tab 18 - apparent power, active power, reactive...

344
© 2012, Siemens Industry Inc., all rights reserved Tab 18 - Apparent Power, Active Power, Reactive Power Distribution Systems Engineering - Course 1

Upload: others

Post on 24-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • © 2012, Siemens Industry Inc., all rights reserved

    Tab 18 -

    Apparent Power, Active Power, Reactive Power Distribution Systems Engineering -

    Course 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-2Siemens Industry

    Inc., Siemens Power Technologies International

    Some Basic Concepts

    Review of some important definitions:

    Peak Value of a sinusoidal current wave (Ipeak

    )•

    Occurs when the sinusoidal current wave is at its maximum amplitude

    RMS Value (also called effective value) of a sinusoidal current wave

    Average Value of a sinusoidal current wave

    02sin10

    T

    peakaverage dttTI

    TI

    peakpeakT

    peakRMS II

    dttT

    IT

    I 707.02

    2sin10

    22

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-3Siemens Industry

    Inc., Siemens Power Technologies International

    Voltage and current relationship

    )90sin(sin2)sin(cos2)sin(2)sin()( oRMSRMSRMSMAX tItItItIti

    )sin(2)sin()( tVtVtv RMSMAX

    )sin(cos2)( tIti RMSR

    v(t)

    i(t) LOADiR(t) iX(t)

    • COMPONENTS OF TOTAL CURRENT

    • TOTAL CURRENT

    )90sin(sin2)( oRMSX tIti

    • SYSTEM VOLTAGE v(t)

    • COMPONENT OF CURRENT IN-PHASE WITH VOLTAGE (REAL COMPONENT)Real component of current supplies a NET energy to the LOAD

    • COMPONENT OF CURRENT 90O

    OUT-OF-PHASE WITH VOLTAGE (IMAGINARY COMPONENT)Imaginary component of current supplies no NET energy to the load

    θ

    = Angle by which voltage v(t) leads total current i(t)

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-4Siemens Industry

    Inc., Siemens Power Technologies International

    Voltage and current relationship (continued)

    )90sin(sin2)sin(cos2)sin(2)( oRMSRMSRMS tItItIti

    )sin(cos2)( tIti RMSR

    v(t)

    i(t) LOADiR(t) iX(t)

    • TOTAL CURRENT

    )90sin(sin2)( oRMSX tIti

    • REAL COMPONENT OF CURRENT • IMAGINARY COMPONENT OF CURRENT

    • RMS VALUE (IR

    ) OF REAL COMPONENT OF CURRENT:

    • RMS VALUE (IX

    ) OF IMAGINARY COMPONENT OF CURRENT:

    cosRMSR II

    sinRMSX II

    • RMS VALUE (IRMS

    ) OF TOTAL CURRENT: 22 XRRMSTOTAL IIII

    IR

    IX

    ITOTAL

    RELATIONSHIP BETWEEN RMS VALUE OF REAL COMPONENT, IMAGINARY COMPONENT, AND TOTAL CURRENT WHEN ANGLEΘ

    IS POSITIVE:

    θ

    = Angle by which voltage v(t) leads current i(t)

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-5Siemens Industry

    Inc., Siemens Power Technologies International

    Voltage, current, & power relationship

    )sin()()sin()( tItiandtVtv MAXMAX

    )sin()sin()()()( ttIVtitvtp MAXMAX

    )2sin(sin22

    )2cos(1cos22

    )( tIVtIVtp MAXMAXMAXMAX

    • INSTANTANEOUS AND AVERAGE POWER

    • USING TRIGONOMETRIC IDENTITIES, THE EXPRESSION FOR INSTANTANEOUS POWER p(t) IS:

    )2sin(sin)2cos(1cos)( tIVtIVtp RMSRMSRMSRMS

    • INSTANTANEOUS POWER, p(t), IS THE RATE AT WHICH ENERGY IS SUPPLIED TO THE LOAD

    “+”

    p(t) means system supplies energy to load, “-”

    p(t) means load supplies energy back to system. Frequency of p(t) is twice that of system

    Note that the real component of current, IRMS cosθ, produces one component of the instantaneous power thathas a non-zero average value. The imaginary component of current, IRMS sinθ, produces the second componentof instantaneous power that has an average value of zero.

    v(t)

    i(t)

    LOAD

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-6Siemens Industry

    Inc., Siemens Power Technologies International

    Voltage, current, & power relationship (continued)

    )2sin(sin)2cos(1cos)( tIVtIVtp RMSRMSRMSRMS

    )2sin()2sin(sin)( tQtIVtp RMSRMSQ )2cos(1)2cos(1cos)( tPtIVtp RMSRMSP

    • EXPRESSION FOR INSTANTANEOUS POWER

    • THE INSTANTANEOUS POWER CAN ARBITRARILY BE SPLIT INTO TWO COMPONENTS CALLED pP

    (t) AND pQ

    (t)

    (ACTIVE

    AND REACTIVE

    POWER RESPECTIVELY)

    ACTIVE POWER , pp

    (t) REACTIVE POWER , pQ

    (t)

    WattsinIVdttpT

    P RMSRMST

    AV cos)(1

    0

    • AVERAGE POWER SUPPLIED TO THE LOAD OVER INTEGER MULTIPLES OF PERIOD T IS:

    • AVERAGE VALUE OF ACTIVE POWER = P • PEAK VALUE OF REACTIVE POWER = QcosRMSRMS IVP sinRMSRMS IVQ

    • THE APPARENT POWER

    IN THE CIRCUIT, S, IS THE PRODUCT OF THE RMS VALUE OF THE VOLTAGE,VRMS

    ,

    AND THE RMS VALUE OF THE CURRENT, IRMS

    :

    RMSRMS IVS

    22 QPS P

    QS

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-7Siemens Industry Inc., Siemens Power Technologies International

    Voltage, current, & power relationship (continued)

    EXAMPLE CALCULATION 1A SINGLE-PHASE TWO WIRE CIRCUIT OPERATES AT 7620 VOLTS RMS BETWEEN THE TWO WIRES.THE CURRENT IN THE PHASE WIRE IS MEASURED AT 25 AMPERES RMS. A METER CONNECTEDTO THE CIRCUIT SHOWS THE ACTIVE (REAL) POWER SUPPLIED IS 150 KW

    1.

    WHAT IS THE APPARENT

    POWER SUPPLIED BY THE CIRCUIT?2.

    WHAT IS THE REACTIVE

    POWER SUPPLIED BY THE CIRCUIT?

    LOADVRMS = 7620 VOLTS

    IRMS = 25 AMPS

    kVAAMPERESVOLTIVS RMSRMS 5.190500,19025*7620.1 kWPGIVEN 150:

    kVArQPSQorQPS 43.1171505.190,,.2 222222

    IF THE LOAD WERE MODIFIED IN SOME MANNER SUCH THAT IT DRAWS ONLY

    150 kW OF REAL POWER (P) AND NO REACTIVE POWER (Q = 0), WHAT WOULD THE LINE CURRENT BE IN

    AMPERES?

    RMSRMS IVPSQWITHTHEN :0

    AMPERESV

    PIRMS

    RMS 69.19620,7000,150

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-8Siemens Industry Inc., Siemens Power Technologies International

    Apparent Power (complex number)

    The combination of active and reactive power is referred to as apparent power, defined as follows with complex number notation:

    S

    = P

    + jQS

    = VI

    cos

    + j VI

    sin

    whereS is the apparent power (VA)P is the active power (W)Q is the reactive power (VAR)θ

    is the angle between the voltage and the current (voltageangle –

    current angle in this definition)P is related to energy that becomes heat, light, mechanical motion,etc.Q is related to energy that is stored in an inductor in ½

    cycle, and then returned to the system in the next ½

    cycle.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-9Siemens Industry Inc., Siemens Power Technologies International

    Apparent Power Equations

    • APPARENT POWER “S”

    IN TERMS OF VOLTAGE (V) AND CURRENT (I) AS COMPLEX NUMBERS

    XRXR VjVVandVjVV *

    XRXR IjIIandIjII *

    XjRZ

    V = VOLTAGE PHASOR (A COMPLEX NUMBER) –

    RMS VALUEVR

    = REAL

    PART OF VOLTAGE PHASOR V –

    RMS VALUEVX

    = IMAGINARY

    PART OF VOLTAGE PHASOR –

    RMS VALUEV*

    = COMPLEX CONJUGATE OF V

    I = CURRENT PHASOR (A COMPLEX NUMBER) –

    RMS IR

    = REAL

    PART OF CURRENT PHASOR I –

    RMSIX

    = IMAGINARY

    PART OF CURRENT PHASOR I –

    RMSI*

    = COMPLEX CONJUGATE OF I -

    RMS

    *

    2

    *

    ***

    ZV

    ZVV

    ZVVIVjQPS

    ZIZIIIZIIVjQPS

    2***

    XRRXXXRRXRXR IVIVjIVIVIjIVjVIVQjPS *

    XXRR IVIVP XRRX IVIVQ

    • APPARENT POWER S

    ACTIVE (REAL) POWER

    • REACTIVE (IMAGINARY) POWER

    V VX

    VR

    I

    IXIR

    ZV0o

    I

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-10Siemens Industry Inc., Siemens Power Technologies International

    Apparent Power Equations (continued)

    • EXAMPLE CALCULATION 2

    THE OUTPUT OF A COMPUTER PROGRAM GIVES THE FOLLOWING FOR THE VOLTAGE AND CURRENTIN A SINGLE-PHASE LINE (SEE GENERALIZED SKETCH ABOVE)

    VOLTAGE “V”

    IS 7620 VOLTS AT AN ANGLE OF 10 DEGREESLINE CURRENT “I”

    IS 25 AMPERES AT AN ANGLE OF -28.057 DEGREESWHAT IS THE ACTIVE (REAL) POWER AND REACTIVE (IMAGINARY) POWER SUPPLIED TO THE LOAD?

    WATTSIVIVP XXRR 1.998,149759.11*20.1323062.22*24.7504 VARSIVIVQ XRRX 434,117)759.11(*24.7504062.22*20.1323

    • REAL AND IMAGINARY PART OF VOLTAGE PHASOR:

    VoltsVandVoltsV oXo

    R 20.1323)0.10(sin762024.7504)0.10(cos7620

    AmpsIandAmpsI oXo

    R 759.11)057.28(sin0.25062.22)057.28(cos0.25

    • REAL AND IMAGINARY PART OF LINE CURRENT PHASOR:

    • ACTIVE (REAL) AND REACTIVE (IMAGINARY) POWER TO LOAD

    Note: The V, I, P, and Q values in this example are the same as

    in example calculation 1

    V VX

    VR

    I

    IX

    IRZV 0o

    I

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-11Siemens Industry Inc., Siemens Power Technologies International

    Apparent Power Equations (continued)

    cosRMSRMS IVP

    • EXAMPLE CALCULATION 2 (continued)

    The active and reactive power, for this example, also can be calculated with the relationships below.

    sinRMSRMS IVQ

    θ

    = Angle by which voltage v(t) leads current i(t)

    VoltsVRMS 7620 AmperesIRMS 25

    0057.38)057.28(0.10 ooIV

    kWWattsP o 0.1503.999,149)057.38cos(25*7620

    kVArVarsQ o 43.1178.432,117)057.38sin(25*7620

    GIVENS:

    θV

    = VOLTAGE ANGLE

    θI

    = CURRENT ANGLE

    ACTIVE (REAL) POWER:

    REACTIVE (IMAGINARY) POWER:

  • © 2012, Siemens Industry Inc., all rights reserved

    The Power Triangle Revisited

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-13Siemens Industry Inc., Siemens Power Technologies International

    Phasor Diagram of the Power Triangle

    kVAkVAR

    kWO

    O

    kVAkVAR

    kW

    INDUCTIVE LOAD CAPACITIVE LOAD

    POWER FACTOR IS THE COSINE OF THE ANGLE BETWEEN THE APPARENT POWER

    (kVA)

    ANDTHE ACTIVE POWER (kW).

    FOR INDUCTIVE LOAD THE REACTIVE POWER (VARS) IS “+”

    IN SIGN

    FOR CAPACITIVE LOAD THE REACTIVE POWER (VARS) IS “-”

    IN SIGN

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-14Siemens Industry Inc., Siemens Power Technologies International

    Power Equations Revisited (Again!)

    kVAkVAR

    kWO

    INDUCTIVE LOAD

    • RELATIONSHIPS BETWEEN POWER FACTOR AND REACTIVE FACTOR:

    sinkVAkVAR

    coskVAkW

    22 kVARkWkVA

    kVAkVARFACTORREACTIVERF

    kVAkWFACTORPOWERPF

    220.1 RFPF

    • RELATIONSHIPS BETWEEN KVA, KW, AND KVAR:

  • © 2012, Siemens Industry Inc., all rights reserved

    Energy –

    Billing and Load Composition

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-16Siemens Industry Inc., Siemens Power Technologies International

    Customers and Loads

    As engineers we think of the customers as electrical loads that the power delivery system is designed to serve

    Generation

    Transmission

    Primary Distribution

    Secondary Distribution

    The accountants see the electrical loads as customers (sources of revenue)

    The customer has a meter that measures what they use, and the Utility sends them monthly bills that recover the cost of supplying the power

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-17Siemens Industry Inc., Siemens Power Technologies International

    The kWh Meter –

    Residential Customers

    An electro-mechanical type of kilowatt-hour meter to measure energy consumption

    Flux from current and voltage coils interact producing a torque on the disc. The rotational speed of the disk is proportional to the real power (kW). Time integration of the power thru a gear mechanism is the energy consumed, as displayed on the dials.

    A kWh meter only measures the active power. The amount of reactive power consumed (VARs) are not measured.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-18Siemens Industry Inc., Siemens Power Technologies International

    The kVA Meter –

    Industrial and Commercial Customers

    Used to meter commercial and industrial loads

    Monitors the kW and kVAR as well as the usage in time periods.

    Digital readouts

    Meter data can be downloaded to hand held computer

    Meter can be read remotely

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-19Siemens Industry

    Inc., Siemens Power Technologies International

    What Are Electrical Loads?

    The electric power system elements have both a resistive and reactive component

    Resistive Components (R)•

    Overhead line & Underground cable circuit conductor resistance•

    Transformer winding resistance

    Reactive Components (XL

    , XC

    )•

    Overhead line & Underground cable circuit reactance•

    Transformer winding leakage reactance•

    Phase reactor reactance for limiting short circuit current •

    Series capacitors to cancel line inductive reactance

    Loads are comprised of

    Resistive elements •

    I2

    * R = kW

    Reactive elements•

    I2

    * X = kVAR

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-20Siemens Industry

    Inc., Siemens Power Technologies International

    Load Composition

    Constant Power Loads•

    Demand the same amount of kVA

    regardless of the voltage supplied to them

    Constant Current Loads•

    Demand the same current regardless of the voltage applied

    Constant Impedance Loads•

    At all times, present the same impedance to the system, irrespective of voltage applied to them

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-21Siemens Industry

    Inc., Siemens Power Technologies International

    Load Categories

    Residential

    Single and multiple phases; seasonal

    Commercial

    Light to heavy

    Industrial

    Light to heavy with multiple shifts

    Agricultural

    Short burst of high demand

    Lighting

    Changes with time of year

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c., S

    iem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    15-22Siemens Industry

    Inc., Siemens Power Technologies International

    Distribution Circuits

    They are an aggregate of the different types of loads categories

    The demands fluctuate

    The power factor for each load type is not the same

    Each load has a different requirement with respect to the quality of power supply

  • © 2012, Siemens Industry Inc., all rights reserved

    Tab 19 -

    Power Quality Overview Distribution Systems Engineering –

    Course 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy Inc., Power Technologies International 16-2

    What is power quality?

    Voltage disturbances related to power quality

    Causes of PQ problems

    Power quality standards

    Solutions

    Topics

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-3

    What Is Good Power Quality?

    Utility perspective:

    The relative absence of utility-caused voltage variations at the point of common coupling (PCC).

    Customer perspective:

    Electric power which supports their operations with minimal power induced equipment disturbances and failures.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-4

    Ideal Voltage Conditions

    Voltage magnitude is well within ANSI C84.1 Range A (normal operation) limits

    Sags, swells, or transient voltages are non-existent or very minor

    No momentary or permanent interruptions (outages)

    Harmonic distortion and noise are well within specified limits

    No observable flicker

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-5

    Power Quality Disturbances

    Long duration voltage variations

    steady-state overvoltages

    & undervoltages

    sustained interruptions (permanent faults)

    Short duration voltage variations

    momentary interruptions (clearing temporary faults and reclosing)

    sags & swells (from faults on system)

    Frequency variations

    Transients

    impulsive

    oscillatory

    Voltage unbalance (imbalance)

    Voltage fluctuations

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-6

    Power Quality Disturbances (continued)

    Waveform distortion

    harmonics & interharmonics

    noise

    notching

    Reliability issues

    momentary outages (interruptions)

    permanent outages (interruptions)

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-7

    VOLTAGE SAGS ARE THE MOST COMMON POWER QUALITY DISTURBANCE EXPERIENCED BY END USERS

    ITIC CURVE PROVIDES GUIDANCE TO EQUIPMENT MANUFACTURERS ON VOLTAGE SUSCEPTIBILITY THAT THEY SHOULD DESIGN INTO THEIR EQUIPMENT

    POINTS ON ITIC CURVE ARE AN AGGREGATION OF OVER 3000 VOLTAGE EVENTS RECORDED AT 100 LARGE MANUFACTURING PLANTS IN THE USA OVER A PERIOD OF ONE YEAR

    Power Quality Disturbances (continued) Voltage Sags

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-8

    Substation Bus Voltage Sag for SLG Fault on Radial Feeder

    32" 32"

    48"

    Oa Oc

    Ob

    n

    DISC: CE Dist Course, 2006, #1Con Ed OH Line Z1 Z0.FCW

    R1 = 0.198 Ohms / mileX 1 = 0.583 Ohms / mile

    R0 = 0.485 Ohms / mileX 0 = 1.901 Ohms / mile

    477 MCM AL PHASE4/0 CU NEUTRAL

    • FACTORS WITH SIGNIFICANT IMPACT ON SUBSTATION BUS VOLTAGE

    1.

    AVAILABLE 3-PHASE AND SLG FAULT CURRENT ON SUB BUS (Z0

    & Z1

    )

    2.

    IMPEDANCE OF FAULTED FEEDER IN OHMS PER UNIT LENGTH

    3.

    DISTANCE FROM SUBSTATION TO FAULT (L)

    LINE CONFIGURATIONAND IMPEDANCES

    FOR PLOTS

    SUB 13.2 KVBUS

    FAULTED FEEDER (SLG PHASE A)

    L

    UNFAULTED FEEDERS

    Z0Z1

    Disk: CE Dist Course 2006, #1Sub Bus V, SLG FLT.FCW

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-9

    Substation Bus Voltage Sag for SLG Fault on Radial Feeder (continued)

    • SUBSTATION LINE-TO-GROUND BUS VOLTAGES –

    13.2 kV SYSTEMFEEDER FAULTED PHASE = A, UNFAULTED PHASES = B & C

    Notes:Substation bus sag andswell applied to all unfaulted

    feeders untilfaulted feeder breakeropens.

    For selected configuration, unfaulted

    phase C bus voltage swell is less than unfaulted

    phase B bus voltage swell.

    In 27 kV system, voltage sag on substation bus (with same available fault current as at 13.2 kV), will be greater than sag at 13.2 kV.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-10

    Power Quality Disturbances (continued)

    • EXAMPLE OF CONDITION CREATING VOLTAGE UNBALANCE FORSMALL THREE-PHASE PUMPING APPLICATION

    FLOATING-WYE DELTA TRANSFORMER BANK FOR 4-WIRE DELTA SERVICE

    POWER LEG TRANSFORMERS = 10 KVA

    LIGHTING LEG TRANSFORMER = 15 KVA

    OPEN FUSE CUTOUTON ONE OF THE POWERLEG TRANSFORMER

    4-WIRE DELTA SERVICE SUPPLYING A 3-PHASE PUMPING APPLICATION

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-11

    Then Versus Now

    Power quality today is not the same as power quality in 1950

    With the increase in nonlinear devices, the power has become ’dirty’

    with lots of voltage and current distortion

    It can present a localized problem that results in overheating of transformers and fuses due mainly to the presence of high harmonic currents

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-12

    Customers -

    Sensitive Equipment

    Industrial equipment failures (Power supplies & motors)

    One study suggests that current surges following a voltage sag is more responsible for failures than are surge overvoltages

    Industrial/commercial concerns

    computer drive manufacturing systems

    PCs for data processing and management application

    adjustable speed drives/motor driven assembly systems

    Programmable logic controllers (PLC)

    Computer numerical control (CNC) machines

    Servo Drives

    Robots

    the increasingly competitive nature of manufacturing

    the effect of non-linear loads on utility system, other customers and plant equipment

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-13

    Customers -

    Sensitive Equipment (continued)

    Residential concerns

    VCRs

    digital clocks

    home PCs

    various other sags and outage sensitive electronic devices

    Residential concern, open neutral in 120/240-volt service

    Causes steady state overvoltages

    /undervoltages

    Disk: CE Dist Course 2006, #1Open Neutral Secondary.FCW

    X1

    X3

    X2

    H1

    H2

    120 V LOAD

    120 V LOAD240 V LOAD

    DISTRIBUTIONTRANSFORMER

    O

    OPENNEUTRAL

    RESISTANCE TO GROUND AT SERVICE (ROD, H20 PIPE)

    120 V

    120 V

    1

    O2

    V1

    V2

    HV O

    POLE GROUNDCONNECTION

    1-PHASE 3-WIRE SERVICE 3-WIRE LOAD

    PN

    SN

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-14

    Origins of Power Quality Problems

    Utility problems

    weak system (High Impedance with load injecting high harmonic currents)

    single phasing in three-phase lines

    open neutral on primary or secondary system

    poor system design

    fault induced momentary outages, voltage sags and voltage swells

    equipment failures (transformers, splices, etc)

    switching surges

    capacitor switching transients

    lightning surges

    harmonic resonance

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-15

    Origins of Power Quality Problems (continued)

    Customer caused problems

    poor system design or defective wiring

    interaction of loads

    grounding problems and loops

    electromagnetic compatibility problems

    Harmonics

    switching of large loads (e.g. motors, arc furnaces) producing flicker

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-16

    Origins of Power Quality Problems (continued)

    Manufacturers of Utilization Equipment

    inadequate design of utilization equipment

    cost-cutting measures which make equipment more sensitive

    improper installation or application

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-17

    Who is responsible for PQ?

    Utilities

    to provide reliable service and voltage within specified limits

    Customers

    to buy less sensitive electronic devices

    commercial and industrial customers should understand their power environment and purchase equipment from manufacturers who are aware of PQ issues

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-18

    Who is responsible for PQ? (continued)

    Manufacturers

    to produce products which will operate properly on the electromagnetic environment of a typical power system

    Derating

    required of induction motors in presence of voltage unbalance

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    0 1 2 3 4 5

    OPERATION ABOVE 5 % VOLTAGE UNBALANCE IS NOTRECOMMENDED BY NEMA STANDARDS

    CE 2006 #1, NEMA DERATE.EP

    PERCENT VOLTAGE UNBALANCE

    DE

    RA

    TIN

    G F

    AC

    TOR

    Voltage unbalance at many pointson radial distribution circuits will exceed 1 %.

    In old days, many inductionmotors would operate satisfactorily with voltage unbalances up to 3.0 %.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-19

    Utility Power Quality Programs

    1996 PQ survey of utilities done by PTI:

    80% of utilities had PQ programs for commercial and industrial customers, 62% also had programs for residential customer

    29% of utilities charged for PQ consulting

    PQ programs were usually reported as effective

    PQ programs

    monitoring (mainly, large customer loads)

    educational programs

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-20

    Power Quality Standards

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-21

    Power Quality Standards (continued)

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-22

    Power Quality Standards (continued)

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry I

    nc.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Energy

    Inc., Power Technologies International 16-23

    Some Disturbances and Corresponding Standards

    Transients

    ANSI/IEEE C62

    IEEE Std 1100

    Harmonics

    IEEE Std 519

    Voltage sags

    IEEE Std P1346

    CBEMA / ITIC tolerance curves

    Voltage Flicker

    IEEE Std 519

    IEEE Std 141

    GE Flicker Curve

  • © 2012, Siemens Industry Inc., all rights reserved

    Tab 20 -

    Voltage Unbalance, Flicker and Transients

    Distribution Systems Engineering –

    Course 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy Inc., Power Technologies International 17-2

    Voltage Unbalance Under Steady-State Conditions

    Voltage levels are not the same on all three phases of a feeder at the same moment in time

    Distribution systems are typically unbalanced•

    The load demand at each phase is not the same

    The current flow in the phase conductors is not the same

    Line is not symmetrical•

    The voltage drop is different for each phase

    The voltage on the substation bus is unbalanced

    This results in a voltage unbalance between the phases, and between the phases and ground

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-3

    Unbalanced transformerbank (open-wye

    open-delta) causes unbalanced line currents on primary side as well as current in the primary multi-grounded neutral conductor

    Voltage Unbalance Under Steady-State Conditions (continued)

    LIGHTING LEG TRANSFORMER

    POWER LEG TRANSFORMERPRIMARY NEUTRAL

    PRIMARY PHASEWIRES

    Note:

    Transformer bank is on a two-phase tap line supplied from a three-phase four-wire multi-

    grounded neutral circuit.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-4

    Voltage Unbalance Under Steady-State Conditions (continued)

    Basic Definition

    Voltage Unbalance In percent

    AVE

    max

    VVx 100

    Where: MAXVΔ = The maximum deviation from the average phase-to-phase voltage

    AVEV = The average phase-to-phase voltage 3

    |V||V||V| cabcab

    Vab

    , Vbc

    , and Vca

    are the three phase-to-phase voltages

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-5

    Voltage Unbalance Under Steady-State Conditions (continued)

    Example: Suppose a customer connected to the end of a 240 V three-phase service and assume that at the PCC the phase-to-

    phase voltages are

    |Vab

    | = 230 volts|Vbc

    | = 232 volts|Vca

    | = 225 volts

    Then: VAVE = (230 + 232 + 225) / 3 = 229 volts

    ∆V1

    = |230 –

    229| = 1 volt∆V2

    = |232 –

    229| = 3 volts∆V3

    = |225 –

    229| = 4 volts∆VMAX = 4 volts

    Consequently: Voltage unbalance = (4/229)·100 = 1.75 %

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-6

    ANSI C84.1 Voltage Standards

    Recommendation: Voltage unbalance at the PCC or service entrance shall not exceed 3% under no load conditions

    The PCC is the point of common coupling, typically at the meter or service entrance equipment

    The electric utilities are responsible only for satisfying the service entrance or PCC voltage requirements.

    Customers are responsible for maintaining proper voltage downstream of the service entrance or PCC!

    Classification Range A Range B Service Voltage 114 to 126 volts 110 to 127 volts

    Utilization Voltage 110 to 125 volts 106 to 127 volts

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-7

    Voltage Unbalance –

    Alternate Definition and Limit

    CBA VaVaVV 21 31

    CBA VaVaVV 22 31 2

    321120 jea

    Oj

    100*%1

    22 V

    Vd

    %2% 2 d

    • NEGATIVE-SEQUENCE VOLTAGE UNBALANCE (d2

    )

    V2

    = MAGNITUDE OF NEGATIVE-SEQUENCE VOLTAGE

    V1

    = MAGNITUDE OF POSITIVE-SEQUENCE VOLTAGE

    • GIVEN THREE PHASE-TO-PHASE

    VOLTAGES

    VA

    , VB

    , AND VC (PHASORS WITHBOTH MAGNITUDE AND ANGLE):

    • RECOMMENDED LIMIT FOR d2

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-8

    By knowing Ea

    , Eb

    and Ec

    it is possible with “chart”

    to determine the angle θ

    and the unbalance factor d2

    . Chart is applicable only when there are no zero-sequence components in the three voltages. From Westinghouse T&D Reference Book

    Voltage Unbalance –

    Alternate Calculation Method From Chart

    EXAMPLE:Ea

    = 235.0, Eb

    = 230.0, Ec

    = 222.0Eb

    /Ea

    = 0.979 Ec

    /Ea = 0.945FROM CHART:

    d2

    = |V2

    | / |V1

    | = 0.034

    Θ

    = 37 Degrees

    FROM EXACT CALCULATIONS:|V2

    || / |V1

    | = 0.0330Θ

    = 37.54 Degrees

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-9

    Voltage Flicker

    VOLTAGE FLICKER IS:

    Voltage Drop as Seen By Customers

    Visible With Incandescent lights and some CFL’s

    Complaints Normally From Residential Customers

    Much Lower in Magnitude Than A Fault Caused Voltage Sag –

    Usually Only a Few Volts on a 120-Volt Bas

    Noticeable at Low Levels and Annoying at Higher Levels

    VOLTAGE FLICKER DOES NOT:

    Normally Does Not Cause Equipment Failure or Downtime

    Does Not Damage Other Customers Equipment

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-10

    Voltage Flicker

    • CAUSE-FLUCTUATING LOADS1.

    ARC FURNACES2.

    WELDERS3.

    RECIPROCATING COMPRESSORS4.

    ROCK CRUSHERS5.

    SAWMILLS6.

    CAR SHREDDERS

    Note:1.

    Flicker is worst at fluctuating load, anddecreases at points up stream from theflicker source.

    • EFFECT OF VOLTAGE FLICKERCAN CAUSE VARIATION IN LAMPLIGHT OUTPUT THAT CAN BE EITHER PERCEPTIBLE OR ANNOYING TO THEEND USER

    • RAPID CHANGES IN THE RMS VOLTAGE

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-11

    Fluctuations and Dips

    • EXAMPLE OF WAVEFORM PRODUCING VERY OBJECTIONABLE LAMP FLICKER

    ΔV = 1.10 -

    0.90 = 0.20 PER UNIT

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-12

    GE Flicker Curve

    Notes:1.

    Based upon square-wave changes to supply voltages at indicated frequencies (see previous chart).

    2.

    From tests run by GE and utilities in 1930 with incandescent bulbs.3.

    Used by 69 % of utilities based on 1985 IEEE survey.

    • DEFINES BASED ON TESTS BORDERLINES OF VISIBILITY AND IRRITATION WITHINCANDESCENT LIGHTS

    FUNCTION OF PERCENT VOLTAGE DIP AND FREQUENCY OF DIPS

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-13

    Permissible Flicker Limits (Con Edison)

    • FROM 1958 EEI T&D COMMITTEE MEETING

    Notes:Upper stair case curves apply to radial services and underground

    networks.Lower stair case curve applies to primary distribution lines.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Measuring Voltage Flicker The Flicker Meter

    Siemens Energy

    Inc., Power Technologies International 17-14

    The IEC 61000-4-15 flickermeter

    standard was developed in Europe and later adopted in the U.S. as IEEE 1453-2004. The measurement methodology described in the IEC standard more accurately accounts for complex voltage fluctuations encountered in actual practice by including the effects of multiple flicker sources, frequencies and varying voltage modulation waveforms. In addition, the flickermeter

    approach standardizes flicker monitoring across different manufacturers–IEC 61000-4-15 compliant instruments should all produce the same results for a given flicker excitation.

    The real advantage of the flickermeter

    method is inherent in its ability to accurately model the human flicker perception. This rather complex modeling is accomplished by five signal processing blocks described in the IEC standard, which represent the lamp-eye-brain response to light flicker –

    the response of a lamp to supply voltage variations, the perception of the human eye and the memory characteristics of the human brain.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Measuring Voltage Flicker The Flicker Meter

    Siemens Energy

    Inc., Power Technologies International 17-15

    The flickermeter

    system provides several measurement outputs. IFL, or instantaneous flicker level, represents the real time voltage modulation modified by the lamp-eye-brain response. This output can be plotted as a time interval graph and is useful for tracking down sources of voltage fluctuations.A statistical analysis block completes the human perception system by providing short and long term flicker severity indexes. Short term flicker severity Pst

    is evaluated over a 10 minute observation period and is used to

    evaluate disturbances caused by flicker sources with short duty cycles.

    According to the IEEE 1453 standard, a Pst

    value of 1.0 represents the system compatibility level, the level below which customer complaints are not likely to occur. Pst

    is therefore commonly used to evaluate whether the measured voltage fluctuations are severe enough to cause flicker complaints.Long term flicker Plt

    is derived from 12 successive Pst

    values, or two hours, and is more suitable for evaluating the combined effect of several randomly operating loads such as welders or motors over longer periods of

    time. A Plt

    value of 0.8 is considered the system compatibility limit according to IEEE 1453.

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-16

    Oscillatory Transient -

    Capacitor Switching

    Closing capacitor switch produceshigh-frequency inrush current andassociated high frequency componentin the system voltages, that decay exponentially with time

    L

    CVrms

    SUBSTATIONBUS FEEDER

    IMPEDANCE

    Vbus

    CAPBANK

    CE 2006 D#2, Circuit Cap Sw Transient.FCW

    S

    LFRF

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-17

    Oscillatory Transient –

    Inductive Load Switching

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Energy

    Inc., Power Technologies International 17-18

    Impulsive Transient -

    Lightning Surges

    BOTH MEASUREMENTSMADE ON CIRCUIT OR PTSECONDARY WITH A NOMINAL VOLTAGE OF120 VOLTS RMS OR 169.7VOLTS CREST

  • © 2012, Siemens Industry Inc., all rights reserved

    Tab 21 -

    Harmonics, Notching and Noise Distribution Systems Engineering –

    Course 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-2

    Voltage Notching

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-3

    Electrical Noise

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-4

    Harmonics

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-5

    Harmonics (continued)

    Harmonics are multiples of the fundamental frequency

    Like the waves in a pond, they will add or subtract to the fundamental

    Under and Over voltageFUNDAMENTAL

    TOTAL

    THIRD HARMONIC

    FIFTH HARMONIC

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-6

    Harmonics (continued)

    • COMBINATION OF FUNDAMENTAL AND FIRST THREE ODD HARMONICS

    unitperOrderHarmonic

    PeakHarmonic 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-7

    Harmonics (continued)

    • COMBINATION OF FUNDAMENTAL AND FIRST THREE ODD HARMONICS-

    Harmonics lagged by 30 degrees from zero of fundamentalunitper

    OrderHarmonicPeakHarmonic 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-8

    Harmonics (continued)

    • COMBINATION OF FUNDAMENTAL AND FIRST THREE ODD HARMONICS-

    Harmonics lagged by 60 degrees from zero of fundamental

    unitperOrderHarmonic

    PeakHarmonic 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-9

    Harmonic Distortion Factor

    Distortion Factor in %

    Each harmonic component contributes to the overall distortion of

    the fundamental frequency wave

    Each harmonic component can be expressed in percent of the amplitude of the fundamental frequency wave

    Total harmonic distortion (THD) is the distortion factor including all relevant harmonic components (usually from 2nd to 50th)

    100

    %

    wavelfundamentatheofAmplitudeAmplitudesComponentHarmonictheofSquarestheofSum

    THD

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-10

    Calculation of THD

    Example: Consider the voltage waveshape

    shown below

    Voltage Waveform at F9: phase A

    5 10 15 20 25 30 35 40 45 50

    0

    0.5

    1

    0

    -0.5

    -1

    Time (ms)

    Voltage (pu)

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-11

    Calculation of THD (continued)

    A harmonic spectral analysis of this wave indicates the following components:-

    a fundamental frequency wave (60Hz) of magnitude 1 pu-

    a 5th harmonic (300Hz) wave of magnitude 0.14 pu-

    a 7th harmonic (420Hz) wave of magnitude 0.12 pu-

    a 11th harmonic (660Hz) wave of magnitude 0.03 pu-

    a 13th harmonic (780Hz) wave of magnitude 0.03 pu

    Then:

    %9.18100

    103.0)03.0(12.014.0

    %2222

    THD

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-12

    Calculation of THD (continued)

    • THEORETICAL TOTAL WAVE CONSIDERING FUNDAMENTAL, 5TH, 7TH, AND 11TH

    HARMONICFROM PREVIOUS EXAMPLE

    FUNDAMENTAL = 1.0 PU5TH

    HARMONIC = 0.14 PU7TH

    HARMONIC = 0.12 PU11TH

    HARMONIC = 0.03 PU

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-13

    TVs

    Computers

    Fluorescent lights

    Dimmers for incandescent lights

    HVDC terminals

    UPS Systems

    AC adjustable speed motor drives

    Battery Chargers (Electric Cars)

    Transformers (magnetizing current)

    Harmonic Sources

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-14

    Fluorescent Lighting System V-I Waves

    OLD STYLE WITH FERRORESONANTLIGHTING BALLAST

    TYPICAL SCREW-IN COMPACT FLUORESCENT LAMP

    VOLTAGE: BLUE CURVECURRENT: RED CURVE

    DISPLACEMENT POWER FACTOR ≈

    40 % Total Harmonic Distortion = 19 %

    VOLTAGE: BLUE CURVECURRENT: RED CURVE

    DISPLACEMENT POWER FACTOR ≈

    SLIGHTLY LEADTotal Harmonic Distortion = 120 %

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-15

    Fluorescent Lighting System V-I Waves (continued)

    FLUORESCENT LAMPS WITH ELECTRONICBALLASTS

    VOLTAGE: BLUE CURVECURRENT: RED CURVE

    DISPLACEMENT POWER FACTOR ≈

    UNITY Total Harmonic Distortion = 49 %

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Harmonics in Balanced Three-Phase Four- Wire Multi-Grounded Neutral Systems

    Balanced Three-Phase System

    Current waveform in each phase is identical

    Fundamental component of current in each phase is displaced by 120 degrees from that in any other phase

    5th, 7th, 11th, 13th, 17th, 19th, etc

    Harmonic currents are either positive- or negative-sequence

    No harmonic currents in neutral return path (multi-grounded neutral of primary system and earth)

    3rd, 9th, 15th, 21st, etc

    Harmonic currents are zero-sequence

    At each harmonic, current in neutral return path is three-times that in the phase

    Do not pass from secondary to primary of delta (primary) wye-grounded (secondary) transformer

    Do pass from secondary to primary of wye-grounded wye-grounded transformer (flow in neutral conductor of primary system)

    Siemens Industry

    Inc., Siemens Power Technologies International 18-16

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Harmonics in Balanced Three-Phase Four- Wire Multi-Grounded Neutral Systems

    Siemens Industry

    Inc., Siemens Power Technologies International 18-17

    ttIA 3sin1.0)sin(0.1

    )

    32(3sin1.0)

    32sin(0.1 ttIB

    )

    32(3sin1.0)

    32sin(0.1 ttIC

    ϕA

    ϕB

    ϕC tIRESIDUAL 3sin3.0

    RESIDUAL IS 3RD

    HARMONIC

    100 % Fundamental, 10 % Third Harmonic

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-18

    Harmonics in Balanced Three-Phase Four- Wire Multi-Grounded Neutral Systems

    • ZERO-SEQUENCE HARMONIC TRANFER THROUGH DISTRIBUTION TRANSFORMERS

    I3RD3

    I3RD

    I3RD

    I3RD

    N 1

    I3RDN

    NO ZERO-SEQUENCE HARMONICSIN PRIMARY PHASE CONDUCTORS OR IN PRIMARY NEUTRAL CONDUCTOR.

    LOADS ZERO-SEQUENCE HARMONICSCIRCULATE IN DELTA WINDING.

    I3RD3

    I3RD

    I3RD

    I3RD

    1

    I3RD3

    I3RD3

    n

    I3RDn

    I3RDn

    I3RDn

    I3RDn3

    I3RDn3

    ZERO-SEQUENCE HARMONICS INPRIMARY PHASE CONDUCTORS AND IN PRIMARY NEUTRALCONDUCTOR (3 TIMES THAT INPRIMARY PHASE CONDUCTORS)

    PTI 2010, D#1, Harmonic Transfer Thru Dist Xfrs.FCW

    LOADSIDE

    LOADSIDE

    0

    00

    0

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-19

    Harmonics Produced Problems

    Lighting Systems

    High intensity discharge lamps outside voltage threshold can shut down

    Transformers and Capacitor Banks

    Resonances

    Transformer derating

    required with high harmonics (K Factor)

    kVAr

    rating of capacitor bank exceeded due to harmonic current

    Other problems

    Nuisance fuse operations

    Device missoperations

    Telephone interference (rural systems-old days)

    Equipment heating•

    Eventual Component failure

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-20

    IEEE 519

    IEEE established a Standard for harmonic measurement and control

    IEEE Std. 519

    It specifically set

    Requirements for Utilities•

    voltage

    Requirements for Customers•

    current

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-21

    IEEE Std 519 Voltage Requirements

    For periods less than one hour, limits may be increased by 50%.

    Bus Voltage at PCC

    Individual Distortion

    (%)

    Total Distortion THD (%)

    138kV 1 1.5

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s En

    ergy

    Inc.

    , Sie

    men

    s Po

    wer

    Tec

    hnol

    ogie

    s In

    tern

    atio

    nal

    Nov

    embe

    r 201

    2

    Siemens Industry

    Inc., Siemens Power Technologies International 18-22

    IEEE Std 519 Current Requirements

    AS THE STIFFNESS OF THE UTILITY SUPPLY SYSTEM INCREASES, THE LOAD IS ALLOWED TO GENERATE MORE HARMONIC CURRENTS.

  • © 2012, Siemens Industry Inc., all rights reserved

    Tab 22 –

    Voltage Sags, Voltage Swells, Momentary Interruptions

    Distribution Systems Engineering –

    Course 1

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-2

    Voltage Swell

    This can occur, for instance, on the healthy (unfaulted) phases of a multi-grounded neutral distribution system during a single-line-to-ground fault

    Duration of Swell

    is typically between ½

    cycle to 1 second

    LINE-TO-GROUND VOLTAGE

    1.0 PER UNIT1.25 PER UNIT

    1.0 PER UNIT

    CE DE 2010, Voltage Wave Sag.FCW

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-3

    Voltage Swell –

    Unfaulted

    Phase-to-

    Ground Voltages

    For Single Phase-to-Ground Fault on Phase A

    Z1

    = POSITIVE-SEQUENCE IMPEDANCEAT FAULT POINT

    Z0

    = ZERO-SEQUENCE IMPEDANCE ATFAULT POINT

    Θ1 = POSITIVE-SEQUENCE IMPEDANCEANGLE AT FAULT POINT

    Θ0 = ZERO-SEQUENCE IMPEDANCEANGLE AT FAULT POINT

    unitperZZ

    ZZaVB01

    012

    2

    unitperZZ

    ZZaVC01

    01

    2

    23

    21

    23

    21

    1202

    120

    jea

    jea

    o

    o

    j

    j

    • UNFAULTED Φ-TO-GROUNDVOLTAGE AT FAULT POINT

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-4

    Momentary Interruption

    Time in Cycles forLoss of voltage

    Typically Caused By a Circuit Recloser

    or Circuit Breaker Opening and Successfully Reclosing Due to a Temporary (Transient) Fault

    LINE-TO-NEUTRAL VOLTAGE

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-5

    Momentary Interruption (continued)

    • PERCENTAGE OF DEVICES THAT WERE ABLE TO SUCCESSFULLY RIDE THROUGH A MOMENTARY INTERRUPTION OF THE GIVEN

    DURATION

    DEVICEMOMENTARY INTERRUPTION DURATION

    (SECONDS / CYCLES)0.5 / 30 2.0 / 120 16.7 / 1000

    Digital Clocks 70 % 60 % 0

    Microwave Ovens 60 % 0 0

    VCR 50 % 37.5 % 0

    Computer 0 0 0

    FROM: POWER QUALITY ASSURANCE MAGAZINE, PP 296-310, 1990

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-6

    Momentary Interruptions (continued)

    Equipment

    is sensitive and can not ‘ride through’

    resulting in the machine shutting down

    System solutions

    faster reclosing

    fewer faults (tree trimming, animal & bird guards, better lightning protection)

    elimination of fuse saving with feeder breaker instantaneous tripping in substation

    installation of circuit reclosers

    in main feeder and on major branches

    closed bus tie breakers in substation (prevents momentary interruptions from loss of subtransmission

    sources)

    Customer solutions

    static transfer switch, UPS

    employ spot network systems

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-7

    Momentary Interruptions (continued)

    • SYSTEM MEASURES TO REDUCE NUMBER OF MOMENTARY INTERRUPTIONS:1.

    ELIMINATE INSTANTANEOUS TRIPPING OF FEEDER BREAKER 52-1 IN ATTEMPTINGTO PREVENT FUSE BLOWING FOR TEMPORARY FAULTS ON LATERALS. THIS MAY RESULT IN MORE PERMANENT OUTAGES FOR CUSTOMERS SERVED FROM FUSEDLATERALS.

    2.

    INSTALL RECLOSER IN MAIN FEEDER SO THAT TEMPORARY AND PERMANENTFAULTS ON “2ND

    HALF OF FEEDER 2

    DO NOT CAUSE A MOMENTARY INTERRUPTIONTO CUSTOMERS ON FIRST HALF OF FEEDER.

    3.

    USE SINGLE-PHASE RATHER THAN THREE-PHASE RECLOSERS IN 3-PHASE LINESSUBSTATION

    BUS

    Disk: CE Dist Course 2006, #2, Momentary Reduction.FCW

    52-1 FUSE

    LATERAL

    RECLOSER52-2

    52-3

    FEEDER 1

    FEEDER 2

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-8

    Voltage Sag

    An RMS reduction in the nominal AC voltage, at the power frequency, to between 10% and 90% of nominal, for durations from 1/2 cycle to 1 minute.

    IEEE 1250: Guide on Service to Equipment Sensitive to Momentary Voltage Disturbances

    In three-phase systems, voltage sags may be same in each phase or different, depending on fault type or disturbance

    In the multi-grounded neutral system, the single line-to-ground (neutral) fault can cause voltage sags in the faulted phase, and

    voltage swells in the unfaulted

    phases

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-9

    Examples of Voltage Sag

    Even when there isn’t a complete loss of voltage, customer equipment (industrial motors, ASD) are still impacted

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-10

    Causes of Voltage Sags In Distribution Systems

    Faults in sub transmission system

    Faults on adjacent distribution circuits supplied from same bus section in the distribution substation

    Starting of large motors

    Transfer of large loads

    EXAMPLES:

    84% OF SAG EVENTS RESULT IN VOLTAGE LESS THAN 82.5%

    40% OF SAG EVENTS RESULT IN VOLTAGE LESS 70%

    16% OF SAG EVENTS RESULT IN VOLTAGE LESS THAN 40%

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-11

    Voltage Sag on Substation Bus Single Line-to-Ground Fault on Adjacent Circuit

    FAULTED FEEDER (SLG PHASE A)

    UNFAULTED FEEDERS

    Z0SUBZ1SUB

    Disk: CE Dist Course 2006, #1SUB SAG SLG FLT.FCW

    Z0FDRZ1FDRVASUB

    Z1SUB

    = POSITIVE-SEQUENCE IMPEDANCE LOOKING INTO SUBSTATION BUS

    Z0SUB

    = ZERO-SEQUENCE IMPEDANCE LOOKING INTO SUBSTATION BUS

    Z1FDR

    = POSITIVE-SEQUENCE IMPEDANCE OF FEEDER BETWEEN SUBSTATION & FAULT

    Z0FDR

    = ZERO-SEQUENCE IMPEDANCE OF FEEDER BETWEEN SUBSTATION AND FAULT

    unitperZZZZ

    ZZV

    FDRFDRSUBSUB

    FDRFDRASUB

    0101

    01

    222

    • VOLTAGE ON FAULTED PHASE AT SUBSTATION BUS, VASUB

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-12

    Voltage Sag on Substation Bus Single Line-to-Ground Fault on Adjacent Circuit (continued)

    • EXAMPLE CALCULATION: 13.2 KV SYSTEM, ELN

    = 7620 VOLTSOH LINE, SLG FAULT ON ΦA 1.25 MILES FROM SUBSTATION

    • SYSTEM DATA:AVAILABLE 3-Φ

    FAULT CURRENT ON SUB BUS = I3P

    = 15,000 AMP, X/R = 20AVAILABLE SLG FAULT CURRENT ON SUB BUS = ISLG

    = 15,750 AMP, X/R = 20

    Z1FDR

    = (0.198 + j 0.583 Ω/MILE)*1.25 MILE = 0.2475 + j 0.7288 ΩZ0FDR

    =(0.485 + j 1.901 Ω/MILE)*1.25 MILE = 0.6063 + j 2.3763 Ω

  • Cou

    rse

    1 –

    Pow

    er D

    istr

    ibut

    ion

    Syst

    ems

    and

    Pow

    er C

    ircui

    t Ana

    lysi

    2012

    Sie

    men

    s In

    dust

    ry In

    c.,

    Siem

    ens

    Pow

    er T

    echn

    olog

    ies

    Inte

    rnat

    iona

    lN

    ovem

    ber

    2012

    Siemens Industry

    Inc., Siemens Power Technologies International 19-13

    Voltage Sag on Substation Bus Single Line-to-Ground Fault on Adjacent Circuit

    (continued)

    5074.002537.0))20tan(sin())20tan(cos(150007620

    ))/tan(sin())/tan(cos(3

    1

    jaja

    RXajRXaIEZ

    P

    LNSUB