synchronization in ensembles of oscillators: theory of...

56
Synchronization in Ensembles of Oscillators: Theory of Collective Dynamics A. Pikovsky Deapartment of Physics and Astronomy, Potsdam University

Upload: others

Post on 14-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Synchronization in Ensembles ofOscillators: Theory of Collective

Dynamics

A. Pikovsky

Deapartment of Physics and Astronomy, Potsdam University

Page 2: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Content

• Synchronization in ensembles of coupled oscillators

• Watanabe-Strogatz theory, its relation to Ott-Antonsen eq uations

and its generalization for hierarchical populations

• Partial synchronization due to nonlinear coupling

• Self-organizing chimera

• Populations with resonant and nonresonant coupling

1

Page 3: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Ensembles of globally (all-to-all) couples oscillators

• Physics: arrays of Josephson junctions,

multimode lasers,. . .

• Biology and neuroscience: cardiac

pacemaker cells, population of fireflies,

neuronal ensembles. . .

• Social behavior: applause in a large au-

dience, pedestrians on a bridge,. . .

2

Page 4: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Main effect: Synchronization

Mutual coupling adjusts phases of indvidual systems, which start to keep

pace with each other

Synchronization can be treated as a nonequilibrium

phase transition!

3

Page 5: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Attempt of a general formulation

~xk = ~f (~xk,~X,~Y) individual oscillators (microscopic)

~X =1N ∑

k~g(~xk) mean fields (generalizations possible)

~Y =~h(~X,~Y) macroscopic global variables

Typical setup for a synchronization problem:

~xk(t) – periodic orchaotic oscillators

~X(t),~Y(t) periodic or chaotic ⇒ collective synchronous rhythm

~X(t),~Y(t) stationary ⇒ desynchronization

4

Page 6: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Description in terms of macroscopic variables

The goal is to describe the ensemble in terms of macroscopic variables

~W, which characterize the distribution of~xk,

~W =~q(~W,~Y) generalized mean fields

~Y =~h(~X(~W),~Y) global variables

as a possibly low-dimensional dynamical system

Below: how this program works for phase oscillators by virtue of Watanabe-

Strogatz and Ott-Antonsen approaches

5

Page 7: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Kuramoto model: coupled phase oscillators

Phase oscillators (ϕk ∼ xk) with all-to-all pair-wise coupling

ϕk = ωk+ ε1N

N

∑j=1

sin(ϕ j −ϕk)

= ε

1N

N

∑j=1

sinϕ j

cosϕk− ε

1N

N

∑j=1

cosϕ j

sinϕk

= ωk+ εR(t)sin(Θ(t)−ϕk) = ωk+ εIm(Ze−iϕk)

System can be written as a mean-field coupling with the mean field

(complex order parameter Z ∼ X )

Z = ReiΘ =1N∑

keiϕk

6

Page 8: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Synchronisation transitionεc ∼ width of distribution of frequecies g(ω)∼ “temperature”

Z

small ε: no synchronization,

phases are distributed uniformly,

mean field vanishes Z = 0

large ε: synchronization, distri-

bution of phases is non-uniform,

finite mean field Z 6= 07

Page 9: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Watanabe-Strogatz (WS) ansatz

[S. Watanabe and S. H. Strogatz, PRL 70 (2391) 1993; Physica D 74 (197) 1994]

Ensemble of identical oscillators driven by the same complex field H(t)

dϕkdt

= ω(t)+ Im(

He−iϕk)

k= 1, . . . ,N

Mobius transformation to WS variables

ρ(t), Φ(t), Ψ(t), ψ1 = const, . . . ψN = const

eiϕk = eiΦ(t) ρ(t)+ei(ψk−Ψ(t))

ρ(t)ei(ψk−Ψ(t))+1

8

Page 10: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

yields WS equations

dρdt

=1−ρ2

2Re(He−iΦ) ,

dΦdt

= ω+1+ρ2

2ρIm(He−iΦ) ,

dΨdt

=1−ρ2

2ρIm(He−iΦ) .

or in a complex form for z= ρeiΦ, α = Φ−Ψ

dzdt

= iωz+12(H −z2H∗)

dαdt

= ω+ Im(z∗H)

9

Page 11: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Why Mobius?

Phase equation ϕ = ω(t)− i(He−iϕ−H∗eiϕ)

can be rewritten for z= eiϕ as z= iωz+H −H∗z2

This Ricatti equations, for constant coefficients, has as solutions rational

functions z(t) = Az(0)+BCz(0)+D

Combination of rational functions is rational

Even for non-constant coefficients the solution can be represented as a

rational function with time-dependent parameters

cf.: Bicycle rear wheel governed by arbitrary trajectory of the front

wheel, by M. Levi

10

Page 12: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Interpretation of WS variables

ρ measures the width of the bunch:

ρ = 0 if the mean field Z = ∑keiϕk van-

ishes

ρ = 1 if the oscillators are

fully synchronized and |Z|= 1

Φ is the phase of the bunch

Ψ measures positions of individual oscilla-

tors with respect to the bunch

ρ

Φ

Ψ

11

Page 13: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Synchronization of uncoupled oscillators by external

forces

Ensemble of identical oscillators driven by the same complex field H(t)

dϕkdt

= ω(t)+ Im(

H(t)e−iϕk)

k= 1, . . . ,N

What happens to the WS variable ρ?

ρ → 1: synchronization

ρ → 0: desynchronization

Two basic examples oscillators and Jusephson junctions:

ϕk = ω−σξ(t)sinϕkh

2eRdϕkdt

+ Icsinϕk = I(t)

12

Page 14: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Hamiltonian reduction

ρ =1−ρ2

2Re(H(t)e−iΦ) ,

Φ = Ω(t)+1+ρ2

2ρIm(H(t)e−iΦ) .

in variables

q=ρcosΦ√

1−ρ2, p=−

ρsinΦ√

1−ρ2,

reduces to a Hamiltonian system with Hamiltonian,

H (J,Φ, t) = Ω(t)J−H(t)

2J(2J+1)2

sinΦ .

13

Page 15: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Action-angle variables

J =ρ2

2(1−ρ2), Φ

Hamiltonian reads

H (J,Φ, t) = Ω(t)J−H(t)

2J(2J+1)2

sinΦ

Synchrony: H ,J → ∞Asynchrony: H ,J → 0

For general noise: “Energy” grows ⇒ synchronization by common noise

14

Page 16: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Analytic solution for the initial stage

Close to asynchrony: energy is small, equations can be linearized ⇒

exact solution

H ,J ∼ σ2t

Close to synchrony:

H ,J ∼ exp[λt]

15

Page 17: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

10-2

100

102

104

106

0.1 1 10 100 1000 10000

t

〈J〉

σ = 0.05

σ = 0.15

σ = 0.5

10-2

100

102

104

106

0.0001 0.001 0.01 0.1 1 10

σ2t/8

〈J〉

16

Page 18: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Globally coupled ensembles

Kuramoto model with equal frequencies

ϕk = ω+ εIm(Ze−iϕk)

belongs to the WS-class

dϕkdt

= ω(t)+ Im(

H(t)e−iϕk)

k= 1, . . . ,N

where H is the order parameter

Z = ReiΘ =1N∑

keiϕk

17

Page 19: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Complex order parameters via WS variables

Complex order parameter can be represented via WS variables as

Z = ∑k

eiϕk = ρeiΦγ(ρ,Ψ) γ = 1+(1−ρ−2)∞∑l=2

Cl(−ρe−iΨ)l

where Cl = N−1∑keil ψk are Fourier harmonics of the distribution of

constants ψk

Important simplifying case (adopted below):

Uniform distribution of constants ψk

Cl = 0 ⇒ γ = 1 ⇒ Z = ρeiΦ = z

In this case WS variables yield the order parameter directly !18

Page 20: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Closed equation for the order parameter for the

Kuramoto-Sakaguchi model

Individual oscillators:

ϕk = ω+ ε1N

N

∑j=1

sin(ϕ j −ϕk+β) = ω+ εIm(Zeiβe−iϕk)

Equation for the order parameter is just the WS equation:

dZdt

= iωZ+ε2eiβZ−

ε2e−iβ|Z|2Z

Closed equation for the real order parameter R= |Z|:

dRdt

=ε2R(1−R2)cosβ

19

Page 21: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Simple dynamics in the Kuramoto-Sakaguchi model

dRdt

=ε2R(1−R2)cosβ

Attraction: −π2 < β < π

2 =⇒

Synchronization, all phases identical ϕ1 = . . . = ϕN, order parameter

large R= 1

Repulsion: −π < β <−π2 and π

2 < β < π =⇒

Asynchrony, phases distributed uniformely, order parameter vanishes

R= 0

20

Page 22: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Linear vs nonlinear coupling I

• Synchronization of a periodic autonomous oscillator is a nonlinear

phenomenon

• it occurs already for infinitely small forcing

• because the unperturbed system is singular (zero Lyapunov expo-

nent)

In the Kuramoto model “linearity” with respect to forcing is assumed

x = F(x)+ ε1f1(t)+ ε2f2(t)+ · · ·

ϕ = ω+ ε1q1(ϕ, t)+ ε2q2(ϕ, t)+ · · ·

21

Page 23: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Linear vs nonlinear coupling II

Strong forcing leads to “nonlinear” dependence on the forcing amplitude

x = F(x)+ εf(t)

ϕ = ω+ εq(1)(ϕ, t)+ ε2q(2)(ϕ, t)+ · · ·

Nonlineraity of forcing manifests itself in the deformation/skeweness of

the Arnold tongue and in the amplitude depnedence of the phase shift

forcing frequencyforc

ing

ampl

itude

ε linear nonlinear

22

Page 24: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Linear vs nonlinear coupling III

Small each-to-each coupling ⇐⇒ coupling via linear mean field

1 N2 3

ΣX

Y

linearunit

Strong each-to-each coupling ⇐⇒ coupling via nonlinear mean field

[cf. Popovych, Hauptmann, Tass, Phys. Rev. Lett. 2005]

1 N2 3

ΣX

Y

nonlinearunit

23

Page 25: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Nonlinear coupling: a minimal model

We take the standard Kuramoto-Sakaguchi model

ϕk = ω+ Im(He−iϕk) H ∼ εe−iβZ Z=1N ∑

jeiϕ j = ReiΘ

and assume dependence of the acting force H on the “amplitude” of the

mean field R:

ϕk = ω+A(εR)εRsin(Θ−ϕk+β(εR))

E.g. attraction for small Rvs repulsion for large R

24

Page 26: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

WS equations for the nonlinearly coupled ensemble

dRdt

=12R(1−R2)εA(εR)cosβ(εR)

dΦdt

= ω+12(1+R2)εA(εR)sinβ(εR)

dΨdt

=12(1−R2)εA(εR)sinβ(εR)

25

Page 27: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Full vs partial synchrony

All regimes follow from the equation for the order parameter

dRdt

=12R(1−R2)εA(εR)cosβ(εR)

Fully synchronous state: R= 1, Φ = ω+ εA(ε)sinβ(ε)Asynchronous state: R= 0Partially synchronous bunch state

0< R< 1 from the condition A(εR) = 0:

No rotations, frequency of the mean field = frequency of the oscillations

Partially synchronized quasiperiodic state

0< R< 1 from the condition cosβ(εR) = 0:

Frequency of the mean field Ω = ϕ = ω±A(εR)(1+R2)/2Frequency of oscillators ωosc= ω±A(εR)R2

26

Page 28: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Self-organized quasiperiodicity

• frequencies Ω and ωoscdepend on ε in a smooth way

=⇒ generally we observe a quasiperiodicity

• attraction for small mean field vs repulsion for large mean field

=⇒ ensemble is always at the stabilty border β(εR) =±π/2, i.e.

in a

self-organized critical state

• critical coupling for the transition from full to partial synchrony:

β(εq) =±π/2• transition at “zero temperature” like quantum phase transition

27

Page 29: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Simulation: loss of synchrony with increase of coupling

0 0.2 0.4 0.6 0.8 10

0.5

1

1

1.1

coupling ε

orde

rpa

ram

eter

osc,

Ωm

f

28

Page 30: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Hierarchically organized populations of oscillators

We consider populations consisting of M identical subgroups (of different

sizes)

a b c d

Each subgroup is described by WS equations

⇒ system of 3M equations completely describes the ensemble

29

Page 31: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

dρa

dt=

1−ρ2a

2Re(Hae−iΦa) ,

dΦa

dt= ωa+

1+ρ2a

2ρaIm(Hae−iΦa) ,

dΨa

dt=

1−ρ2a

2ρaIm(Hae−iΦa) .

General force acting on subgroup a:

Ha =M

∑b=1

nbEa,bZb+Fext,a(t)

nb: relative subgroup size

Ea,b: coupling between subgroups a and b30

Page 32: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Thermodynamic limit

If the number of subgroups M is very large, one can consider a as a

continuous parameter and get a system

∂ρ(a, t)∂t

=1−ρ2

2Re(H(a, t)e−iΦ)

∂Φ(a, t)∂t

= ω(a)+1+ρ2

2ρIm(H(a, t)e−iΦ)

∂Ψ(a, t)∂t

=1−ρ2

2ρIm(H(a, t)e−iΦ)

H(a, t) = Fext(a, t)+∫

dbE(a,b)n(b)Z(b)

31

Page 33: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Relation to Ott-Antonsen equations[E. Ott and T. M. Antonsen, CHAOS 18 (037113) 2008]

• in the case when subgroups differ only by frequency

• the coupling is global but nonlinear E(ω,ω′) = εA(εR)eiβ(εR)

• for a particular case when the complex order parameter for each sub-

group is expressed via the WS variables as Z(ω) = ρ(ω)eiΦ(ω)

we obtain Ott-Antonsen integral equations

∂Z(ω, t)∂t

= iωZ+12H −

Z2

2H∗

H = εA(εR)eiβ(εR)Y Y= ReiΦ =∫

dωn(ω)Z(ω)32

Page 34: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

OA equations for Lorentzian distribution of frequencies

If

n(ω) =∆

π((ω−ω0)2+∆2)

then the integral Y =∫

dωn(ω)Z(ω) can be calculated via residues as

Y = Z(ω0+ i∆)

This yields an ordinary differential equation for the order parameter Y

dYdt

= (iω0−∆)Y+12

εA(εR)(eiβ(εR)−e−iβ(εR)|Y|2)Y

Hopf normal form / Landau-Stuart equation/ Poincare oscillator

dYdt

= (a+ ib− (c+ id)|Y|2)Y

33

Page 35: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Nonidentical oscillators with nonlinear coupling

Lorentzian distribution of natural frequencies n(ω)⇒ standard “finite temperature” Kuramoto model of globally coupled

oscillators with nonlinear coupling

(attraction for a small force, repulsion for a large force)

Novel effect: Multistability

Different partially synchronized states coexist for the same parameter

range

34

Page 36: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Multistability of synchronous and asynchronous states

in a Kuramoto model with nonlinear coupling

Nonlinear phase shift:

β = β0+ ε2R2

as: asynchronous

s: (partially) synchronous

ns: n coexisting synchronous states

-2 0 2

2

3

4

5

asas

as/s

as/2s3s

s

as/s

2s

as/2s

as/3s

β0

ε

35

Page 37: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

0

0.2

0.4

0.6

0.8

2 2.5 3 3.5 4 4.5 5

00.5

11.5

22.5

3

Ω

ε

R

36

Page 38: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Experiment[Temirbayev et al, PRE, 2013]

Linear coupling Nonlinear coupling

0.2

0.6

1

0

1

2

0 0.2 0.4 0.6 0.8 1

1.10

1.12

1.14

1.16

(a)

(b)

(c)

ε

RA

min

[V]

fm

f,f

i[k

Hz]

0.2

0.6

1

0

1

2

0 0.2 0.4 0.6 0.8 1

1.10

1.12

1.14

1.16

ε

(d)

(e)

(f)

37

Page 39: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Chimera states

Y. Kuramoto and D. Battogtokh observed in 2002 a symmetry breaking

in non-locally coupled oscillators H(x) =∫

dx′ exp[x′−x]Z(x′)

This regime was called “chimera” by Abrams and Strogatz

38

Page 40: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Chimera in two subpopulations

Model by Abrams et al:

ϕak = ω+µ

1N

N

∑j=1

sin(ϕaj −ϕa

k+α)+(1−µ)N

∑j=1

sin(ϕbj −ϕa

k+α)

ϕbk = ω+µ

1N

N

∑j=1

sin(ϕbj −ϕb

k+α)+(1−µ)N

∑j=1

sin(ϕaj −ϕb

k+α)

Two coupled sets of WS equations: ρa = 1 and ρb(t) quasiperiodic are

observed

39

Page 41: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Chimera in experiments I

Tinsley et al: two populations of chemical oscillators

40

Page 42: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Chimera in experiments IIer bei Wikipedia nach „Syn-

sich mit einer großen Vielfalt an Er-

klärungen konfrontiert: Angesichts

der breit gefächerten Verwendung

in Film und Fernsehen, Informatik,

Elektronik usw. geht die Bedeutung

Eri

k A

. Ma

rte

ns,

M

PI

für

Dy

na

mik

un

d S

elb

sto

rga

nis

ati

on

41

Page 43: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Self-emerging and turbulent chimera states at nonlinear

coupling (with G. Bordyugov)

A one-dimensional array of oscillators with non-local coupling

∂A∂t

= A−|A|2+ εeiβ0+iβ1|B|2B

B(x, t) =∫ l

−ldx′ G(x−x′)A(x′, t)

β1 = 0 corresponds to linear coupling where chimera states (part of

oscillator synchronous, part quasiperiodic) coexist with a stable syn-

chronous state [Y. Kuramoto and D. Battogtokh, 2002].

42

Page 44: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Transition to static and turbulent chimera

43

Page 45: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Multifrequency populations

ω1

ω2

ω3

ω4

Each subpopulation is described by WS/OA equations for an effective

”oscillator”

Equivalent to many coupled oscillators

Amplitude = order parameter in the subpopulation

Phases = collective phases of mean fields44

Page 46: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Multifrequency I: Non-resonantly interacting ensembles

[M. Komarov, A. P., Phys. Rev. E, v. 84, 016210 (2011)] Frequencies are different

– all interactions are non-resonant

Only amplitudes of the order parameters can be involved in the coupling

between subpopulations

General equations are of type

ρl = (−∆l −Γlmρ2m)ρl +(al +Almρ2

m)(1−ρ2l )ρl , l = 1, . . . ,L

where Γlm and Alm decsribe the coupling

45

Page 47: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Competition for synchrony

(a)

00.5

1

0

0.5

1

0

0.5

1

C1

C2

C3

(b)

00.5

1

0

0.5

1

0

0.5

1

C1

C2

C3

C12

C23

C13

Only one ensemble is synchronous – depending on initial conditions46

Page 48: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Heteroclinic synchrony cycles

Sequential synchrony (partial or full) in populations

(a) (b)

(c)0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

time

ρ 1,2,

3

ρ1

ρ2

ρ3

(d)0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

time

ρ 1,2,

3

ρ1

ρ2

ρ3

47

Page 49: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Chaotic synchrony cycles

Order parameters demonstrate chaotic oscillations

0

1

0 2000 4000 6000 8000 100000

1

time

υ1

ρ1

48

Page 50: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Multifrequency II: Resonantly interacting ensembles

[M. Komarov and A. P., Phys. Rev. Lett. 110, 134101 (2013)]

ω1

ω2

ω3

Most elementary nontrivial resonance ω1+ω2 = ω349

Page 51: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

On the level of individual oscillators (phase φ from ω1, phase ψ from

ω2, phase θ from ω3 = ω2+ω1) one has to take into account triple

interactions :

φk = . . .+Γ1∑m,l sin(θm−ψl −φk+β1)

ψk = . . .+Γ2∑m,l sin(θm−φl −ψk+β2)

θk = . . .+Γ3∑m,l sin(φm+ψl −θk+β3)

50

Page 52: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Set of three OA equations

On the level of effective oscillators describing order parameters, one has

a triplet of Stuart-Landau equations with resonant coupling terms

z1 = z1(iω1−δ1)+(ε1z1+ γ1z∗2z3−z21(ε

∗1z∗1+ γ∗1z2z∗3))

z2 = z2(iω2−δ2)+(ε2z2+ γ2z∗1z3−z22(ε

∗2z∗2+ γ∗2z1z∗3))

z3 = z3(iω3−δ3)+(ε3z3+ γ3z1z2−z23(ε

∗3z∗3+ γ∗3z∗1z∗2))

51

Page 53: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Regions of synchronizing and desynchronizing effect

from triple coupling

−π

0

π

−π 0 π

+++ ++-++-

++-

++-

-++

-++

+-+

+-+

β1−β2

2β3+

β 1+

β 2

52

Page 54: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Bifurcations in dependence on phase constants

Different transitions from full to partial to oscillating synchrony

2.4 2.6 2.8 3.00.0

0.2

0.4

0.6

0.8

1.0

ρ3Limit cycle amplitudeStable fixed pointUnstable fixed point

A-H

TC

πβ3 +β1

2.0 2.2 2.4 2.6 2.8 3.00.0

0.2

0.4

0.6

0.8

1.0

ρ3

Limit cycle amplitudeStable fixed pointUnstable fixed pointS-N

A-H

TC

β3 +β1π

53

Page 55: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Chaos of order parameters

0.3

0.6 0 0.3 0.6

0

0.3

0.6

ρ1

ρ2

ρ3ρ3

0.6 0.8 1.0 1.2 1.4

β1

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Λ

54

Page 56: Synchronization in Ensembles of Oscillators: Theory of ...irs.math.cnrs.fr/2014/pdf/Pikovsky_IRS_2014.pdf · Relation to Ott-Antonsen equations [E. Ott and T. M. Antonsen, CHAOS 18

Conclusions

• Closed system for order parameters evolution (WS variables for iden-

tical, OA for non-identical)

• Nonlinear coupling I: “nonequilibrium quantum phase transition” from

full to partial synchrony

• Nonlinear coupling II: self-organized chimera

• Multifrequency populations can be described in terms of order pa-

rameters as ”coupled oscillators”

• Resonantly and nonresonantly interacting populations – quasiperi-

odic partial synchrony, competition for synchrony and synchroniza-

tion death, heteroclinic synchrony cycles, chaotic synchrony dinam-

ics

55