syn mc phasor diagram-part 1

Upload: anoopingle9

Post on 25-Feb-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    1/67

    Flux and MMF PhasorsThe flux produced by field winding

    1 1

    2 2

    3 3

    4 4No of

    conductors

    MMF

    MMF is sinusoidal

    Flux is sinusoidal

    Therefore, nduced

    ar!ature "oltage is

    sinusoidal#

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    2/67

    Flux and MMF Phasors$onsider cylindrical rotoralternator operation#

    %lternator is rotated at syn speed by pri!e !o"er

    Field wdg is excited

    %r!ature "oltage is induced which is gi"en by

    $ase 1& No 'oad (peration

    Va0=Vt0=Ef=4.44 f TphfKw

    Ef= No load voltage, Excitation voltage or Excitation emf.

    Tph= Turns per phase of arm wdg.

    f= Flux per pole produced by field winding

    Kw= Winding Factor

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    3/67

    )enerated e!f lags the flux by *++#

    %xis of Field

    fFf

    Ef

    %lternator phasor diagra! at no load

    900

    f

    Ef

    No Load Voltage,

    Excitation Voltage

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    4/67

    %xis of Field

    f

    $ase 2& nity Power Factor 'oad

    N -.1 .2

    /1

    /2 01

    02

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    5/67

    %xis of Field

    $ase 2& nity Power Factor 'oad

    -.1 .2

    /1

    /2 01

    02

    N

    f

    %xis of ar!ature

    winding .1.2

    N pole rotate anticlocwise

    $onductor .1 !o"es clocwise#

    N

    -

    !f is induced with dot polarity in .1 ..5

    n .2 cross polarity

    aFa

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    6/67

    %xis of Field

    $ase 2& nity Power Factor 'oad

    -.1 .2

    /1

    /2 01

    02

    N

    f

    %xis of ar!ature

    winding .1.2

    N pole rotate anticlocwise

    $onductor .1 !o"es clocwise#

    N

    -

    !f is induced with dot polarity in .1 ..5

    n .2 cross polarity

    ar%xis of Field

    .esultant air gap flux

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    7/67

    %xis of Field

    $ase 2& nity Power Factor 'oad

    f

    %xis of ar!ature

    winding .1.2

    ar%xis of Field

    .esultant air gap flux

    -pace6phasor diagra! of !!f and flux

    Fa

    Ff

    Fr

    Ef

    Ia

    Ti!e6phasor

    diagra! of Ef

    and Iaat upf

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    8/67

    $ase 2& nity Power Factor 'oad

    f

    ar

    $o!bined -pace and Ti!e phasor diagra! at upf

    Fa

    Ff

    Fr

    Ef

    Ia

    -N

    N

    -

    .epultion

    %ttraction

    Te

    t is a .otorwhich

    has to !o"e

    clocwise

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    9/67

    $ase 2& nity Power Factor 'oad

    f

    ar

    $o!bined -pace and Ti!e phasor diagra! at upf

    Fa

    Ff

    Fr

    Ef

    Ia

    -N

    N

    -

    .epultion

    %ttraction

    Te

    Teand are inopposite

    direction

    Field polesare leading

    to ar! poles%r! reaction

    !!f is cross6!agneti7ing at

    upf#

    lectro!agnetic

    tor8ueTeis towardsresultant !!f or flux#

    t is a .otorwhich

    has to !o"e

    clocwise

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    10/67

    $ase 3& 9ero Power Factor 'agging 'oad

    f a

    r

    $o!bined -pace and Ti!e phasor diagra! at 7ero

    pf lagging

    FaFf Fr

    Ef

    Te

    %r! reaction !!f

    is de6!agneti7ing

    at 7ero pf lagging#

    Ia

    Ff -Fa=Fr

    f - a= r

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    11/67

    $ase 4& 9ero Power Factor 'eading 'oad

    f

    ar

    $o!bined -pace and Ti!e phasor diagra! at 7ero

    pf leading

    Fa

    FfFr

    Ef

    Te

    %r! reaction !!f

    is !agneti7ing at

    7ero pf leading#

    Ia

    Ff +Fa=Fr

    f + a= r

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    12/67

    $ase :& 'aggingPower Factor 'oad

    f

    a

    r

    $o!bined -pace and Ti!e Phasor ;iagra!

    at 'agging Power Factor load

    Fa

    Ff

    Fr

    Ef

    Te

    'oad with lagging pf

    is co!!onload

    Ia

    Ff +Fa=Fr

    f + a= r

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    13/67

    $ase :& 'aggingPower Factor 'oad

    f

    aFa

    Ff

    Ia

    f

    =90+

    a

    Two !!fsare sinusoidaly distributed along

    the air gap periphery#

    The relati"e "elocity between the two !!fs

    is 7ero#

    r

    r

    ;ue to unifor! air gap

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    14/67

    $ase :& 'aggingPower Factor 'oad

    f

    aFa

    Ff

    Ia

    =90+

    r

    Er

    Ef

    r

    Er= ir ga! "oltage

    Er

    900

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    15/67

    $ase :& 'aggingPower Factor 'oad

    f

    aFa

    Ff

    Ia

    =90+

    r

    Er

    Ef Fro# air ga! "oltage,$%&tract lea'agei#!edance dro!

    (Iaxland Iara

    (IaxlEr= ir ga! "oltage

    IaraTer#inal "oltageor &%$ "oltage i$o&tainedVt

    In air ga! "oltage, add)%t%al Ind%ctancedro!, (Ia*#

    (Ia*#

    No load "oltage Efi$ o&tained

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    16/67

    $ase :& 'aggingPower Factor 'oad

    Ia

    Er

    Ef

    (Iaxl

    Iara

    Vt

    (Ia*#*#+xl =*$(Ia*$

    =90+

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    17/67

    $ase :& 'aggingPower Factor 'oad

    Ia

    Ef

    Iara

    Vt

    *#+xl =*$(Ia*$

    T%$ "oltage e%ation ofcl. rotorgenerator i$

    Ef=Vt+Iara+(Ia*$

    Te angle &et/een Vt

    and Iai$ , !o/er factor

    angle

    Te angle &et/een Vtand Efi$ , !o/er angle,

    tor%e angle or loadan le

    Te angle &et/een Ef andIai$ =+, internal

    di$!lace#ent angle orinternal !o/er factorangle

    For generator Ef lead$ Vt

    =90+

    =90+ +for generator

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    18/67

    $ase :& 'aggingPower Factor 'oad

    Ia

    Ef

    Iara

    Vt

    (Ia*$

    Ef=Vt+Iara+(Ia*$=90+

    =90+ +for generator

    Eflead$ to Vt

    for 1enerator

    saaatf XIjrIVE ++=

    ct%al "aria&le$ are

    !a$or$

    22

    2

    2

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    19/67

    $ase :& 'aggingPower Factor 'oad

    Ia

    Ef

    Vt

    (Ia*

    $

    Ef=Vt+Iara+(Ia*$

    If re$i$tance i$

    neglected

    Ef=Vt+(Ia*$

    =90+

    =390+ +4 5670for generator

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    20/67

    nity Power Factor

    Ia

    Ef Vt

    (Ia*$

    Ef=Vt+Iara+(Ia*$

    If re$i$tance i$

    neglected

    Ef=Vt+(Ia*$

    =90+

    =90+ +for generator

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    21/67

    'eading Power Factor

    Ia

    Ef

    Vt(Ia*$

    Ef=Vt+Iara+(Ia*$

    If re$i$tance i$

    neglected

    Ef=Vt+(Ia*$

    =90+

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    22/67

    $ylindrical .otor -ynchronous Motor

    %xis of Field

    -.1 .2

    /1

    /2 01

    02

    Nf

    %xis of ar!ature

    winding .1.2

    For !otor ar! current is

    opposite wrt generator

    -

    N

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    23/67

    $ylindrical .otor -ynchronous Motor

    %xis of Field

    -Nf

    %xis of ar!ature

    winding .1.2

    -

    N

    Ia

    -Iar

    .epultion

    %ttraction

    t is a .otorwhich

    has to !o"e

    anticlocwise

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    24/67

    $ylindrical .otor -ynchronous Motor

    %xis of Field

    -Nf

    %xis of ar!ature

    winding .1.2

    -

    N

    Ia

    -Iar

    .epultion

    %ttraction

    Te

    This is a !otoroperation

    Field poles are;.%));behind

    the resultant air gap

    flux or by ar! poles#

    Teand are insamedirection

    lectro!agnetic

    tor8ueTeis towardsresultant !!f or flux#

    t is a .otorwhich

    has to !o"e

    anticlocwise

    Teis fro! N offieldpole to -

    of ar!pole

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    25/67

    T%$ "oltage e%ation ofcl. rotor#otor i$

    Vt=Ef+Iara+(Ia*$

    Te angle &et/een Vt

    and Iai$ , !o/er factor

    angleTe angle &et/een Vtand Efi$ , !o/er angle,

    tor%e angle or loadan le

    Te angle &et/een Ef andIai$ =-, internal

    di$!lace#ent angle orinternal !o/er factorangle

    For #otor Vt

    lead$ to Ef

    $ylindrical .otor -ynchronous Motor

    Ia

    Vt

    Iara

    Ef

    (Ia*$

    =90+

    =90+ -for #otor

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    26/67

    Ia

    Vt

    Ef

    (Ia*

    $

    If re$i$tance i$

    neglected

    Vt=Ef+(Ia*$

    $ylindrical .otor -ynchronous Motor

    Vt=Ef+Iara+(Ia*$

    Ia

    Vt

    Ef

    (Ia*

    $

    a$or :iagra# at Lagging o/er Factor

    =390+ ; 4 5670for #otor

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    27/67

    nity Power Factor

    Ia

    EfVt

    (Ia*$

    $ylindrical .otor -ynchronous Motor

    If re$i$tance i$

    neglected

    Vt=Ef+(Ia*$

    Vt=Ef+Iara+(Ia*$

    =390+ ; 4 5670for #otor

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    28/67

    'eading Power Factor

    If re$i$tance i$

    neglected

    Vt=Ef+(Ia*$

    Vt=Ef+Iara+(Ia*$

    $ylindrical .otor -ynchronous Motor

    Ia

    Ef

    Vt

    (Ia*$

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    29/67

    -alient Pole-ynchronous )eneratorn cyl rotor, air gap is unifor!#

    The ar! flux is independent of spatial orientation

    wrt field poles#

    n salient pole, air gap is not unifor!#

    The reluctancealong d axis is !uch s!allerthan

    8 axis#

    The ar! flux is greateralong d axis than along 8

    axis#

    .esol"e ar! !!f along d axis and along 8 axis#

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    30/67

    %.M%T. MMF

    ; 6 %xis

    %.M%T.

    F';

    = 6 %xis

    %r! wdg along =6axis

    %r! wdg along ;6axis

    -alient Pole-ynchronous )enerator

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    31/67

    n cyl rotor, air gap is unifor!#

    The ar! flux is independent of spatial orientation

    wrt field poles#

    n salient pole, air gap is not unifor!#

    The reluctancealong d axis is !uch s!allerthan

    8 axis#

    The ar! flux is greateralong d axis than along 8

    axis#

    .esol"e ar! !!f along d axis and along 8 axis#

    -o two !!falong d axis and one !!falong 8

    axis

    -alient Pole-ynchronous )enerator

    - li P l - h )

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    32/67

    $onsider ar! current Ialagging to Efby *++#

    -alient Pole-ynchronous )enerator

    f

    a

    r

    $o!bined -pace and

    Ti!e phasor diagra!

    Fa

    Ff Fr

    Ef

    Te

    Ia

    Ff -Fa=Fr

    f - a= r

    : :ing action

    ?e$%ltant fl%x decrea$e$.

    r

    - li t P l - h ) t

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    33/67

    $onsider ar! current Ialeading to Efby *++#

    -alient Pole-ynchronous )enerator

    f

    ar

    $o!bined -pace and

    Ti!e phasor diagra!

    Fa

    Ff

    Fr

    Ef

    TeIa

    Ff +Fa=Fr

    f + a= r

    : :ing action

    ?e$%ltant fl%x increa$e$.

    r

    - li t P l - h ) t

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    34/67

    $onsider ar! current Iais in phase with Ef.

    -alient Pole-ynchronous )enerator

    f

    a

    $o!bined -pace and

    Ti!e phasor diagra!

    Fa

    Ff

    Ef

    Te

    Ia

    Ff +Fa=Fr

    f +a= r

    : : Bf Phasor diagra! is correct#

    4A3...43 q**qaaatf XXIXjIrIVE =

    e

    Ef=Ef !1 b

    Now consider the phasor diagra! of salient

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    61/67

    +

    p g

    pole syn M(T(. at leadingpower factor#

    Vt

    Iara

    Ia

    (Id*d(I*

    Id

    I

    Ef

    First draw a perpendicular line

    fro! base of Iara for )BTB?.

    EfG

    o

    a&

    cd

    bc is perpendicular to Ia, so

    !ust be reacti"e drop Ia*

    (Ia*and extend Ia line

    Fro! base of Iara,draw

    perpendicular line on od

    eaG

    $onsider A bce and oac

    cb =+

    b=bc cos(+)bc=IaX3 =IaX cos(+)

    =IqXIqXq

    =X2222()Xq

    Now consider the phasor diagra! of salient

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    62/67

    +

    p g

    pole syn M(T(. at leadingpower factor#

    Vt

    Iara

    Ia

    (Id*d(I*

    Id

    I

    Ef

    EfG

    o

    a&

    cd

    (Ia*

    eaG

    Ef!= Vt1 Iara1 jIaXq

    ="#a$%

    Th&s 's cac&at*

    Th ca aso b cac&at* fro, -oac

    =

    oa

    ac

    HH aaoa

    bcab

    +

    4I.3..........aat

    qat

    rIcosV

    XIs'+V

    +=

    ( ) =+ta

    Now consider the phasor diagra! of salient

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    63/67

    +

    p g

    pole syn M(T(. at leadingpower factor#

    Vt

    Iara

    Ia

    (Id*d(I*

    Id

    I

    Ef

    EfG

    o

    a&

    cd

    (Ia*

    eaG

    Now obtainEf 1 Ef!=c* c)*)

    4+= s'+(XIXI qa**

    q*** XIXI =

    43 q** XXI = ?Positi"e

    EfEf> Phasor diagra! is correct#

    4A3...43 q**qaaatf XXIXjIrIVE +=Ef=Ef !+c*

    xa!ple

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    64/67

    p

    % salient pole synchronous generator has the

    following per unit para!eters&X*=.3 Xq=0.53 ra=0.06

    $o!pute the excitation "oltage Efon a per unit basis,

    when the generator is deli"ering rated

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    65/67

    The "oltage e8uation for salient pole syn

    generator is&

    Ef

    IaraVt

    Ia

    (Id*d

    (I*

    Id

    I

    Ef=Vt +Iara +(Id*d +(I* Efi$ al/a$along axi$

    3a4 Kit Vta$ a reference !a$or,

    Vt=6.00+(0.00Vt=?ated "oltage

    For rated 'V, Ia= ?ated "al%e

    Ia=6.00 178.9 For 0.7 !f lagging=0.7 - (0.

    Fir$t calc%late EfG=Vt +Iara +(Ia*

    Iara=30.7 - (0.430.M4

    =30.0 - (0.06M4

    -olution

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    66/67

    Ef

    IaraVt

    Ia

    (Id*d

    (I*

    Id

    I

    EfG=Vt +Iara +(Ia*

    (Ia*=

    = 30.7 +(0.4

    (30.7 - (0.430.74

    =36.00+(0.004+30.0 - (0.06M4+

    30.7 +(0.4

    = 6. M +(0.M

    = 6. M .8

    =.0 and +=.+A.9=M9.M

    Id = Ias'3+4 = 6.00s'3M9.M4

    =0.7

    I = Iacos3+4 =0.M0O

    Ef= EfG +Id3*d-*4

  • 7/25/2019 Syn Mc Phasor Diagram-Part 1

    67/67

    f f d d

    3&4 a$or diagra# for leading !f

    .8= 6.997

    Ef

    IaraVtIa

    (Id*d

    (I*

    Id

    I

    =+A.9Ia=0.7 + (0. Iara=0.0 + (0.06M

    (Ia*,

    (Ia*=-0.7+ (0.

    EfG

    EfG=Vt +Iara +(Ia*=0.M9+(0.MM=0.79 60.60

    0

    60.600=

    -=6A.Id=0.AM

    Ef= EfG+Id3*d-*4

    = 0 9A 60 600