cycle

Page 29: SWAT Introduction 2010 Full

Soil Organic Matter

H2 PO4-

HPO4-2

manures, wastes and sludge

mineralization

immobilization

fertilizer Harvest

manures, wastes, and sludge

Adsorbed and fixedInorganic

Fe, Al, Ca, and clay

runoff

Phosphorous Cycle

Page 30: SWAT Introduction 2010 Full

Foliar Application

Degradation

Washoff

Infiltration

Leaching

Runoff

Surface Application

Degradation

Pesticide dynamics

Page 31: SWAT Introduction 2010 Full

Management

Ponds, reservoirsUrban areasAgricultural management

Page 32: SWAT Introduction 2010 Full

Agricultural management (1)

Crop RotationsRemoval of Biomass as HarvestConversion of Biomass to ResidueTillage / Biomixing of Soil Fertilizer Applications GrazingPesticide ApplicationsFilter strips

Page 33: SWAT Introduction 2010 Full

Agricultural management (2)

IrrigationSubsurface (Tile) DrainageWater Impoundment (e.g. Rice)

Page 34: SWAT Introduction 2010 Full

• Urban AreasPervious/Impervious AreasStreet SweepingLawn Chemicals

Urban management

Page 35: SWAT Introduction 2010 Full

Data for SWAT

Ann van Griensven (UNESCO-IHE)

Page 36: SWAT Introduction 2010 Full

DataWeather data

RainfallRaingage and RADAR

Temperature

Landuse dataRemote Sensing

Land management

Soils and its attributes

Streamflow (quantity)

Water quality

Presenter�
Presentation Notes�
In order to make the river basin sustainable we monitor the river basin�
Page 37: SWAT Introduction 2010 Full

Databases in swat2005.mbd• Soil• Land cover / plant growth• Tillage• Fertilizer• Pesticide• Urban• Weather generator

Page 38: SWAT Introduction 2010 Full

GIS integration

Page 39: SWAT Introduction 2010 Full

Data preparation (1)

GIS maps:DTMLand useSoil

Databases (in swat2005.mdb)Userwgn.dbfUsersoil.dbfCrop.dbf -> create crop.dat

Page 40: SWAT Introduction 2010 Full

Data preparation (2)

Lookup tablesFor soilFor land use

Soil map ↔ lookup table ↔ usersoil.dbfLand use map ↔ lookup table ↔ crop.dbf

Page 41: SWAT Introduction 2010 Full

Preparing landuse data

Landuse Look up table Database (crop.dbf

Landuse legend (raw)

Page 42: SWAT Introduction 2010 Full

Reclassified/overlaid Landuse

Page 43: SWAT Introduction 2010 Full

Data preparation (3)

Rainfall dataTable with station names and locations (batch files)Data file for each station

Temperature dataTable with station names and locationsData file for each station

Page 44: SWAT Introduction 2010 Full

Rainfall data file format

Batch file

Data file

Page 45: SWAT Introduction 2010 Full

Temperature data file format Data file

Batch file

Page 46: SWAT Introduction 2010 Full

Data preparation (4)

Climate stationsTable with station names and locations (batch file)Userwgn.dbf with data for each station

Page 47: SWAT Introduction 2010 Full

Climate stations Batch file

Userwgn.dbf

Page 48: SWAT Introduction 2010 Full

Userwgn.dbf (long term climatic condition)

Rainfall Statistical parameters derivation

Use pcpSTAT.exeUse ASCII text file format to create Input file (e.g. R002.txt)The line of input data file must be a blankOne column of rainfall data valuesThe record should start Jan 1 and End Dec. 31The missing rainfall values should be assigned -99.0

The outputs (e.g. R002.out)File 1 R002.out: Statistical Analysis of Daily Precipitation data. Directly used in userwgn.dbfFile 2 mean_pcp.st: Average Daily precipitation in MonthFile 3 totalpcp.sta: Total Monthly precipitation

Page 49: SWAT Introduction 2010 Full

Subbasin:

Input.sub: subbasin (area,…).wgn: weather information (#gage or generate).wus: water use.pnd: pond

Output: output.sub

#

#

##

##

####

###### ##

##

#

#

#

#

3

21

17

20

21

8

7

4

5

10

69

13

1816

12

2219

14

11

15

Page 50: SWAT Introduction 2010 Full

HRU:

Input.hru: HRU information (area,…).sol: sol data.chm: chemical composition soils.gw: groundwater.mgt: agricultural management (Curve number!)

Output: output.hru

Page 51: SWAT Introduction 2010 Full

River routing:

Input:.rte: river routing input (morphology, manning, …).swq: stream water quality

Output: output.rte

Page 52: SWAT Introduction 2010 Full

SWAT i/o files:

../Project/scenarios/default/sim#/txtinout

../Project/scenarios/default/sim#/tablesin

../Project/scenarios/default/sim#/tablesout

Page 53: SWAT Introduction 2010 Full

Dr. ir. Ann van GriensvenDepartment of Hydroinformatics and Knowledge ManagementUNESCO-IHE, the Netherlands

Dr. Preksedis .M. NdombaDepartment of Water Resources EngineeringUNIVERSITY OF DAR ES SALAAM, TANZANIA

The use of SWAT within the Nile Basin

Page 54: SWAT Introduction 2010 Full

Rainfall/runoff modelling

Page 55: SWAT Introduction 2010 Full

Rain gage data versus Satellite data: upper Kagera

Slide by Didier Haguma

Page 56: SWAT Introduction 2010 Full

Rain gage data versus Satellite data: upper Kagera

Slide by Didier Haguma

Page 57: SWAT Introduction 2010 Full

Pangani River Basin (Ndomba)

0

50

100

150

200

250

1976

1977

1978

1979

1980

1981

1982

Stre

amflo

w (m

3/s)

obseved simulated

020

4060

80100

120140

160

Aug-76

Jan-78

May-79

Oct-80

Feb-82

Jul-83St

ream

flow

(m3/

s)Observed Simulated

0

50

100

150

200

250

0 100 200Observed streamflow (m3/s)

Est

imat

ed st

ream

flow

(m3/

s)

0

50

100

150

200

250

300

0 20 40 60 80 100

Percent of time discharge is equalled or exceeded

Stre

amflo

w (m

3/s)

Observed Estimated

0

20

40

60

80

100

120

140

02/01/1970

01/07/1970

28/12/1970

26/06/1971

23/12/1971

20/06/1972

17/12/1972

Stre

amflo

w (m

3/s)

Observed Estimated

0

5

10

15

20

25

30

35

40

45

1983

1986

1989

1992

1995

1998

2001

2004

Ave

rage

ann

ual f

low

(m3/

s)

Observed Estimated

Daily

R2=54.6%

Monthly

R2=65%

Annually IVF=100%

Validation, R2=68%

Page 58: SWAT Introduction 2010 Full

Stochastic rainfall modelling: Kyoga

After Max Kigobe

Page 59: SWAT Introduction 2010 Full

Rainfall interpollation: Nzoia

Page 60: SWAT Introduction 2010 Full

Water scarcity

Page 61: SWAT Introduction 2010 Full

Lake Tana

-3.99- -3

-2.99 - -2

-1.99- -1

-0.99 - -0.50

-0.5 - 0.5

0.5 - 1

1 - 2

2 - 3

SMDI Jan, 2005

Lake T

-3.99-

-2.99 -

Drought indexes: upper Blue Nile

Slide by Rahel Tessema

Page 62: SWAT Introduction 2010 Full

Water resources managament... Jurgen Schuol & Karim Abbaspour

Blue water

Green water flow

Slide by Jurgen Schuol

Page 63: SWAT Introduction 2010 Full

Erosion/sediment transport

Page 64: SWAT Introduction 2010 Full

Erosion transport in Pangani (Ndomba)

After Preksedis Ndomba

Page 65: SWAT Introduction 2010 Full

Blue Nile: Erosion transport Getnet Dubale, UNESCO-IHE, 2009

SWAT + SOBEK

Page 66: SWAT Introduction 2010 Full

Upper Kagera river: erosion

Page 67: SWAT Introduction 2010 Full

Environmental problems

Page 68: SWAT Introduction 2010 Full

Kirumi wetlandImportant part of ecosystem, supports lives of about 6000 peopleSituated on the lower end of the catchmentIt is important to include the wetland in the EFA process

Kirumi wetland

Environmental Flow: Mara catchmentSlide by Florence Mahay

Page 69: SWAT Introduction 2010 Full

Scenario analysis

Page 70: SWAT Introduction 2010 Full

DPSIR

Driving forcePressureStateImpactResponse

Page 71: SWAT Introduction 2010 Full

Climate change and land use change impacts

After Faith Githui

Page 72: SWAT Introduction 2010 Full

Climate change and land use change impacts

After Faith Githui

Page 73: SWAT Introduction 2010 Full

Performances

Page 74: SWAT Introduction 2010 Full

Thank you!