tablas aisc guillermo

Upload: jackyleoleo

Post on 07-Jul-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/18/2019 Tablas Aisc Guillermo

    1/20

    BEAM DIAGRAMS AND FORMULAS

    Nomenclature E = modulus of elasticity of steel at 29,000 ksi I = moment of inertia of beam (in. 4)

    L = total length of beam between reaction points (ft) M max = maximum moment (kip-in.) M 1 = maximum moment in left section of beam (kip-in.) M 2 = maximum moment in right section of beam (kip-in.) M 3 = maximum positive moment in beam with combined end moment conditions

    (kip-in.) M x = moment at distance x from end of beam (kip-in.)P = concentrated load (kips)

    P1 = concentrated load nearest left reaction (kips)P2 = concentrated load nearest right reaction, and of different magnitude than P1

    (kips) R = end beam reaction for any condition of symmetrical loading (kips) R1 = left end beam reaction (kips) R2 = right end or intermediate beam reaction (kips) R3 = right end beam reaction (kips)V = maximum vertical shear for any condition of symmetrical loading (kips)

    V 1 = maximum vertical shear in left section of beam (kips)V 2 = vertical shear at right reaction point, or to left of intermediate reaction point

    of beam (kips)V 3 = vertical shear at right reaction point, or to right of intermediate reaction point

    of beam (kips)V x = vertical shear at distance x from end of beam (kips)W = total load on beam (kips)a = measured distance along beam (in.)b = measured distance along beam which may be greater or less than a (in.)l = total length of beam between reaction points (in.)w = uniformly distributed load per unit of length (kips per in.)w1 = uniformly distributed load per unit of length nearest left reaction (kips per in.)w2 = uniformly distributed load per unit of length nearest right reaction, and of

    different magnitude than w1 (kips per in.) x = any distance measured along beam from left reaction (in.) x1 = any distance measured along overhang section of beam from nearest reaction

    point (in.)

    ∆max = maximum deflection (in.)∆a = deflection at point of load (in.)∆ x = deflection at any point x distance from left reaction (in.)∆ x1 = deflection of overhang section of beam at any distance from nearest reaction

    point (in.)

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 187

  • 8/18/2019 Tablas Aisc Guillermo

    2/20

    BEAM DIAGRAMS AND FORMULASFrequently Used Formulas

    The formulas given below are frequently required in structural designing. They areincluded herein for the convenience of those engineers who have infrequent use for suchformulas and hence may find reference necessary. Variation from the standard nomen-clature on page 4-187 is noted.BEAMS

    Flexural stress at extreme fiber: f = Mc / I = M / S

    Flexural stress at any fiber: f = My / I y = distance from neutral axis to fiber

    Average vertical shear (for maximum see below):v = V / A = V / dt (for beams and girders)

    Horizontal shearing stress at any section A-A:v = VQ / Ib Q = statical moment about the neutral axis of that portion

    of the cross section lying outside of section A-Ab = width at section A-A

    (Intensity of vertical shear is equal to that of horizontal shear acting normal to it at thesame point and both are usually a maximum at mid-height of beam.)Shear and deflection at any point:

    EI d 2 y dx2

    = M x and y are abscissa and ordinate respectively of a point on the neutralaxis, referred to axes of rectangular coordinates through a selectedpoint of support.

    (First integration gives slopes; second integration gives deflections. Constants of inte-gration must be determined.)

    CONTINUOUS BEAMS (the theorem of three moments)Uniform load:

    M al1

    I 1 + 2 M b

    l1 I 1

    + l2 I 2

    + M c l2

    I 2 = − 1 ⁄ 4

    w1l13

    I 1 + w2l2

    3

    I 2

    Concentrated loads:

    M al1

    I 1 + 2 M b

    l1

    I 1 + l2

    I 2

    + M c l2

    I 2 = − P 1a 1b1

    I 1

    1 + a 1

    l1

    − p 2a 2b2 I 2

    1 + b2

    I 2

    Considering any two consecutive spans in any continuous structure: M a , M b, M c = moments at left, center, and right supports respectively, of any pair of

    adjacent spansl1 and l2 = length of left and right spans, respectively, of the pair

    I 1 and I 2 = moment of inertia of left and right spans, respectivelyw1 and w2 = load per unit of length on left and right spans, respectivelyP1 and P2 = concentrated loads on left and right spans, respectivelya 1 and a 2 = distance of concentrated loads from left support, in left and right spans,

    respectively

    b1 and b2 = distance of concentrated loads from right support, in left and right spans,respectively

    The above equations are for beam with moment of inertia constant in each span butdiffering in different spans, continuous over three or more supports. By writing such anequation for each successive pair of spans and introducing the known values (usuallyzero) of end moments, all other moments can be found.

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 188 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    3/20

    BEAM DIAGRAMS AND FORMULASTable of Concentrated Load Equivalents

    n Loading Coeff.

    SimpleBeam

    Beam Fixed OneEnd, Supported

    at OtherBeam FixedBoth Ends

    ∞ a 0.125 0.070 0.042b — 0.125 0.083c 0.500 0.375 —d — 0.625 0.500e 0.013 0.005 0.003f 1.000 1.000 0.667g 1.000 0.415 0.300

    2 a 0.250 0.156 0.125b — 0.188 0.125

    c 0.500 0.313 —d — 0.688 0.500e 0.021 0.009 0.005f 2.000 1.500 1.000g 0.800 0.477 0.400

    3 a 0.333 0.222 0.111b — 0.333 0.222c 1.000 0.667 —d — 1.333 1.000e 0.036 0.015 0.008

    f 2.667 2.667 1.778g 1.022 0.438 0.333

    4 a 0.500 0.266 0.188b — 0.469 0.313c 1.500 1.031 —d — 1.969 1.500e 0.050 0.021 0.010f 4.000 3.750 2.500g 0.950 0.428 0.320

    5 a 0.600 0.360 0.200

    b — 0.600 0.400c 2.000 1.400 —d — 2.600 2.000e 0.063 0.027 0.013f 4.800 4.800 3.200g 1.008 0.424 0.312

    Maximum positive moment (kip-ft): aPLMaximum negative moment (kip-ft): bPLPinned end reaction (kips): cP Fixed end reaction (kips): dP Maximum deflection (in): eP l3 / EI

    Equivalent simple span uniform load (kips): f P Deflection coefficient for equivalent simple span uniform load: g Number of equal load spaces: n Span of beam (ft): LSpan of beam (in): l

    P

    P

    P P

    P P P

    P P P P

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 189

  • 8/18/2019 Tablas Aisc Guillermo

    4/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOADTotal Equiv. Uniform Load . . . . . . = wl

    R = V . . . . . . . . . . . . . . . . . = wl2

    V x . . . . . . . . . . . . . . . . . = w l2

    − x

    M max (at center) . . . . . . . . . . . . =wl 2

    8

    M x . . . . . . . . . . . . . . . . . =wx2

    (l − x)

    ∆max (at center) . . . . . . . . . . . . =5wl 4

    384 EI

    ∆ x . . . . . . . . . . . . . . . . . =wx

    24 EI (l2 − 2 lx2 + x3)

    2. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO ONE END

    Total Equiv. Uniform Load . . . . . . =16 W

    9√ 3 = 1.0264 W

    R1 = V 1 . . . . . . . . . . . . . . . . . =W 3

    R2 = V 2 max . . . . . . . . . . . . . . . =2W

    3V x . . . . . . . . . . . . . . . . . =

    W 3

    − Wx2

    l2

    M max (at x =l

    √ 3 = .5774 l) . . . . . . . = 2Wl

    9√ 3 = .1283 Wl

    M x . . . . . . . . . . . . . . . . . =Wx

    3 l2 (l2 − x2)

    ∆max (at x = l√ 1 − √ 815 = .5193 l) . . = 0.1304 Wl3

    EI

    ∆ x . . . . . . . . . . . . . . . . . =Wx

    180 EIl 2(3 x4 − 10 l2 x2 + 7 l4)

    3. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO CENTER

    Total Equiv. Uniform Load . . . . . . =4W 3

    R = V . . . . . . . . . . . . . . . . . = W 2

    V x (when x < l2

    ) . . . . . . . . . . =W

    2 l2 (l2 − 4 x2)

    M max (at center) . . . . . . . . . . . . =Wl6

    M x (when x < l2

    ) . . . . . . . . . . = Wx

    12

    − 2 x2

    3 l2

    ∆max (at center) . . . . . . . . . . . . =Wl3

    60 EI

    ∆ x (when x < l2

    ) . . . . . . . . . . =Wx

    480 EIl 2 (5 l2 − 4 x2)2

    Moment

    Shear

    l x

    l

    R R

    2 2 l l

    V

    V

    M max

    w

    Moment

    Shear

    l x

    W

    R R

    2 2 l l

    V

    V

    M max

    Moment

    Shear

    l x

    W

    R R

    l

    V

    V

    M max

    1 2

    .5774

    2

    1

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 190 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    5/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    4. SIMPLE BEAM—UNIFORMLY LOAD PARTIALLY DISTRIBUTED

    R1 = V 1 (max. when a < c) . . . . . . . =wb2 l

    (2c + b)

    R2 = V 2 (max. when a > c) . . . . . . . =wb2 l

    (2a + b)

    V x (when x > a and < (a + b)) . . . = R1 − w( x − a )

    M max

    at x = a + R1w

    . . . . . . . . = R1

    a + R12w

    M x (when x < a ) . . . . . . . . . = R1 x

    M x (when x > a and < (a + b)) . . . = R1 x − w2

    ( x − a )2

    M x (when x > (a + b)) . . . . . . . = R2(l − x)

    5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

    R1 = V 1 max . . . . . . . . . . . . . . . =wa2 l

    (2l − a )

    R2 = V 2 . . . . . . . . . . . . . . . . =wa 2

    2l

    V x (when x < a ) . . . . . . . . . = R1 − wx

    M max

    at x =

    R1

    w

    . . . . . . . . . . =

    R12

    2w

    M x (when x < a ) . . . . . . . . . = R1 x − wx2

    2

    M x (when x > a ) . . . . . . . . . = R2 (l − x)

    ∆ x (when x < a ) . . . . . . . . . =wx

    24 EIl (a 2(2 l − a )2 − 2 ax 2(2 l − a ) + lx3)

    ∆ x (when x > a ) . . . . . . . . . =wa 2(l − x)

    24 EIl (4 xl − 2 x2 − a 2)

    6. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END

    R1 = V 1 . . . . . . . . . . . . . . . . = w1a (2 l − a ) + w2c2

    2l

    R2 = V 2 . . . . . . . . . . . . . . . . =w2c(2l − c) + w1a 2

    2 l

    V x (when x < a ) . . . . . . . . . = R1 − w1 xV x (when x > a and < (a + b)) = R1 − w1aV x (when x > (a + b)) . . . . . . . = R2 − w2 (l − x)

    M max

    at x = R1w1

    when R1 < w1a

    = R1

    2

    2w1

    M max at x = l −

    R1w2 when R

    2 < w2c =

    R22

    2w2

    M x (when x < a ) . . . . . . . . . = R1 x − w1 x

    2

    2

    M x (when x > a and < (a + b)) . . . = R1 x − w1a

    2 (2 x − a )

    M x (when x > (a + b)) . . . . . . . = R2(l − x) − w2(l − x)2

    2

    Moment

    Shear

    l

    x R R

    V

    V

    M max

    a b c w b

    1 2

    a+ w

    R 1

    2

    1

    Moment

    Shear

    l

    x R R

    V

    V

    M max

    a

    1 2

    R 1

    2

    1

    wa

    w

    Moment

    Shear

    l

    x R R

    V

    V

    M max

    a

    1 2

    R 1

    2

    1

    b c

    1 2

    1

    w a w c

    w

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 191

  • 8/18/2019 Tablas Aisc Guillermo

    6/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    7. SIMPLE BEAM—CONCENTRATED LOAD AT CENTER

    Total Equiv. Uniform Load . . . . . . . . . . = 2P

    R = V . . . . . . . . . . . . . . . . . . . . = P2

    M max (at point of load) . . . . . . . . . . . =Pl4

    M x

    when x < 12

    . . . . . . . . . . . . . =

    Px2

    ∆max (at point of load) . . . . . . . . . . . =Pl 3

    48 EI

    ∆ x

    when x < 12

    . . . . . . . . . . . . . =

    Px48 EI

    (3 l2 − 4 x2)

    8. SIMPLE BEAM—CONCENTRATED LOAD AT ANY POINT

    Total Equiv. Uniform Load . . . . . . . . . . =8Pab

    l2

    R1 = V 1 (max when a < b) . . . . . . . . . . . =Pbl

    R2 = V 2 (max when a > b) . . . . . . . . . . . =Pal

    M max (at point of load) . . . . . . . . . . . =Pab

    l

    M x (when x < a ) . . . . . . . . . . . . . . =Pbx

    l

    ∆max at x = √ a (a + 2 b)3 when a > b

    . . . =

    Pab (a + 2 b)√ 3a (a + 2 b)27 EIl

    ∆a (at point of load) . . . . . . . . . . . =Pa 2b2

    3 EIl

    ∆ x (when x < a ) . . . . . . . . . . . . . . =Pbx6 EIl

    (l2 − b2 − x2)

    9. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED

    Total Equiv. Uniform Load . . . . . . . . . . =8Pa

    l

    R = V . . . . . . . . . . . . . . . . . . . . = P M max (between loads) . . . . . . . . . . . . = Pa

    M x (when x < a ) . . . . . . . . . . . . . . = Px∆max (at center) . . . . . . . . . . . . . . . =

    Pa24 EI

    (3 l2 − 4 a 2)

    ∆ x (when x < a ) . . . . . . . . . . . . . . =Px6 EI

    (3 la − 3 a 2 − x2)

    ∆ x (when x > a and < (l − a )) . . . . . . . =Pa6 EI

    (3 lx − 3 x2 − a 2)Moment

    Shear

    l

    x

    R R

    V

    M max

    P

    a

    V

    a

    P

    Moment

    Shear

    l

    x

    R R

    V

    V

    M max

    P

    a b 1

    1

    2

    2

    Moment

    Shear

    l

    x

    R R

    V

    V

    M max

    P

    l l

    2 2

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 192 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    7/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    10. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLYPLACED

    R1 = V 1 (max. when a < b) . . . . . . . . . =Pl

    (l − a + b)

    R2 = V 2 (max. when a > b) . . . . . . . . . =Pl

    (l − b + a )

    V x (when x > a and < (l − b)) . . . . . =Pl

    (b − a )

    M 1 (max. when a > b) . . . . . . . . . = R1a

    M 2 (max. when a < b) . . . . . . . . . = R2b

    M x (when x < a ) . . . . . . . . . . . . = R1 x

    M x (when x > a and < (l − b)) . . . . . = R1 x − P ( x − a )

    11. SIMPLE BEAM—TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLYPLACED

    R1 = V 1 . . . . . . . . . . . . . . . . . . =P1 (l − a ) + P2 b

    l

    R2 = V 2 . . . . . . . . . . . . . . . . . . =P1 a + P2(l − b)

    l

    V x (when x > a and < (l − b)) . . . . . = R1 − P1 M 1 (max. when R1 < P1) . . . . . . . . = R1a

    M 2 (max. when R2 < P2) . . . . . . . . = R2b

    M x (when x < a ) . . . . . . . . . . . . = R1 x

    M x (when x > a and < (l − b)) . . . . . = R1 x − P ( x − a )

    12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—UNIFORMLY DISTRIBUTEDLOAD

    Total Equiv. Uniform Load . . . . . . . . . . = wl

    R1 = V 1 . . . . . . . . . . . . . . . . . . =3wl

    8

    R2 = V 2 max . . . . . . . . . . . . . . . . . . =5wl

    8

    V x . . . . . . . . . . . . . . . . . . = R1 − wx

    M max . . . . . . . . . . . . . . . . . . =wl 2

    8

    M x

    at x = 3

    8l

    . . . . . . . . . . . . . =

    9

    128wl 2

    M x . . . . . . . . . . . . . . . . . . = R1 x − wx 2

    2

    ∆max

    at x = l16

    (1 + √ 33 ) = .4215 l . . . =

    wl 4

    185 EI

    ∆ x . . . . . . . . . . . . . . . . . .wx

    48 EI (l3 − 3 lx + 2 x3)

    Moment

    Shear

    l

    x

    R R

    V

    M M 1

    P

    a

    V

    b

    P

    1

    1

    2

    2

    2

    Moment

    Shear

    l

    x

    R R

    V

    M M 1

    P

    a

    V

    b

    P

    1

    1

    2

    2

    2

    1 2

    Moment

    Shear

    l

    x

    R R

    V

    V

    M

    M

    1

    1

    1

    2

    2

    max

    4

    3 8 l

    l

    l w

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 193

  • 8/18/2019 Tablas Aisc Guillermo

    8/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD ATCENTER

    Total Equiv. Uniform Load . . . . . . . =3P2

    R1 = V 1 . . . . . . . . . . . . . . . . . . =5P15

    R2 = V 2 max . . . . . . . . . . . . . . . . =11 P16

    M max (at fixed end) . . . . . . . . . . . =3Pl16

    M 1 (at point of load) . . . . . . . . . . =5Pl

    32

    M x

    when x < l2

    . . . . . . . . . . . . =5Px16

    M x

    when x > l2

    . . . . . . . . . . . . = P l2

    − 11 x16

    ∆max at x = l√ 15 = .4472 l

    . . . . . . . =Pl 3

    48 EI √ 5 = .009317 Pl

    3

    EI

    ∆ x (at point of load) . . . . . . . . . . =7PL 3

    768 EI

    ∆ x

    when x < l

    2

    . . . . . . . . . . . . =Px

    96 EI (3l2 − 5 x2)

    ∆ x

    when x > l2

    . . . . . . . . . . . . =P

    96 EI ( x − l)2(11 x − 2 l)

    14. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD ATANY POINT

    R1 = V 1 . . . . . . . . . . . . . . . . . . =Pb 2

    2 l3 (a + 2 l)

    R2 = V 2 . . . . . . . . . . . . . . . . . . =Pa

    2 l3 (3l2 − a 2)

    M (at point of load) . . . . . . . . . . = R1a

    M 2 (at fixed end) . . . . . . . . . . . =Pab

    2 l2 (a + l)

    M x (when x < a ) . . . . . . . . . . . . = R1 x M x (when x > a ) . . . . . . . . . . . . = R1 x − P ( x − a )

    ∆max

    when a < .414 l at x = l (l2 + a 2)

    (3 l2 − a 2)

    =Pa (l2 + a 2)3

    3 EI (3l2 − a 2)2

    ∆max

    when a > .414 l at x = l a2 l + a

    √ .......... = Pab

    2

    6 EI √ a2 l + a∆a (at point of load) . . . . . . . . . . =

    Pa 2b3

    12 EIl 3 (3 l + a )

    ∆ (when x < a ) . . . . . . . . . . . . = Pb2 x

    12 EIl 3 (3al 2 − 2 lx2 − ax 2)

    ∆ x (when x > a ) . . . . . . . . . . . . =Pa

    12 EIl 2(l − x)2 (3 l2 x − a 3 x − 2 a 2l)

    Moment

    Shear

    l

    x

    R R

    V

    V

    M

    max

    P

    l l

    2 2 1

    1

    1

    2

    2

    3 11

    l

    M

    Moment

    Shear

    l

    x

    R R

    V

    V

    M

    2

    P

    1

    1

    1

    2

    2

    Pa R

    M

    a b

    2

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 194 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    9/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    15. BEAM FIXED AT BOTH ENDS—UNIFORMLY DISTRIBUTED LOADS

    Total Equiv. Uniform Load . . . . . . . . =2wl

    3

    R = V . . . . . . . . . . . . . . . . . . = wl2

    V x . . . . . . . . . . . . . . . . . . = w l2

    − x

    M max (at ends) . . . . . . . . . . . . . =wl 2

    12

    M 1 (at center) . . . . . . . . . . . . . =wl 2

    24

    M x . . . . . . . . . . . . . . . . . . =w

    12 (6 lx − l2

    − 6 x2

    )∆max (at center) . . . . . . . . . . . . . =

    wl 4

    384 EI

    ∆ x . . . . . . . . . . . . . . . . . . =wx2

    24 EI (l − x)2

    16. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT CENTER

    Total Equiv. Uniform Load . . . . . . . . = P

    R = V . . . . . . . . . . . . . . . . . . = P2

    M max (at center and ends) . . . . . . . . =Pl8

    M x

    when x < l2

    . . . . . . . . . . . =

    P8

    (4 x − l)

    ∆max (at center) . . . . . . . . . . . . . =Pl 3

    192 EI

    ∆ x

    when x < l2

    . . . . . . . . . . . =

    Px 2

    48 EI (3l − 4 x)

    17. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT ANY POINT

    R1 = V 1 (max. when a < b) . . . . . . . . = Pb2

    l3 (3a + b)

    R2 = V 2 (max. when a > b) . . . . . . . . =Pa 2

    l3 (a + 3 b)

    M 1 (max. when a < b) . . . . . . . . =Pab 2

    l2

    M 2 (max. when a > b) . . . . . . . . =Pa 2b

    l2

    M a (at point of load) . . . . . . . . . =2Pa 2b2

    l3

    M x (when x < a ) . . . . . . . . . . . = R1 x − Pab 2

    l2

    ∆max

    when a > b at x = 2al3a + b

    . . . . =

    2Pa 3b2

    3 EI (3a + b)2

    ∆a (at point of load) . . . . . . . . . =Pa 3b3

    3 EIl 3

    ∆ x (when x < a ) . . . . . . . . . . . =Pb 2 x2

    6 EIl 2 (3al − 3 ax − bx)

    Moment

    Shear

    l x

    w

    R R

    V

    V

    M

    M M

    1

    max

    l

    l

    2 2

    l l

    .2113

    max

    Moment

    Shear

    l

    x

    R R

    V

    V

    M

    M M max

    l

    4

    2

    l l

    max

    P

    2

    max

    Moment

    Shear

    l

    x

    R R

    V

    V

    M

    M M 2 1

    P

    a

    2

    2

    1

    1 a b

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 195

  • 8/18/2019 Tablas Aisc Guillermo

    10/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    18. CANTILEVER BEAM—LOAD INCREASING UNIFORMLY TO FIXED END

    Total Equiv. Uniform Load . . . . . . . . =83

    W

    R = V . . . . . . . . . . . . . . . . . . . = W

    V x . . . . . . . . . . . . . . . . . . . = W x2

    l2

    M max (at fixed end) . . . . . . . . . . . . =Wl3

    M x . . . . . . . . . . . . . . . . . . . =Wx3

    3 l2

    ∆max (at free end) . . . . . . . . . . . . . =Wl3

    15 EI

    ∆ x . . . . . . . . . . . . . . . . . . . =W

    60 EIl 2 ( x5 − 5 l4 x + 4 l5)

    19. CANTILEVER BEAM—UNIFORMLY DISTRIBUTED LOAD

    Total Equiv. Uniform Load . . . . . . . . = 4wl

    R = V . . . . . . . . . . . . . . . . . . . = wlV x . . . . . . . . . . . . . . . . . . . = wx

    M max (at fixed end) . . . . . . . . . . . . =wl 2

    2

    M x . . . . . . . . . . . . . . . . . . . =wx2

    2

    ∆max (at free end) . . . . . . . . . . . . . =wl 4

    8 EI

    ∆ x . . . . . . . . . . . . . . . . . . . =w

    24 EI ( x4 − 4 l3 x + 3 l4)

    20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATEAT OTHER—UNIFORMLY DISTRIBUTED LOAD

    Total Equiv. Uniform Load . . . . . . . . =83

    wl

    R = V . . . . . . . . . . . . . . . . . . . = wlV x . . . . . . . . . . . . . . . . . . . = wx

    M max (at fixed end) . . . . . . . . . . . . =wl 2

    3

    M x . . . . . . . . . . . . . . . . . . . =w6

    (l2 − 3 x2)

    ∆max (at deflected end) . . . . . . . . . . =wl 4

    24 EI

    ∆ x . . . . . . . . . . . . . . . . . . . =w(l2 − x2)2

    24 EI

    Shear

    l

    x

    R

    V

    M

    M

    M

    w

    max Moment

    l

    .4227 l

    1

    Shear

    l

    x

    R

    V

    M

    w

    max Moment

    l

    Shear

    l

    x

    R

    W

    V

    M max Moment

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 196 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    11/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    21. CANTILEVER BEAM—CONCENTRATED LOAD AT ANY POINT

    Total Equiv. Uniform Load . . . . . . . . =8Pb

    l

    R = V . . . . . . . . . . . . . . . . . . . = P

    M max (at fixed end) . . . . . . . . . . . . = Pb

    M x (when x > a ) . . . . . . . . . . . . = P ( x − a )

    ∆max (at free end) . . . . . . . . . . . . . =Pb 2

    6 EI (3 l − b)

    ∆a (at point of load) . . . . . . . . . . =Pb 3

    3 EI

    ∆ x (when x < a ) . . . . . . . . . . . . =Pb 2

    6 EI (3 l − 3 x − b)

    ∆ x (when x > a ) . . . . . . . . . . . . =P (l − x)2

    6 EI (3b − l + x)

    22. CANTILEVER BEAM—CONCENTRATED LOAD AT FREE END

    Total Equiv. Uniform Load . . . . . . . . = 8P

    R = V . . . . . . . . . . . . . . . . . . . = P

    M max (at fixed end) . . . . . . . . . . . . = Pl

    M x . . . . . . . . . . . . . . . . . . . = Px

    ∆max (at free end) . . . . . . . . . . . . . =Pl 3

    3 EI

    ∆ x . . . . . . . . . . . . . . . . . . . =P

    6 EI (2 l3 − 3 l2 x + x3)

    23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATEAT OTHER—CONCENTRATED LOAD AT DEFLECTED END

    Total Equiv. Uniform Load . . . . . . . . = 4P

    R = V . . . . . . . . . . . . . . . . . . . = P

    M max (at both ends) . . . . . . . . . . . . =Pl2

    M x . . . . . . . . . . . . . . . . . . . = P

    l

    2 − x

    ∆max (at deflected end) . . . . . . . . . . = pl 3

    12 EI

    ∆ x . . . . . . . . . . . . . . . . . . . =P (l − x)2

    12 EI (l + 2 x)

    Shear

    l

    x

    R

    V

    M max Moment

    P

    a b

    Shear

    l

    x R

    V

    M max Moment

    P

    Shear

    l

    x R

    V

    M

    M

    M

    max

    Moment

    P

    max

    l

    2

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 197

  • 8/18/2019 Tablas Aisc Guillermo

    12/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    24. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD

    R1 = V 1 . . . . . . . . . . . . . . =w2 l

    (l2 − a 2)

    R2 = V 2 + V 3 . . . . . . . . . . . =w2 l

    (l + a )2

    V 2 . . . . . . . . . . . . . . . = wa

    V 3 . . . . . . . . . . . . . . . =w2 l

    (l2 + a 2)

    V x (between supports) . . . . . = R1 − wxV x1 (for overhang) . . . . . . . = w(a − x1)

    M 1

    at x = l2

    1 − a2

    l2 . . . . . =

    w

    8 l2 (l + a )2(l − a )2

    M 2 (at R2) . . . . . . . . . . . . =wa 2

    2

    M x (between supports) . . . . . =wx2 l

    (l2 − a 2 − xl)

    M x1 (for overhang) . . . . . . . =w2

    (a − x1)2

    ∆ x (between supports) . . . . . =wx

    24 EIl (l4 − 2 l2 x2 + lx3 − 2 a 2l2 + 2 a 2 x2)

    ∆ x1 (for overhang) . . . . . . . = wx1

    24 EI (4a 2l − l3 + 6 a 2 x1 − 4 ax 12 + x13)

    25. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD ONOVERHANG

    R1 = V 1 . . . . . . . . . . . . . . =wa 2

    2 l

    R2 V 1+ V 2 . . . . . . . . . . . . =wa2 l

    (2l + a )

    V 2 . . . . . . . . . . . . . . . = wa

    V x1 (for overhang) . . . . . . . = w(a − x1)

    M max (at R2) . . . . . . . . . . . =wa 2

    2

    M x (between supports) . . . . . =wa 2 x

    2l

    M x1 (for overhang) . . . . . . . =w2

    (a − x1)2

    ∆max

    between supports at x = l√ 3

    =

    wa 2l2

    18 √ 3 EI = 0.03208 wa

    2l2

    EI

    ∆max (for overhang at x1 = a ) . . . = wa3

    24 EI (4 l + 3 a )

    ∆ x (between supports) . . . . . =wa 2 x12 EIl

    (l2 − x2)

    ∆ x1 (for overhang) . . . . . . . =wx 1

    24 EI (4a 2l + 6 a 2 x1 − 4 ax 12 + x13)

    Shear

    l

    x

    R

    2

    w( +a)

    Moment

    l

    a x 1

    R 1 2

    2 1 –

    1 –

    ( )

    ( )

    l

    l

    l

    l

    a

    a

    2

    2

    2

    2

    M

    M

    1

    2

    3

    1V V

    V

    Shear

    l

    x wa

    R

    max

    Moment

    a x 1

    R 1 2

    2

    1V

    V

    M

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 198 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    13/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    26. BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT END OF OVERHANG

    R1 = V 1 . . . . . . . . . . . . . . . . . . . . . =Pal

    R2 = V 1+ V 2 . . . . . . . . . . . . . . . . . . . =Pl

    (l + a )V 2 . . . . . . . . . . . . . . . . . . . . . = P

    M max (at R2) . . . . . . . . . . . . . . . . . = Pa

    M x (between supports) . . . . . . . . . . =Pax

    l M x1 (for overhang) . . . . . . . . . . . . . = P (a − x1)

    ∆max

    between supports at x = l√ 3

    . . . . . =

    Pal 2

    9√ 3 EI = .06415 Pal

    2

    EI

    ∆max (for overhang at x1 = a ) . . . . . . . . =Pa 2

    3 EI (l + a )∆ x (between supports) . . . . . . . . . . =

    Pax6 EIl

    (l2 − x2)

    ∆ x1 (for overhang) . . . . . . . . . . . . . =Px 16 EI

    (2al + 3 ax 1 − x12)

    27. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOADBETWEEN SUPPORTS

    Total Equiv. Uniform Load . . . . . . . . . . = wl

    R = V . . . . . . . . . . . . . . . . . . . . . = wl2

    V x . . . . . . . . . . . . . . . . . . . . . = w

    l2

    − x

    M max (at center) . . . . . . . . . . . . . . . =wl 2

    8

    M x . . . . . . . . . . . . . . . . . . . . . =wx2

    (l − x)

    ∆max (at center) . . . . . . . . . . . . . . . =5wl 4

    384 EI

    ∆ x . . . . . . . . . . . . . . . . . . . . . =wx

    24 EI (l2 − 2 lx2 + x3)

    ∆ x1 . . . . . . . . . . . . . . . . . . . . . =wl 3 x124 EI

    28. BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT ANY POINT

    BETWEEN SUPPORTSTotal Equiv. Uniform Load . . . . . . . . . . =

    8Pab

    l2

    R1 = V 1 (max. when a < b) . . . . . . . . . . . =Pbl

    R2 = V 2 (max. when a > b) . . . . . . . . . . . =Pal

    M max (at point of load) . . . . . . . . . . . . =Pab

    l

    M x (when x < a ) . . . . . . . . . . . . . . =Pbx

    l

    ∆max at x = √ a (a + 2 b)3 when a > b

    . . . =

    Pab (a + 2 b)√ 3a (a + 2 b)27 EIl

    ∆a (at point of load) . . . . . . . . . . . . =Pa 2b2

    3 EIl

    ∆ x (when x < a ) . . . . . . . . . . . . . . =Pbx6 EIl

    (l2 − b2 − x2)

    ∆ x (when x > a ) . . . . . . . . . . . . . . =Pa (l − x)

    6 EIl (2 lx − x2 − a 2)

    ∆ x1 . . . . . . . . . . . . . . . . . . . . . =Pabx 16 EIl

    (l + a )

    Shear

    l

    x

    R

    max Moment

    a x 1

    R 1 2

    2

    1V

    M

    V

    P

    Shear

    l

    x

    R

    Moment

    a

    w x 1

    R

    V

    V

    l

    l l

    2 2

    M max

    Shear

    l

    x

    R

    Moment

    x 1

    R

    V

    V

    2 1

    M max

    P

    b a

    1

    2

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 199

  • 8/18/2019 Tablas Aisc Guillermo

    14/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    29. CONTINUOUS BEAM—TWO EQUAL SPANS—UNIFORM LOAD ON ONE SPAN

    Total Equiv. Uniform Load =4964

    wl

    R1 = V 1 . . . . . . . . . . . =7

    16 wl

    R2 = V 2+ V 3 . . . . . . . . . =58

    wl

    R3 = V 3 . . . . . . . . . . . = − 1

    16 wl

    V 2 . . . . . . . . . . . . =9

    16 wl

    M max

    at x = 716

    l . . . . . =

    49512

    wl 2

    M 1 (at support R2) . . . . =1

    16 wl 2

    M x (when x < l) . . . . . =wx16

    (7 l − 8 x)

    ∆max (at 0.472 l from R1) . . = .0092 wl 4 / EI

    30. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT CENTEROF ONE SPAN

    Total Equiv. Uniform Load =138 P

    R1 = V 1 . . . . . . . . . . . =1332

    P

    R2 = V 2+ V 3 . . . . . . . . . =1116

    P

    R3 = V 3 . . . . . . . . . . . = − 3

    32 P

    V 2 . . . . . . . . . . . . =1932

    P

    M max (at point of load) . . . =13

    64

    Pl

    M 1 (at support R2) . . . . =3

    32 Pl

    ∆max (at 0.480 l from R1) . . = .015 Pl 3 / EI

    31. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT ANY POINT

    R1 = V 1 . . . . . . . . . . . =Pb

    4l3 (4 l2 − a (l + a ))

    R2 = V 2+ V 3 . . . . . . . . . =Pa

    2l3 (2 l2 + b(l + a ))

    R3 = V 3 . . . . . . . . . . . = − Pab

    4 l3 (l + a )

    V 2 . . . . . . . . . . . . =Pa

    4l3 (4 l2 + b(l + a ))

    M max (at point of load) . . . =Pab

    4 l3 (4 l2 − a (l + a ))

    M 1 (at support R2) . . . . =Pab

    4 l2 (l + a )

    x w l

    R R R 1 2 3

    l l

    1

    2

    3 V

    7 16

    l Shear

    Moment

    V

    V

    M

    M 1

    max

    R R R 1 2 3

    l l

    1

    2

    3 V

    Shear

    Moment

    V

    V

    M

    M 1

    max

    P l l

    2 2

    R R R 1 2 3

    l l

    1

    2

    3

    V

    Shear

    Moment

    V

    V

    M

    M 1

    max

    P a b

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 200 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    15/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    32. BEAM—UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS

    R1 = V 1 . . . . . . . . . . . =wl2

    + M 1 − M 2

    l

    R2 = V 2 . . . . . . . . . . . =wl2

    − M 1 − M 2

    l

    V x . . . . . . . . . . . . . = w l2

    − x

    + M 1 − M 2

    l

    M 3 at x =

    l2

    + M 1 − M 2

    wl

    . . =

    wl 2

    8 −

    M 1 + M 22

    + ( M 1 − M 2)2

    2wl 2

    M x . . . . . . . . . . . . . =wx2

    (l − x) +

    M 1 − M 2l

    x − M 1

    b (to locate inflection points) = √ l24 −

    M 1 + M 2w

    +

    M 1 − M 2wl

    2

    ∆ x =wx

    24 EI x3 −

    2 l + 4 M 1wl

    − 4 M 2wl

    x2 + 12 M 1

    w x + l2 −

    8 M 1l

    w −

    4 M 2l

    w

    33. BEAM—CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS

    R1 = V 1 . . . . . . . . . . . =P2

    + M 1 − M 2

    l

    R2 = V 2 . . . . . . . . . . . =P2

    − M 1 − M 2

    l

    M 3 (at center) . . . . . . . . =Pl4

    − M 1 + M 2

    2

    M x

    when x < l2

    . . . . . . =

    P2

    + M 1 − M 2

    l

    x − M 1

    M x

    when x > l2

    . . . . . . =

    P2

    (l − x) + ( M 1 − M 2) x

    l − M 1

    ∆ x

    when x < l2

    = Px48 EI

    3 l2 − 4 x2 − 8(l − x)Pl

    [ M 1(2 l − x) + M 2(l + x)]

    Shear

    l

    x w

    R

    Moment

    R

    V

    V

    2 1

    M 1

    1

    2

    l M M 1 2

    M >M 1 2

    M 3

    M 2

    b b

    Shear

    l

    x

    R

    Moment

    R

    V

    V

    2 1

    M 1

    1

    2

    M M 1 2

    M >M 1 2

    M 3

    M 2

    P

    l l

    2 2

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 201

  • 8/18/2019 Tablas Aisc Guillermo

    16/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    34. CONTINUOUS BEAM—THREE EQUAL SPANS—ONE END SPAN UNLOADED

    35. CONTINUOUS BEAM—THREE EQUAL SPANS—END SPANS LOADED

    36. CONTINUOUS BEAM—THREE EQUAL SPANS—ALL SPANS LOADED

    w l w l

    A B C D l l l

    R = 0.383 A l w R = 1.20 B w l R = 0.450 C w l

    R = –0.033 D w l

    Shear

    Moment

    0.383 w l l w 0.583 l w 0.033

    l w 0.617 l w 0.417

    l w 0.033

    0.583 0.383 l l

    +0.0735 w l 2

    –0.1167 2 w l

    +0.0534 2 w l –0.0333 2 w l

    (0.430 from A) = 0.0059 w / El l l 4 max ∆

    w l w l

    A B C D l l l

    R = 0.450 A l w R = 0.550 B w l R = 0.550 C w l R = 0.450 D w l

    Shear

    Moment

    0.450 w l l w 0.550

    l w 0.550

    l w 0.450

    0.450 l

    +0.1013 w l 2

    –0.050 2 w l

    +0.1013 2 w l

    (0.479 from A or D) = 0.0099 w / El l l 4

    0.450 l

    max ∆

    w l w l

    A B C D l l l

    R = 0.400 A l w R = 1.10 B w l R = 1.10 C

    w l R = 0.400 D w l

    Shear

    Moment

    0.400 w l l w 0.600

    l w 0.600

    l w 0.400

    0.400 l

    +0.080 w l 2 +0.025 2 w l +0.080 2 w l

    (0.446 from A or D) = 0.0069 w / El l l 4

    0.400 l

    l w

    0.500 l w

    0.500 l w

    –0.100 l w 2 –0.100 l w 2

    0.500 l 0.500 l

    max ∆

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 202 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    17/20

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    37. CONTINUOUS BEAM—FOUR EQUAL SPANS—THIRD SPAN UNLOADED

    38. CONTINUOUS BEAM—FOUR EQUAL SPANS—LOAD FIRST AND THIRD SPANS

    39. CONTINUOUS BEAM—FOUR EQUAL SPANS—ALL SPANS LOADED

    w l

    A B C E l l l

    R = 0.380 A l w R = 1.223 B w l R = 0.357 C

    w l R = 0.442 E w

    l

    Shear

    Moment

    0.380 w l

    l w 0.620

    l w 0.442

    0.380 l

    +0.072 w l 2 +0.0611 2 w l +0.0977

    2 w l

    (0.475 from E) = 0.0094 w / El l l 4 0.442 l

    l w

    0.603 l w

    0.397 l w

    –0.1205 l w 2 –0.0179 l w 2

    0.603 l

    D

    l w

    l

    R = 0.598 D w l

    0.558 l w

    0.040 l w

    –0.058 2 w l

    max ∆

    w l

    A B C E l l l

    R = 0.446 A l w R = 0.572 B w l R = 0.464

    C w l

    R = –0.054 E w l

    Shear

    Moment

    0.446 w l

    l w 0.554

    l w 0.054

    0.446 l

    +0.0996 w l 2 +0.0805 2 w l

    (0.477 from A) = 0.0097 w / El l l 4

    0.518 l

    0.018 l w 0.482 l w

    –0.0536 l w 2 –0.0357 l w 2

    D

    l w

    l

    R = 0.572 D w l

    0.054 l w

    0.518 l w

    –0.0536 2 w l

    max ∆

    w l w l

    A B C E l l l

    R = 0.393 A l w R = 1.143 B w l R = 0.928 C

    w l R = 0.393 E w l

    Shear

    Moment

    0.393 w l l w 0.464

    l w 0.607

    l w 0.393

    0.393 l

    +0.0772 w l 2 +0.0364 2 w l +0.0772 2 w l

    (0.440 from A and D) = 0.0065 w / El l l 4 0.393 l

    l w

    0.536 l w

    0.464 l w

    –0.1071 l w 2 –0.0714 l w 2

    0.536 l 0.536 l

    D

    l w

    l

    R = 1.143 D w l

    0.607 l w

    0.536 l w

    +0.0364 w l 2

    –0.1071 2 w l

    max ∆

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 203

  • 8/18/2019 Tablas Aisc Guillermo

    18/20

    M max

    BEAM DIAGRAMS AND FORMULASFor Various Static Loading Conditions

    For meaning of symbols, see page 4-187

    40. SIMPLE BEAM—ONE CONCENTRATED MOVING LOAD

    R1 max = V 1 max (at x = 0 ) . . . . . . . . . . . = P

    M max

    at point of load, when x = 12

    . . . . . =

    Pl4

    41. SIMPLE BEAM—TWO EQUAL CONCENTRATED MOVING LOADS

    R1 max = V 1 max (at x = 0) . . . . . . . . . . . = P

    2 − al

    when a (2 − √ 2 )l . . . . . = .586 l

    with one load at center of span =Pl4

    (Case 40)

    42. SIMPLE BEAM—TWO UNEQUAL CONCENTRATED MOVING LOADS

    R1 max = V 1 max (at x = 0 ) . . . . . . . . . . . = P1 + P2 l − a

    l

    under P1, at x = 12

    l − P 2a

    P1+ P2

    = (P1 + P2) x2

    l

    M max may occur with larger

    load at center of span and other

    load off span (Case 40) . . . =P1 l

    4

    GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS

    The maximum shear due to moving concentrated loads occurs atone support when one of the loads is at that support. With severalmoving loads, the location that will produce maximum shear must bedetermined by trial.

    The maximum bending moment produced by moving concentratedloads occurs under one of the loads when that load is as far from onesupport as the center of gravity of all the moving loads on the beam isfrom the other support.

    In the accompanying diagram, the maximum bending momentoccurs under load P1 when x = b . It should also be noted that thiscondition occurs when the centerline of the span is midway betweenthe center of gravity of loads and the nearest concentrated load.

    M max

    l

    1

    x

    2

    P

    R R

    l

    1

    x a

    2

    P R R

    P

    1 2

    l

    1

    x a

    2

    P P R R

    1 2

    P > P 1 2

    l

    1 2

    P R R

    a

    P 1 2

    Moment

    M

    l

    2

    x b

    C.G.

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    4 - 204 BEAM AND GIRDER DESIGN

  • 8/18/2019 Tablas Aisc Guillermo

    19/20

    BEAM DIAGRAMS AND FORMULASDesign properties of cantilevered beams

    Equal loads, equally spaced

    No. Spans System

    2

    3

    4

    5

    ≥6(even)

    ≥7(odd)

    n ∞∞ 2 3 4 5

    Typical SpanLoading

    M 1M 2M 3

    M 4M 5

    0.086PL0.096PL0.063PL

    0.039PL0.051PL

    0.167PL0.188PL0.125PL

    0.083PL0.104PL

    0.250PL0.278PL0.167PL

    0.083PL0.139PL

    0.333PL0.375PL0.250PL

    0.167PL0.208PL

    0.429PL0.480PL0.300PL

    0.171PL0.249PL

    ABCDEFGH

    0.414P1.172P0.438P1.063P1.086P1.109P0.977P1.000P

    0.833P2.333P0.875P2.125P2.167P2.208P1.958P2.000P

    1.250P3.500P1.333P3.167P3.250P3.333P2.917P3.000P

    1.667P4.667P1.750P4.250P4.333P4.417P3.917P4.000P

    2.071P5.857P2.200P5.300P5.429P5.557P4.871P5.000P

    abcdef

    0.172L0.125L0.220L0.204L0.157L0.147L

    0.250L0.200L0.333L0.308L0.273L0.250L

    0.200L0.143L0.250L0.231L0.182L0.167L

    0.182L0.143L0.222L0.211L0.176L0.167L

    0.176L0.130L0.229L0.203L0.160L0.150L

    M o m e n t s

    R e a c t i o n s

    C a n t i l e v e r

    D i m e n s i o n s

    1M 1M M 1

    A B

    a

    A

    M 3 3 M

    1M M 1

    2 M 3 M 2 M

    1M M 4 1M

    C

    A

    D

    E

    D

    E

    C

    A

    b b

    c c

    1M M 3 M 3 1M M 5 3

    M 2

    M

    A F G D C

    d e b

    M 3 3 M 3 M 3 M

    1M M 3 M 3 M 1

    2 M 3 M 3 M 3 M 2 M

    1M M 5 3 M

    5 M M 1

    C

    A

    D

    F

    H

    G

    H

    G

    D

    F

    C

    A

    b f bf

    d e e d

    f f

    1M M 3 M 3 M 3 M 3 1M M 5 3 M 3

    M M 3 2 M

    A F G H H D C

    d e b

    M 3 3 M 3 M 3 M 3 M 3 M

    1M M 3 M 3 M 3 M 3 M 1

    2 M 3 M 3 M 3 M 3 M 3 M 2 M

    1M M 5 3 M

    3 M M 3 5 M 1M

    C

    A

    D

    F

    H

    G

    H

    H

    H

    H

    H

    G

    D

    F

    C

    A

    b f

    f f

    f f bf

    d e e d

    P 2 P

    2 P

    P 2 P

    2 P

    P P 2 P

    2 P

    P P P 2 P

    2 P

    P P P P

    AMERICAN INSTITUTE OF STEEL CONSTRUCTION

    BEAM DIAGRAMS AND FORMULAS 4 - 205

  • 8/18/2019 Tablas Aisc Guillermo

    20/20

    BEAM DIAGRAMS AND FORMULASCONTINUOUS BEAMS

    MOMENT AND SHEAR COEFFICIENTSEQUAL SPANS, EQUALLY LOADED

    MOMENTin terms of w l2

    UNIFORM LOAD SHEARin terms of w l

    MOMENTin terms of P l CONCENTRATED LOADSat center SHEARin terms of P

    MOMENT

    in terms of P l

    CONCENTRATED LOADS

    at1

    ⁄ 3 points

    SHEAR

    in terms of P

    MOMENTin terms of P l

    CONCENTRATED LOADSat 1 ⁄ 4 points

    SHEARin terms of P

    +.07 –.125

    +.07

    +.08 –.10

    +.025 –.10

    +.077 –.107

    +.036 –.071

    +.036 –.107

    +.078 –.105 –.073 –.073 –.105

    +.078 –.106 –.077 –.086 –.077 –.106

    +.078 –.106 –.077 –.085 –.085 –.077 –.106

    +.08

    +.077

    +.078

    +.078

    +.078

    142

    0 36

    142

    86 75

    142

    67 70

    142

    72 71

    142

    71 72

    142

    70 67

    142

    75 86

    142

    36 0

    51

    104

    63

    104 104

    0 41 55 43

    104

    53 53

    104

    51 49 41 63 55

    104

    0

    104

    23

    38

    0 15 38 38

    23 20 19 38

    19 18

    38

    18 20

    38

    15 0

    15

    28

    0

    28

    11 17 28

    13 13

    28

    15 17

    28

    0 11

    10 10

    0 4 5 5 10

    6 10

    6 4 0

    0 3 5 5 3 0 8 8 8

    P P

    P P P

    P P P P P

    .31 .69 .69 .31

    .35 .65 .50 .50 .65 .35

    .34 .66 .54 .46 .50 .50 .46 .54 .66 .34

    +.156 +.156 +.157

    +.178 –.15

    +.10 –.15

    +.175

    +.171 –.138

    +.11 –.119

    +.13 –.119

    +.11 –.158

    +.171

    P P

    P P P

    P P P P P

    .67 1 .33 1.33 .67

    .73 1.27 1.0 1.0 1.27 .73

    .72 1 .28 1.07 .93 1.0 1.0 .93 1 .07 1.28 .72

    P P

    P P P

    P P P P P

    +.222 +.111 +.111 +.222 –.333

    +.244 +.156 –.267

    +.066 +.066 –.267

    +.156 +.244

    +.24 +.146 –.281

    +.076 +.099 –.211

    +.122 +.122 +.24 +.146 –.281

    +.076 +.099 –.211

    P P

    P P P

    P P P P P

    1.03 1. 97 1.97 1.03

    1.13 1.87 1.50 1.50 1.87 1.13

    1.11 1.89 1 .60 1.40 1 .50 1.50 1 .40 1.60 1.89 1.11

    P P

    P P P

    P P P P P

    P P

    P P P

    P P P P P

    + .2 58 + .0 22 +.267 +.267

    + .0 22 + .2 58 -.465

    +.282 +.314

    +.097 -.372

    +.003 +.128

    +.003 -.372

    +.097 +.314

    +.282

    +.277 +.303

    +.079 -.394

    +.006 +.155

    +.054 -.296

    +.079 +.204

    +.079 -.296

    +.054 +.155

    +.006 -.394

    +.079 +.303

    +.277

    4 - 206 BEAM AND GIRDER DESIGN