synthesis of particle strengthened cocrfeni-based hea-cca ... · synthesis of particle strengthened...

24
Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung 1* , N. Peter 1 , E. Gärtner 2 , V. Uhlenwinkel 2 , G. Dehm 1 and E.A. Jägle 1 1. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany 2. Leibniz-Institute for Materials Engineering IWT, Bremen, Germany

Upload: others

Post on 31-Oct-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Synthesis of particle strengthened CoCrFeNi-based

HEA-CCA via laser-powder bed fusion process

2019-03-26

H.Y. Jung1*, N. Peter1, E. Gärtner2, V. Uhlenwinkel2, G. Dehm1 and E.A. Jägle1

1. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany2. Leibniz-Institute for Materials Engineering IWT, Bremen, Germany

Page 2: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

Outline

Introduction

Parameter developments of L-PBF process

Alloy developments

Nitride formation

Summary

1

2

3

4

5

Page 3: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

1. Introduction

- PaCCman project

• Title: Particle-strengthened Compositionally Complex Alloys (PaCCman)

- Interlinking powder synthesis, additive manufacturing, microstructure evolution

and deformation mechanisms

• Objectives:

(a) Synthesis of p-CCA via gas-atomization and L-PBF process

(b) Investigation of the influence of L-PBF process on micro- and nanostructure

(c) Study of deformation mechanisms of p-CCA synthesized by L-PBF process

• Team:

V. Uhlenwinkel

E. Gärtner

E. Jägle

H.Y. Jung

G. Dehm

N. Peter

Additive

Manufacturing

Powder

Technology

Deformation

Mechanism

1

+ +

Page 4: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

1. Introduction

- Laser-powder bed fusion process

2

a) Effect of L-PBF process on microstructure and phase selection of HEA/CCAs

b) Precipitation behavior and its effects on strengthening mechanisms of HEA/CCAs

CoCrFeNi AlCoCrFeNi AlCoCrFeMnNi

A1 B2 matrix (?) A2 (?)

Bulk synthesis of particle strengthened CoCrFeNi-based CCA via L-PBF process(a) Nitrides in HEA/CCA matrix

(b) B2 in A1 matrix, or (c) B2 in A2 matrix

- Research interests

(1) Near net-shape manufacturing

(2) Rapid solidification

→ Reduction of segregation, extension of solid solubility, fine microstructure

Page 5: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

Outline

Introduction

Parameter developments of L-PBF process

Alloy developments

Nitride formation

Summary and future plans

1

2

3

4

5

Page 6: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

- Powder processability (CoCrFeNi alloy)

▪ Chemical composition (ICP-OES)

Co Cr Fe Ni

Powder 24.76 25.14 25.33 24.77

3

[at.%]

2. Parameter developments of L-PBF process

Flowability and spreadability of HEA powder were improved by removal of fine

particles. Powders with 20-90 μm was chosen for further parameter optimization.

Powder ImageFlowability

SpreadabilityCI1) [%] H2)

0-90 μm

17.2 1.21

Fair level

20-90 μm

14.5 1.17

Good level

▪ Selection of particle size for L-PBF process

2 cm40 μm

2 cm40 μm

1) Compressibility index, CI

2) Hausner ratio, H

𝐶𝐼 =ρ𝑡𝑎𝑝 − ρ𝑏𝑢𝑙𝑘

ρ𝑡𝑎𝑝∗ 100

𝐻 =ρ𝑡𝑎𝑝

ρ𝑏𝑢𝑙𝑘

(Flowability data from E. Gärtner)

Page 7: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected] 4

0.25

0.50

0.75

1.00

1.50

3

4

96,9 %

99,8 %98,6 %

97,1 %

98,6 %

98,8 %

98,1 %93,2 %

67,0 %

80,8 %

88,1 %

97,9 %

69,0 % 89,8 % 94,5 %

100 200 300 400

Scan r

ate

[m

/s]

Laser power [W]

P [W] Various

v [m/s] Various

L [µm] 70

H [µm] 90

D [µm] 90

▪ Raw materials: As-atomized powder of CoCrFeNi alloy (powder size: 20-90 μm)

▪ Part: Cube box (dimension: 8x8x8 mm3)

▪ Hatching: Simple scanning pattern with 90° rotation

- Parameter optimization of L-PBF process

2. Parameters optimization of L-PBF process

Page 8: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected] 5

Scan r

ate

[m

/s]

Middle part Top part

0.25

0.50

0.75

ρr = 98.8 %

ρr = 98.1 %

ρr = 99.8 %

Sufficient melting

and stabilized melt flow

Surface

P [W] 300 W

v [m/s] Various

L [µm] 70

H [µm] 90

D [µm] 90

2. Parameters optimization of L-PBF process

▪ As-built CoCrFeNi alloy fabricated by laser power of 300 W

- Parameter optimization of L-PBF process

pore

Open pore

Balling

200 μm

200 μm

200 μm

200 μm

200 μm

200 μm

200 μm

200 μm

200 μm

Page 9: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

20 40 60 80 100 120

A1 (Fm-3m)

SLM

Inte

nsit

y [

a.u

]

2 thetal [degree]

6

As-built CoCrFeNi alloy consists of single solid solution with A1 structure.

The alloy has a strong crystallographic texture with a preferential <100> growth along the building

direction

- Microstructure evaluation of base alloy

▪ Phase analysis of CoCrFeNi alloy (P = 300 W, v = 0.25 m/s)

BD

15 μm

15 μm

(001)

Page 10: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

▪ Elemental distribution of CoCrFeNi alloy (P = 300 W, v = 0.25 m/s)

Fe

NiCo

Cr

20 nm

The CoCrFeNi alloy has homogeneous atomic distribution in as-built condition

- Microstructure evaluation of base alloys

40 μm

Cr

Co Ni

Fe

✓ SEM_EDS analysis ✓ APT analysis

8

Page 11: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected] 9

CrFeCoNi AlCrFeCoNi AlCrFeCoMnNi

A1 A2/B2 A2/B2

20 40 60 80 100 120

AlCrCoFeNi

Powder

SLM

Inte

nsit

y [

a.u

]

2 thetal [degree]

A2 (Im-3m)

B2 (Pm-3m)

20 40 60 80 100 120

A2 (Im-3m)

B2 (Pm-3m)

SLM

PowderIn

ten

sit

y [

a.u

]

2 thetal [degree]

AlCrCoFeNiMn

The AlCoCrFeNi(Mn) alloys consist of A2/B2 phase in XRD resolution

- Microstructure evaluation of base alloys

Page 12: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

As-built AlCoCrFeMnNI alloy has strong crystallographic texture, but no elemental

segregation at grain boundaries

- Microstructure evaluation of base alloy

10

(b) EDS map(a) IPF & PF map

Al

CrFe

Ni Mn

Co

BD

BCC

Page 13: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected] 11

Owing to the low boiling temperature of Mn element, the L-PBF process involved

Mn evaporation, which leads macro-scale elemental inhomogeneity of the alloys

0

500

1000

1500

2000

2500

3000

Bo

ilin

g T

em

pe

ratu

re , o

C]

Al Cr Mn Co Ni10

15

20

Co

nte

nts

[a

t%]

Elements

Low input-SLM

High input-SLM

Powder

Ingot

𝐸 =𝑃

𝑣 ∗ ℎ ∗ 𝑡

E = Energy density (J/mm3), P = laser power (W),

v = scan speed (mm/s), h = hatch spacing(mm),

t = layer thickness(mm)

- Microstructure evaluation of base alloys

✓ Inhomogeneity of Mn in L-PBF samples

L-PBF sample

Low E High E

Scan rate [m/s] 0.50 0.25

Ev [J/mm3] 64 127

▪ Laser energy density (E) affects

the temperature distribution of melt pool.

The volume based energy density

E (J/mm3) is defined as

Fe

Page 14: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

The AlCoCrFeMnNi HEA has nano-scaled phase separation by spinodal decomposition

(a) STEM-HADDF

(b) APT reconstruction

- Nanostructure of AlCrFeCoMnNi alloy

Interconnected structure Periodic concentration fluctuation

Coherent interface

A2

B2

12

(TEM data from N. Peter)

Page 15: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

Outline

Introduction

Parameter developments of L-PBF process

Alloy developments

Nitride formation

Summary

1

2

3

4

5

Page 16: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

3. Alloy developments

▪ Alloys of interest

13

+

Powder1

Powder2

L-PBF

▪ Alloying method

Blending

Mixed powder Bulk HEA

+Al

CoCrFeMnNi

(Cantor alloy)

AlCoCrFeMnNi

CoCrFeNi

CoCrFe

AlCoCrFeNi

(A1)

(A2/B2)(A2/B2)

Page 17: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

+Al

CoCrFeMnNi

(Cantor alloy)

AlCoCrFeMnNi

CoCrFeNi

CoCrFe

AlCoCrFeNi

(A1)

(A2/B2)

C10

C16.6

C12.5

C14.7

C0

3. Alloy developments

Alloy Composition Phase

C16.6 Al16.6Co16.6Cr16.6Fe16.6Mn16.6Ni16.6 A2/B2

C14.7 Al14.7Co17.7Cr17.7Fe17.7Mn14.7Ni17.7 A1+A2/B2

C12.5 Al12.5Co18.8Cr18.8Fe18.8Mn12.5Ni18.8 A1+A2/B2

C10 Al10Co20Cr20Fe20Mn10Ni20 A1

C0 Co25Cr25Fe25Ni25 A1

▪ Alloys of interest

40 50 60 70

C 16.6

C 14.7

C 12.5

C 10.0

Inte

nsit

y [

a.u

]

2 [o]

B2 (Im3m)

A2 (Im3m)

A1 (Fm3m)

The powder blending method was effective to design alloys forming desired

phases by L-PBF process. The composition range of A1 phase was extended.

14

(A2/B2)

Future work*

Page 18: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

3. Alloy developments

a) Valence electron concentration (VEC)

b) ΔHmix (enthalpy of mixing) and δ (atomic radius difference)

c) CALPHAD, MD or Ab initio computational approaches

S. Guo et al. / Prog. Nat. Sci. 21 (2011) 433-446.

Y. Zhang et al. / Adv. Eng. Mater. 10 (2008) 534-538.

✓ Conventional parameters for phase prediction in HEA

0 5 10 15 20

6.5

7.0

7.5

8.0

8.5

BCC

FCC+BCC

VE

C

Al contents [at.%]

FCC

Alx(Co20Cr20Fe20Mn10Ni20)100-x

b) Rapid solidification rate (about 104~106 K/s) → solubility limits↑

a) Al addition (leading lattice distortion and stabilization of BCC structure)

S. Guo et al. / J Alloys Compd 583 (2014) 410-413.

For the alloy development for or by L-PBF process,

the rapid solidification effect should be considered.

✓ Reason for the expansion of A1 phase range

A1 A2+B2

Experimental results (C10 alloy : A1)

Phase predictionExperimental results

(from L-PBF process)

More percent Al

Phase

3. Alloy developments

- Phase selection of HEA processed by L-PBF

Database: TCHEA3

C10

15

Phase prediction (C10 alloy : A1+A2)

Page 19: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

Outline

Introduction

Parameter developments of L-PBF process

Alloy developments

Nitride formation

Summary and future plans

1

2

3

4

5

Page 20: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

4. Nitride formation

▪ Role of gas flow in L-PBF process

- Nitride formation during L-PBF process

→ Removal of process by-products (spatter and welding fumes),

protection of oxide formation (in case of inert gas)

A. Ladewig et al. / Additive Manufacturing 10 (2016) 1-9

▪ Type of gas generally used in L-PBF process

Ar N2 He

Molar mass 40 28 4

The first ionization potential [eV] 15.68 14.54 24.46

Relative density of gas (air = 1) 1.38 0.97 0.14

Thermal conductivity [W/mK] 0.018 0.026 0.151

16

▪ Gas atmosphere effects plasma, penetration depth and melting behavior of

the materials

Gas is important factor for L-PBF process and materials properties

Page 21: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

4. Nitride formation

- Nitride formation during L-PBF process

AlCoCrFeNiMn alloy (laser powder = 200 W, scan rate = 0.50 m/s)

200 nm

cubic

hexagonal

5 μm

Using reactive N2 gas flow during L-PBF process lead a formation of AlN particles

17

Page 22: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

50 nm

(TEM data from N. Peter)

AlCoCrFeNiMn alloy (laser powder = 200 W, scan rate = 0.50 m/s)

L-PBF process under N2 gas flow formed cubic AlN in A2/B2 matrix. The formation

of cubic-nitride indicates the strong influence of rapid solidification rate of L-PBF

process.

4. Nitride formation

- Nitride formation during L-PBF process

17

Page 23: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

Summary

1. We investigated the influence of L-PBF process on micro- and

nanostructure of CoCrFeNi and the Al-containing CoCrFeNi(Mn) alloy

- Phase formation: CoCrFeNi alloy - A1 phase,

Al-containing CoCrFeNi(Mn) alloy - A2/B2 phase

- Nano-scaled modulated structure formed by spinodal decomposition

2. Alloy development method using powder blending and L-PBF process was

effective to design HEAs consisted of desired phases

3. Nano-scaled nitrides were homogenously formed in AlCoCrFeNi(Mn) alloy

by N2 gas flow

18

Page 24: Synthesis of particle strengthened CoCrFeNi-based HEA-CCA ... · Synthesis of particle strengthened CoCrFeNi-based HEA-CCA via laser-powder bed fusion process 2019-03-26 H.Y. Jung1*,

Hyoyun Jung, [email protected]

Thank you for your attention!

23

Thanks to:

N. Peter, E. A. Jägle, G. Dehm, D. Raabe @ MPIE, Düsseldorf

E. Gärtner, V. Uhlenwinkel @ IWT, Bremen

Funding by: