synchronization of chaotic system1

Upload: vivekmay12

Post on 02-Jun-2018

243 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Synchronization of Chaotic System1

    1/52

    Synchronization of chaotic

    system

  • 8/10/2019 Synchronization of Chaotic System1

    2/52

    Contents

    Motivation

    Introduction

    Literature review Work proposed

    Work done

    Results References

  • 8/10/2019 Synchronization of Chaotic System1

    3/52

    Motivation

    Chaotic phenomena was first observed by Lorentz while working

    on weather model.

    Pecora & Carroll first proposed chaotic system synchronization

    and potential possibility of its use in secure communication [1].

    Survey of different application areas of chaotic system is

    presented in [2]. Application areas are

    Mechanical System [3][4]

    Chemical System [5]

    Biological System [6]

    Economics [7]

    Electrical System [8]

  • 8/10/2019 Synchronization of Chaotic System1

    4/52

    Motivation

    Keeping in view different applications it is pertinent to

    explore chaotic behavior of different systems, their control

    and synchronization.

  • 8/10/2019 Synchronization of Chaotic System1

    5/52

    Introduction

    As the proposed work will revolve around nonlinear

    systems and specifically chaotic/hyperchaotic systems so it

    is important to understand their typical behavior.

  • 8/10/2019 Synchronization of Chaotic System1

    6/52

    Linear ode

    if y is a function of x then general form of a Linear ordinary

    differential equation of order n is

    where each ai as well as f depends on the independent variable x

    alone and does not have the dependent variable y or any of its

    derivatives in it.

  • 8/10/2019 Synchronization of Chaotic System1

    7/52

    Nonlinear ode

    Nonlinear because of exp term

    system of nonlinear equations because of the terms xz and xy

  • 8/10/2019 Synchronization of Chaotic System1

    8/52

    Linear System

    Behavior of the linear system depends on its parameters

  • 8/10/2019 Synchronization of Chaotic System1

    9/52

    Nonlinear System

    Similarly let us study the effect of variation of parameter on the

    behavior of Chua System

    [ ]z c y pz

    [ ( ) ]y s a y x z

    ( ) ( )x a y x G x , 1

    ( ) [1 ( 1)]*sgn( ), 1 10

    [10( 10) (9b 10)]*sgn( ), 10

    x x

    G x b x x x

    x x x

  • 8/10/2019 Synchronization of Chaotic System1

    10/52

    Bifurcation Diagram

  • 8/10/2019 Synchronization of Chaotic System1

    11/52

    Phase Plot for various values of c

  • 8/10/2019 Synchronization of Chaotic System1

    12/52

    Phase Plot for various values of c

  • 8/10/2019 Synchronization of Chaotic System1

    13/52

    Literature Review

    Various aspects of chaos synchronization has been

    discussed in a review paper [9]

    Uncertainty in parameters has been addressed in literature

    using adaptive estimation of parameters. [10-12]

    A review paper [13] has considered different work [14-21]

    and has reached to the conclusion that all these

    methodologies can be derived form the work given in [22]

  • 8/10/2019 Synchronization of Chaotic System1

    14/52

    Literature Review

    Observer based synchronization: Observers are used toestimate the states of the system. Theory of Non-linearobserver has been discussed in [23].

    Different types of observer based synchronization [24] likeLMI (linear matrix Inequality) approach [25-27], slidingmode [28-30], Adaptive sliding mode[31], Adaptiveobserver [32], Differential mean value theorem [33] basedobserver, Nonlinear unknown input observer (NUIO) [34],have been reported in literature.

    Synchronization of chaotic system in the presence of noise[35] and in systems driven by common noise [36] has beenobserved

  • 8/10/2019 Synchronization of Chaotic System1

    15/52

    Research Gaps

    On the basis of Literature review following gaps are identified

    Projective synchronization of Time delayed systems

    Nonlinear Unknown Input Observer based synchronization

    using Differential Mean Value Theorem Adaptive Sliding Mode Observers are not explored to much

    depth

  • 8/10/2019 Synchronization of Chaotic System1

    16/52

    Proposed Work

    1. Synchronization with uncertain parameters

    a) Adaptive Synchronization of chaotic/ hyperchaotic

    systems with uncertainty in parameters

    b) Extension to time delayed systemsc) Synchronization of different order systems

  • 8/10/2019 Synchronization of Chaotic System1

    17/52

    Proposed Work

    2. Observer Based synchronization scheme

    a) Observer design for NUIO (Nonlinear Unknown Input

    Observer) case and extension to synchronization

    b) Reduced order synchronization3. Contraction Theory based synchronization scheme with

    and without uncertainty.

  • 8/10/2019 Synchronization of Chaotic System1

    18/52

    Proposed Work

    4. Robust Observer design and application to

    synchronization

    a) Sliding Mode based approach

    b) Robust adaptive synchronization schemec) Synchronization in the presence of noise

  • 8/10/2019 Synchronization of Chaotic System1

    19/52

    Work done so far

    Course WorkSubjects AdaptiveSignal

    Processing

    Chaos Control

    and

    Synchronizatio

    n

    Nonlinear

    Control

    Research

    Methodology

    Grades BC AB AB A

    Utility Wiener filter

    Steepest

    descent algo

    LMS algo

    RLS algo

    Features of

    chaos

    Parameter

    dependent

    Synchronizationadaptive,

    - observer

    based, phase,

    communicati

    on

    Feedback

    Linearization

    Sliding

    Control

    BacksteppingAdaptive

    Control

  • 8/10/2019 Synchronization of Chaotic System1

    20/52

    Work done so far

    Synchronization of chaotic systems with uncertainty in

    parameters

    Adaptive Synchronization of time delayed chaotic systems

    with parameter uncertainty

    Nonlinear unknown input observer design

    Sliding mode based observer design

  • 8/10/2019 Synchronization of Chaotic System1

    21/52

    Synchronization of Chaotic System

    Unidirectional: Master-Slave

    Synchronization in which typically two systems

    are synchronized such that slave system

    mimics the motion of master system.

    Bidirectional: may involve several systems

    synchronizing without prescribed hierarchy.

  • 8/10/2019 Synchronization of Chaotic System1

    22/52

    Master-Slave Synchronization

    Master System Slave System

    ( ) ( )

    ; ::

    is a parameter vector

    of the sytem

    m m m

    m mxk k

    x f x F x

    x R f R RF R R R

    ( ) ( ) U

    ; :

    :

    is a parameter vector

    of the sytem

    U is the controller

    m m m

    m mxl l

    y g y G y

    y R g R R

    G R R R

  • 8/10/2019 Synchronization of Chaotic System1

    23/52

    Master-Slave Synchronization

    Error vector

    1 2( , ,..., )

    0

    m

    i

    e y x

    diag

    1 Complete Synchronization

    1 Anti Synchronization

    Projective Synchronization

    i

    i

    i

  • 8/10/2019 Synchronization of Chaotic System1

    24/52

    Master-Slave Synchronization

    Error vector

    1 2( , ,..., )

    0

    m

    i

    e y x

    diag

    Choose a suitable

    controller such that

    0

    ( ) ( )

    ( ( ) ( ) )

    ( ) ( ) ( )

    ( )

    limt y xe y x

    e g y G y

    f x F x U

    U g y G y f x

    F x ke

  • 8/10/2019 Synchronization of Chaotic System1

    25/52

    Master-Slave Synchronization

    Error vector

    1 2( , ,..., )

    0

    m

    i

    e y x

    diag

    0

    ( ) ( )

    ( ( ) ( ) )

    ( ) ( ) ( )

    ( )

    limt

    y x

    e y x

    e g y G y

    f x F x U

    U g y G y f x

    F x ke

    e ke

  • 8/10/2019 Synchronization of Chaotic System1

    26/52

    Example

    Hyper-Chaotic Lorenz Lu System

    1 1 2 1 4

    2 1 1 2 1 3

    3 1 2 1 3

    4 2 3 1 4

    1 2 3 4

    1 1 1 1

    1 1

    1 1

    ( )

    , , , are state variables

    , , , are parameters

    10, 8 / 3

    12, 1

    x a x x x

    x c x x x x

    x x x b x

    x x x d x

    x x x x

    a b c d

    a b

    c d

    1 2 2 1

    2 2 2 1 3

    3 1 2 2 3

    1 2 3

    2 2 2

    2 2 2

    ( )

    , , are state variables

    , , are parameters

    36, 3, 20

    y a y y

    y c y y y

    y y y b y

    y y y

    a b c

    a b c

  • 8/10/2019 Synchronization of Chaotic System1

    27/52

    Example

    Hyper-Chaotic Lorenz Lu System

  • 8/10/2019 Synchronization of Chaotic System1

    28/52

    Example

    Hyper-Chaotic Lorenz Lu System

    1 1 2 1 4

    2 1 1 2 1 3

    3 1 2 1 3

    4 2 3 1 4

    1 2 3 4

    1 1 1 1

    1 1

    1 1

    ( )

    , , , are state variables

    , , , are parameters

    10, 8 / 3

    12, 1

    x a x x x

    x c x x x x

    x x x b x

    x x x d x

    x x x x

    a b c d

    a b

    c d

    1 2 2 1 1

    2 2 2 1 3 2

    3 1 2 2 3 3

    4 4

    1 2 3

    2 2 2

    2 2 2

    ( )

    0

    , , are state variables

    , , are parameters

    36, 3, 20

    y a y y u

    y c y y y uy y y b y u

    y u

    y y y

    a b c

    a b c

  • 8/10/2019 Synchronization of Chaotic System1

    29/52

    Example

    Error dynamics e y x

    1 2 2 1 1 1 2 1 1 4 1

    2 2 2 1 3 2 1 1 2 2 2 1 3 2

    3 1 2 2 3 3 1 2 3 1 3 3

    4 4 2 3 4 1 4 4

    ( ) ( )e a y y a x x x u

    e c y y y c x x x x u

    e y y b y x x b x ue x x d x u

    e ke

  • 8/10/2019 Synchronization of Chaotic System1

    30/52

    Example

    Error dynamics e y x

    1 2 2 1 1 1 2 1 1 4 1

    2 2 2 1 3 2 1 1 2 2 2 1 3 2

    3 1 2 2 3 3 1 2 3 1 3 3

    4 4 2 3 4 1 4 4

    ( ) ( )e a y y a x x x u

    e c y y y c x x x x u

    e y y b y x x b x ue x x d x u

    1 2 2 1 1 1 2 1 1 4 1 1

    2 2 2 1 3 2 1 1 2 2 2 1 3 2 2

    3 1 2 2 3 3 1 2 3 1 3 3 3

    4 4 2 3 4 1 4 4 4

    ( ) ( )u a y y a x x x k e

    u c y y y c x x x x k e

    u y y b y x x b x k e

    u x x d x k e

  • 8/10/2019 Synchronization of Chaotic System1

    31/52

    Example

  • 8/10/2019 Synchronization of Chaotic System1

    32/52

    M-S Synchronization with Parameter

    Uncertainty

    Error vector

    1 2( , ,..., )

    0

    m

    i

    e y x

    diag

    0

    ( ) ( )

    ( ( ) ( ) )

    ( ) ( ) ( )

    ( )

    limt

    y x

    e y x

    e g y G y

    f x F x U

    U g y G y f x

    F x ke

    e ke

  • 8/10/2019 Synchronization of Chaotic System1

    33/52

    M-S Synchronization with Parameter

    Uncertainty

    Then 0limt

    y x

    Theorem:If the adaptive controller and the

    adaptive laws are chosen as

    U

    ( ) ( ) ( ) ( )

    ( )

    ( )

    T T

    T

    U g y G y f x F x ke

    F x e

    G y e

  • 8/10/2019 Synchronization of Chaotic System1

    34/52

    M-S Synchronization with Parameter

    Uncertainty

    1( )

    2

    0

    T T T

    T T T

    T

    V e e

    V e e

    V ke e

    Proof:Let us choose the Lyapunov function as

    where ; )

  • 8/10/2019 Synchronization of Chaotic System1

    35/52

    M-S Synchronization with Parameter

    Uncertainty

  • 8/10/2019 Synchronization of Chaotic System1

    36/52

    M-S Synchronization with Parameter

    Uncertainty

  • 8/10/2019 Synchronization of Chaotic System1

    37/52

    Observer Design

  • 8/10/2019 Synchronization of Chaotic System1

    38/52

    Synchronization of Chaotic System

    using Observer

    Master System( ) ( ) ( ) ...(1)

    where ; ;

    ( ) : nonlinear vector

    function

    is the number of nonlinearities

    n nxn nxm

    n m

    x t Ax t Bf x

    x R A R B R

    f x R R

    m

  • 8/10/2019 Synchronization of Chaotic System1

    39/52

    Synchronization of Chaotic System

    using Observer

    Master System( ) ( ) ( ) ...(1)

    where ; ;

    ( ) : nonlinear vector

    function

    is the number of nonlinearities

    n n n n m

    n m

    x t Ax t Bf x

    x R A R B R

    f x R R

    m

    Observer

    1

    if ( ) is scaler fucnction i.e. 1

    ( ) ( ) ( ) where

    Observer for the master system( ) ( ) ( ( ) ( )) ...(2)

    where ( ) ( ) ( )

    Define ( ) ( ) ( )

    ( ) ( ) ( )

    n

    f x m

    y t f x Kx t K R

    x Ax t Bf x B y t y t

    y t f x Kx t

    e t x t x t

    e t A Bk e t

    ...(3)

    by choosing suitable error system (3)

    can be made stable asymptotically

    so ( ) ( ) as

    k

    x t x t t

  • 8/10/2019 Synchronization of Chaotic System1

    40/52

    Synchronization of Chaotic System

    using Observer

    Master System( ) ( ) ( ) ...(1)

    where ; ;

    ( ) : nonlinear vector

    function

    is the number of nonlinearities

    n n n n m

    n m

    x t Ax t Bf x

    x R A R B R

    f x R R

    m

    Observer

    1

    if ( ) is nonlinear vector fucnction

    ( ) ( ) ( ) where

    Observer for the master system

    ( ) ( ) (t)( ( ) ( )) ...(4)

    ( ) ( (t) ( )) ( ) ( ( ) ( )) ...(5)

    n

    T

    T

    f x

    y t K t x t K R

    x Ax t Bf x BK y t y t

    e t A BK K t e t B f x f x

  • 8/10/2019 Synchronization of Chaotic System1

    41/52

    Synchronization of uncertain Chaotic

    System using Sliding Mode Observer

    Master System

    1

    2

    ( ) ( ) ( ) ( , ) ...(1)

    where ; ;

    ( ) : nonlinear vector

    function

    ( , ) : denotes system

    uncertainties

    ( ) ( , ) ( , )

    ( , )

    n n n n m

    n m

    n n

    x t Ax t Bf x t x

    x R A R B R

    f x R R

    t x R R R

    f x r t x B t x

    t x r

    Observer

  • 8/10/2019 Synchronization of Chaotic System1

    42/52

    Synchronization of uncertain Chaotic

    System using Sliding Mode Observer

    Master System

    1

    2

    ( ) ( ) ( ) ( , ) ...(1)

    where ; ;

    ( ) : nonlinear vector

    function

    ( , ) : denotes system

    uncertainties

    ( ) ( , ) ( , )

    ( , )

    n n n n m

    n m

    n n

    x t Ax t Bf x t x

    x R A R B R

    f x R R

    t x R R R

    f x r t x B t x

    t x r

    Observer

    1

    0

    ( ) ( ) where

    ( ) ,

    Robust Sliding Mode Observer

    ( ) ( ) ( ) ...(2)

    constant design parameter matrix

    ( , ) is control input

    ( ) ( ) ( ( ) ( ) (

    p n

    p

    n

    m

    y t Cx t C R

    y t R p m

    x Ax t Bf x G Cx y Bv

    G R

    v x y R

    e t A e t B f x f x t

    0

    , )) ...(3)where

    x BvA A GC

  • 8/10/2019 Synchronization of Chaotic System1

    43/52

    Synchronization of uncertain Chaotic

    System using Sliding Mode Observer

    1 2 1 2

    011 012 1

    0

    021 022

    1 011 1 012 2 1 1

    Sliding Surface is designed as

    ( ) ...(4)

    ,

    [ ] ,

    0

    ( ) ( ) ( ) ( ( ) ( ) ( , )) .

    y

    m n m p

    T T m n m

    s Me FCe Fe F Cx y

    M R F R

    e e e e R e R

    A A BA B

    A A

    e t A e t A e t B f x f x t x B v

    2 021 1 022 2

    1 1 2 2

    ( )

    1 2

    ..(5 )

    ( ) ( ) ( ) ...(5 )

    So can be rewritten as

    ...(6)

    ,

    a

    b

    m m m n m

    e t A e t A e t

    s

    s M e M e

    M R M R

  • 8/10/2019 Synchronization of Chaotic System1

    44/52

    Synchronization of uncertain Chaotic

    System using Sliding Mode Observer

    Theorem: If the sliding mode manifold is chosen as (4)

    and the controller is designed as follows

    ( )s t

    1 2

    ...(7a)

    ( ) ...(7b)

    ( )( ) ...(7c)

    l n

    l

    T T

    n T

    v v v

    v f x

    s MBv r r

    s MB

    Then master system (1) and slave system (2) get

    synchronized

    f

  • 8/10/2019 Synchronization of Chaotic System1

    45/52

    Synchronization of uncertain Chaotic

    System using Sliding Mode Observer

    Proof: consider the Lypunov function

    0

    0 0

    1 1 1( ) ( )

    2 2 2

    the derivative of ( ) along the error system (3) is( )

    = ( ( ) ( ( ) ( ) ( , )) )

    = (( ) / 2) ( )

    (

    T T T T

    T T T

    T T

    T T T T

    T

    V t s s Me Me e M Me

    V tV t s s e M Me

    e M M A e t B f x f x t x Bv

    e M MA A M M e t

    s MBf x

    0 0

    max

    ) ( ) ( , )

    1( )

    2

    ( ) 0 ...(c1)

    T T T

    T T T

    s

    s

    s MBf x s MB t x s MBv

    A M MA A M M

    A

    h f h

  • 8/10/2019 Synchronization of Chaotic System1

    46/52

    Synchronization of uncertain Chaotic

    System using Sliding Mode Observer

    ( ) ( ) ( ) ( , )

    ( ) ( ) ( , )

    ( )

    ( ) 0The error system (3) will reach 0 in finite time

    (0) /

    on the surface 0 error dynamics will b

    T T T T

    T T T

    n

    T

    r

    V t s MBf x s MBf x s MB t x s MBv

    V t s MBf x s MB t x s MBv

    V t MB s

    V t s s ss

    t s

    s

    1 1 2 2

    1

    1 1 2 2

    1

    2 022 021 1 2 2 2

    e

    0

    ( ) ( ) ( )

    Design M s.t. is hurwitz ...(c2)

    M

    M

    s Me M e M e

    e M M e

    e t A A M M e A e t

    A

    h i i f i h i

  • 8/10/2019 Synchronization of Chaotic System1

    47/52

    Synchronization of uncertain Chaotic

    System using Sliding Mode Observer

  • 8/10/2019 Synchronization of Chaotic System1

    48/52

    References

    1. Pecora, Louis M., and Thomas L. Carroll. "Synchronization in chaotic systems." Physical reviewletters64.8 (1990), 821-824.

    2. Andrievskii, B. R., and A. L. Fradkov. "Control of chaos: Methods and applications. II.Applications."Automation and remote control65.4 (2004), 505-533.

    3. Elmer, F.J., Controlling Friction, Phys. Revol. E, 1998, vol. 57, 4903-4906

    4. Rozman, M.G., Urbakh, M., and Klafter, J., Controlling Chaotic Frictional Forces, Phys. Revol. E,

    1998, vol. 57, pp. 7340-7343

    5. Giona, M., Functional Reconstruction of Oscillating Reaction: Prediction and Control of ChaoticKinetics, Chem. Engr. Sci., 1992, vol. 47, pp. 2469-2474

    6. Desharnais, R.A., Costantino, R.F., Cushing, J.M., et al., Chaos and Population Control of InsectOutbreaks, Ecology Lett., 2001, vol. 4, 229-235.

    7. Ho lyst, J.A., Hagel, T., and Haag, G., Destructive Role of Competition and Noise for Control ofMicroeconomical Chaos, Chaos, Solitons, Fractals, 1997, vol. 8,1489-1505.

    8. Chen, J.H., Chau, K.T., Siu, S.M., and Chan, C.C., Experimental Stabilization of Chaos in a Voltage-Mode Dc Drive System, IEEE Trans. Circ. Syst. I , 2000, no. 47, 1093-1095

    9. Boccaletti, Stefano, et al. "The synchronization of chaotic systems." Physics Reports366.1 (2002): 1-101.

    10. Xu, Jiang, Guoliang Cai, and Song Zheng. "Adaptive synchronization for an uncertain newhyperchaotic Lorenz system." International Journal of Nonlinear Science8.1 (2009), 117-123.

  • 8/10/2019 Synchronization of Chaotic System1

    49/52

    References

    11. Wang, Zuo-Lei. "Projective synchronization of hyperchaotic L system and Liusystem." Nonlinear Dynamics59.3 (2010): 455-462.

    12. Wenwen, Ranchao, Modified projective synchronization of different-order chaotic systemswith uncertain parameters IEEE Fourth International Workshop on Chaos-Fractals Theoriesand Applications, 2011, 221-224.

    13. Adloo, Hassan, and Mehdi Roopaei. "Review article on adaptive synchronization of chaoticsystems with unknown parameters." Nonlinear Dynamics65.1-2 (2011): 141-159.

    14. Huang, J.: Adaptive synchronization between different hyperchaotic systems with fullyuncertain parameters. Phys. Lett. A 372.27, 47994804, 2008

    15. Huang, Jian. "Chaos synchronization between two novel different hyperchaotic systems withunknown parameters." Nonlinear Analysis: Theory, Methods & Applications69.11 (2008):4174-4181.

    16. Yassen, M. T. "Adaptive synchronization of two different uncertain chaotic systems." Physics

    Letters A337.4 (2005): 335-341.17. Lu, Jianquan, and Jinde Cao. "Adaptive complete synchronization of two identical or different

    chaotic (hyperchaotic) systems with fully unknown parameters." Chaos: An InterdisciplinaryJournal of Nonlinear Science15.4 (2005): 043901.

    18. Chen, Xiaoyun, and Jianfeng Lu. "Adaptive synchronization of different chaotic systems withfully unknown parameters." Physics letters A364.2 (2007): 123-128.

  • 8/10/2019 Synchronization of Chaotic System1

    50/52

    References

    19. Zhu, Congxu. "Adaptive synchronization of two novel different hyperchaotic systems withpartly uncertain parameters."Applied Mathematics and Computation215.2 (2009): 557-561.

    20. Wu, Xianyong, Zhi-Hong Guan, and Zhengping Wu. "Adaptive synchronization between twodifferent hyperchaotic systems." Nonlinear Analysis: Theory, Methods & Applications68.5(2008): 1346-1351.

    21. Zhou, Xiaobing, et al. "Adaptive control and synchronization of a novel hyperchaotic systemwith uncertain parameters."Applied Mathematics and Computation203.1 (2008): 80-85.

    22. Zhang, Huaguang, et al. "Adaptive synchronization between two different chaotic systemswith unknown parameters." Physics Letters A350.5 (2006): 363-366.

    23. Hermann, Robert, and Arthur J. Krener. "Nonlinear controllability and observability." IEEETransactions on automatic control22.5 (1977): 728-740.

    24. Celikovsky, S., V. Lynnyk, and M. Sebek. "Observer-based chaos synchronization in thegeneralized chaotic Lorenz systems and its application to secure encryption." Decision and

    Control, 2006 45th IEEE Conference on. IEEE, 2006.25. Chen, Weitian, and Mehrdad Saif. "Unknown input observer design for a class of nonlinear

    systems: an LMI approach."American Control Conference, 2006. IEEE, 2006.

    26. Mondal, Sharifuddin, Goutam Chakraborty, and Kingshook Bhattacharyy. "LMI approach torobust unknown input observer design for continuous systems with noise and uncertainties."International Journal of Control, Automation and Systems8.2 (2010): 210-219.

  • 8/10/2019 Synchronization of Chaotic System1

    51/52

    References

    27. Chen, Fengxiang, and Weidong Zhang. "LMI criteria for robust chaos synchronization of a class ofchaotic systems." Nonlinear Analysis: Theory, Methods & Applications67.12 (2007): 3384-3393.

    28. Feng, Yong, Jianfei Zheng, and Lixia Sun. "Chaos synchronization based on sliding mode observer."

    Systems and Control in Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International

    Symposium on. IEEE, 2006.

    29. Chen, Maoyin, Donghua Zhou, and Yun Shang. "A sliding mode observer based secure

    communication scheme." Chaos, Solitons & Fractals25.3 (2005): 573-578.30. Wang, Hua, et al. "Sliding mode control for chaotic systems based on LMI." Communications in

    Nonlinear Science and Numerical Simulation14.4 (2009): 1410-1417.

    31. Dimassi, Habib, Antonio Loria, and Safya Belghith. "An adaptive sliding-mode observer for nonlinear

    systems with unknown inputs and noisy measurement." IFAC World Congress, Milan, Italy. 2011.

    32. Bowong, Samuel, and Jean Jules Tewa. "Unknown inputs adaptive observer for a class of chaotic

    systems with uncertainties." Mathematical and Computer Modelling48.11 (2008): 1826-1839.

    33. Zemouche, Ali, Mohamed Boutayeb, and G. Iulia Bara. "Observer Design for Nonlinear Systems: An

    Approach Based on the Differential Mean Value Theorem." Decision and Control, and European

    Control Conference , 2005.

    34. Chen, Weitian, and Mehrdad Saif. "Unknown input observer design for a class of nonlinear systems:

    an LMI approach." IEEEAmerican Control Conference, Minneapolis USA, June 2006, pp 834-38

  • 8/10/2019 Synchronization of Chaotic System1

    52/52

    References

    35. Millerioux, Gilles, and Jamal Daafouz. "Global chaos synchronization and robust filtering in

    noisy context." Circuits and Systems I: Fundamental Theory and Applications, IEEE

    Transactions on48.10 (2001): 1170-1176.

    36. Senthilkumar, D. V., and J. Kurths. "Characteristics and synchronization of time-delay systems

    driven by a common noise." The European Physical Journal Special Topics187.1 (2010): 87-

    93.