table s1. primers used in this...

13
1 SUPPLEMENTARY DATA 1 2 Table S1. Primers used in this study 3 4 Primer name Sequence Primers used to clone nlpE EcoRI-nlpE-5 cccgaattcggtcgggaataaaaagaaggaatgg HindIII-nlpE-3 gcgaagcttgtctcaagacgggttactgccc Primers used to check single mutants cpxR.ext-5 gattgattcataaatactcc cpxR.ext-3 caaacagtaagttaatgaaatc rcsB.ext-5 aaatgctcgcagctgaccc rcsB.ext-3 tgccgtcaacggacaaagcgg degP.ext-5 cagcgatcttcttaagctatat degP.ext-3 acaagtgcatcaaccgcgac Kmfrt.verif-5 ggattcatcgactgtggccg Kmfrt.verif-3 cagtcatagccgaatagcct 5

Upload: buikhanh

Post on 03-Dec-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

1

SUPPLEMENTARY DATA 1

2

Table S1. Primers used in this study 3 4 Primer name Sequence

Primers used to clone nlpE

EcoRI-nlpE-5 cccgaattcggtcgggaataaaaagaaggaatgg

HindIII-nlpE-3 gcgaagcttgtctcaagacgggttactgccc

Primers used to check single mutants

cpxR.ext-5 gattgattcataaatactcc

cpxR.ext-3 caaacagtaagttaatgaaatc

rcsB.ext-5 aaatgctcgcagctgaccc

rcsB.ext-3 tgccgtcaacggacaaagcgg

degP.ext-5 cagcgatcttcttaagctatat

degP.ext-3 acaagtgcatcaaccgcgac

Kmfrt.verif-5 ggattcatcgactgtggccg

Kmfrt.verif-3 cagtcatagccgaatagcct 5

2

1 Table S2. ApoEdpL-W upregulated genes in E. coli K-12 2

3

N° Gene name FCa Encoded function Regulonb

Sugar metabolism and polysaccharide synthesis

b4026 yjbE 1910.25 Production of uncharacterized polysaccharide Rcs(+)

b2053 gmd 1848.92 GDP-mannose 4,6-dehydratase Rcs(+)

b2052 wcaG 1734.66 GDP-4-keto-6-L-galactose reductas Rcs(+)

b2055 wcaE 1595.95 Predicted colanic acid glycosyl transferase Rcs(+)

b2054 wcaF 1513.11 Putative colanic acid acetyltransferase Rcs(+)

b2056 wcaD 1246.84 Putative colanic acid polymerase Rcs(+)

b2062 wza 1014.80 Putative polysaccharide export protein Rcs(+), σE(+)

b2051 wcaH 826.60 GDP-mannose mannosyl hydrolase

b2060 wzc 814.95 Protein-tyrosine kinase Rcs(+), σE (+)

b2049 manC 807.14 Mannose-1-phosphate guanylyltransferase Rcs(+)

b2059 wcaA 763.64 Predicted glycosyl transferase Rcs(+)

b2057 wcaC 713.09 Predicted glycosyl transferase Rcs(+)

b2050 wcaI 481.47 Predicted glycosyl transferase Rcs(+)

b4029 yjbH 478.81 Production of uncharacterized polysaccharide Rcs(+)

b2046 wzxC 435.13 Colanic acid exporter Rcs(+)

b2058 wcaB 393.09 Putative colanic acid acetyltransferase Rcs(+)

b1951 rcsA 372.17 Colanic acid biosynthesis activator Rcs(+), Cpx*

b2047 wcaJ 312.20 Putative UDP-glucose lipid carrier transferase

b2045 wcaK 236.57 Predicted pyruvyl transferase

b2044 wcaL 183.10 Putative colanic acid glycosyl transferase Rcs(+)

b4028 yjbG 87.62 Production of uncharacterized polysaccharide Rcs(+)

b2028 ugd 37.15 UDP-glucose 6-dehydrogenase Rcs(+)

b1897 otsB 6.46 Trehalose-6-phosphate phosphatase

b1236 galU 3.80 Glucose-1-phosphate uridylyltransferase Rcs(+)

b1613 manA 2.56 Mannose-6-phosphate isomerase

b2388 glk 2.14 Glucokinase

Osmotic shock

b1283 osmB 39.19 Osmotically inducible lipoprotein Rcs(+), Cpx*, σS

b1482 osmC 4.94 Osmotically inducible protein Rcs(+), σS

3

b4376 osmY 4.05 Hyperosmotically inducible periplasmic protein Rcs(+), σS

Envelope stress response

b1743 spy 85.42 Periplasmic protein Rcs(+), Cpx(+),

BaeR(+)

b0161 degP 17.03 Serine endoprotease Cpx, σE

b3914 cpxP 13.36 Periplasmic repressor Cpx, σS

b3913 cpxP 12.44 Periplasmic repressor Cpx, σS

b2573 rpoE 3.82 RNA polymerase sigma factor RpoE Cpx(-), σE (+)

b2572 rseA 3.50 Anti- σE factor Cpx(-), σE (+)

b0220 ykfE 11.91 Inhibitor of vertebrate C-lysozyme Rcs(+), Cpx*, σS

b3347 fkpA 3.11 Peptidyl-prolyl isomerase σE (+)

Oxidative stress response

b1732 katE 8.94 Hydroperoxidase (catalase) Rcs(+), σS

b3238 yhcN 3.99 Hydrogen peroxide response σE (-)

b4062 soxS 3,07 DNA binding transcriptional regulator

Heat shock proteins

b3686 ibpB 95.49 Heat shock chaperone σH

b2592 clpB 4.16 Protein disaggregation chaperone σH

b3687 ibpA 28.70 Heat shock protein σH

b0891 lolA 3.51 Outer membrane lipoprotein carrier protein

b0014 dnaK 2.36 Molecular chaperone σE (+), σH

b1379 hslJ 9.46 Heat-inducible protein σH

b0473 htpG 3.06 Heat shock protein 90 σH

b1829 htpX 2.52 Heat shock protein HtpX Cpx(+), σH

Antibiotic resistance

b1536 ydeI 114.11 Stress response protein Rcs(+)

b1531 marA 4.24 DNA-binding transcriptional activator,

multiple antibiotic resistance

Iron homeostasis

b0593 entC 251.84 Isochorismate synthase Fur

4

b0585 fes 172.56 Enterobactin/ferric enterobactin esterase Fur

b0594 entE 155.00 Enterobactin synthase multienzyme component Fur

b0586 entF 106.88 Enterobactin synthase multienzyme component

b0595 entB 89.16 Isochorismatase Fur

b0596 entA 79.86 2,3-dihydroxybenzoate-2,3-dehydrogenase Fur

b0584 fepA 58.44 Iron-enterobactin outer membrane transporter Fur

b1684 sufA 8.28 Fe-S cluster assembly protein

b4367 fhuF 7.63 Ferric iron reductase involved in ferric

hydroximate transport

Fur

b0150 fhuA 7.53 Ferrichrome outer membrane transporter

b3005 exbD 2.31 Biopolymer transport protein

Regulators

b1305 pspB 4.57 DNA binding transcriptional regulator

b1060 yceP 4.31 Biofilm formation regulatory protein σH

b1304 pspA 3.45 Phage shock protein A σH (-)

b1608 rstA 2.34 DNA binding response regulator

Miscellaneous functions

b0597 rsmB (ybdB) 82.14 16S rRNA methyltransferase Fur

b2674 nrdI 51.14 Ribonucleotide reductase stimulatory protein Fur

b3926 glpK 5.34 Glycerol kinase

b3927 glpF 5.18 Glycerol uptake facilitator protein

b2597 yfiA 5.12 Translation inhibitor protein

b2209 eco 4.55 Ecotin, serine protease inhibitor

b3426 glpD 3.05 Glycerol-3-phosphate dehydrogenase

b0461 tomB (yb) 2.97 Modulation of Hha toxicity Cpx(+)

b1480 rpsV 2.69 30S ribosomal subunit S22 Rcs(+), σS

b3932 hslV 2.37 ATP-dependent protease/peptidase subunit σH

b3931 hslU 2.13 ATP-dependent protease/peptidase subunit σH

b0492 ybbN 2.02 Thioredoxin-like protein σH

Predicted proteins

b0379 yaiY 492.16 Predicted inner membrane protein Rcs(+)

b1110 ycfJ 417.96 Hypothetical protein Rcs(+)

b0005 yaaX 170.84 Hypothetical protein

b1115 ycfT 103.62 Hypothetical protein Rcs(+)

5

b3563 yiaB 86.63 Hypothetical protein

b2671 ygaC 65.73 Hypothetical protein Rcs(+), Fur

b1172 ymgG 21.78 Hypothetical protein Rcs(+)

b1171 ymgD 18.19 Hypothetical protein Rcs(+), Cpx

b0753 ybgS 17.75 Hypothetical protein

b2833 ygdR 13.91 Hypothetical lipoprotein Rcs(+)

b1846 yebE 13.82 Hypothetical protein Cpx

b2936 yggG 9.98 Predicted peptidase Rcs(+)

b4045 yjbJ 9.39 Putative stress-response protein Rcs(+), σS

b3055 ygiM 8.73 Putative signal transduction protein σE

b1063 yceB 6.71 Predicted lipoprotein

b0453 ybaY 5.68 Hypothetical protein

b4217 ytfK 4.82 Hypothetical protein Rcs(+), σS

b1452 yncE 3.99 Hypothetical protein

b0865 ybjP 3.73 Predicted lipoprotein σS

b3192 mlaC (yrbC) 2.47 Predicted subunit of phospholipid ABC

transporter

b3191 mlaB (yrbB) 2.30 Predicted subunit of phospholipid ABC

transporter

b2922 yggE 2.36 Hypothetical protein Rcs(+), σS

b3098 yqjD 2.06 Hypothetical protein

Intergenic regions

IG 2135266/857-r 1650.08 yegH->wza

IG 2116427/701_r 508.94 wzxc->wcaK

IG 1341353/620_r 101.90 ycit->osmB

IG 2317849/8062_r 80.83 atoS->rcsC

IG 3198607/847_f 9.11 ygiF->ygiM

IG 2302414/3127_f 4.53 eco->mqo a FC, fold change. 1 b Known regulators of gene expression according to (1-4) and EcoCyc database (http://ecocyc.org/). When 2 established, the up (+)- or down(-)-action of the regulator is reported in brackets. Cpx*, regulation predicted by 3 promoter region analysis but not validated experimentally. 4 5 1. Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. 2006. Conserved and variable functions 6

of the sigmaE stress response in related genomes. PLoS Biol 4:e2. 7

6

2. De Wulf P, McGuire AM, Liu X, Lin EC. 2002. Genome-wide profiling of promoter 1 recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 2 277:26652-26661. 3

3. Ferrieres L, Clarke DJ. 2003. The RcsC sensor kinase is required for normal biofilm formation 4 in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid 5 surface. Mol Microbiol 50:1665-1682. 6

4. McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper 7 CE, Andrews SC. 2003. Global iron-dependent gene regulation in Escherichia coli. A new 8 mechanism for iron homeostasis. J Biol Chem 278:29478-29486. 9

10 11 12 13 14 15 16 17 18 19

20

7

1 Table S3. ApoEdpL-W downregulated genes in E. coli K-12 2

3

N° Gene name FCa Encoded functiona Regulonb

Sugar metabolism and transport

b4032 malG -16.27 Maltose transporter subunit BaeR(-)

b4035 malK -15.17 Maltose/maltodextrin transporter ATP-binding

protein

b4033 malF -14.62 Maltose transporter subunit BaeR(-)

b4036 lamB -11.67 Maltoporin

b4239 treC -8.97 Trehalose-6-P hydrolase

b4037 malM -7.61 Maltose regulon periplasmic protein

b3416 malQ -7.03 4-Alpha-glucanotransferase Rcs(+)

b4034 malE -6.96 Maltose transporter subunit

b4240 treB -6.40 Trehalose(maltose)-specific PTS system

components IIBC

TCA cycle and cell energy

b2210 mqo -3.08 Malate:quinone oxidoreductase

b1746 astD -3.08 Succinylglutamic semialdehyde

dehydrogenase

b0722 sdhD -2.88 Succinate dehydrogenase cytochrome subunit

b2283 nuoG -2.82 NADH dehydrogenase subunit

b0723 sdhA -2.81 Succinate dehydrogenase flavoprotein subunit

b3894 fdoG -2.80 Formate dehydrogenase-O major subunit

b3893 fdoH -2.75 Formate dehydrogenase-O beta subunit

b3892 fdoI -2.66 Formate dehydrogenase-O subunit

b0724 sdhB -2.54 Succinate dehydrogenase iron-sulfur subunit

b3891 fdhE -2.38 Formate dehydrogenase accessory protein

b2284 nuoF -2.21 NADH dehydrogenase I subunit

b2518 ndk -2.18 Nucleoside diphosphate kinase

b2286 nuoC -2.15 NADH:ubiquinone oxidoreductase subunit

b2282 nuoH -2.14 NADH dehydrogenase subunit

b1612 fumA -2.13 Fumarase

b4108 phnA -2.00 NADP-NADPH transhydrogenase

8

Nucleic acid metabolism

b0411 tsx -4.80 Nucleoside channel

b2497 uraA -4.69 Uracil transporter

b0337 codA -3.80 Cytosine deaminase

b0336 codB -3.44 Cytosine permease

b0721 sdhC -3.28 Succinate dehydrogenase cytochrome subunit

b0945 pyrD -3.09 Dihydro-orotate dehydrogenase 2

b4346 mcrB -3.03 Specific restriction enzyme subunit

b3962 udhA -2.93 Soluble pyridine nucleotide transhydrogenase

b4246 pyrL -2.72 pyrBI operon leader peptide

b1281 pyrF -2.67 OMP decarboxylase

b4005 purD -2.56 Phosphoribosylglycinamide synthetase

b3714 purP (yieG) -2.47 Adenine uptake

b2393 nupC -2.38 Nucleoside transporter

b1062 pyrC -2.35 Dihydro-orotase

b0033 carB -2.30 Carbamoyl phosphate synthase subunit

b2498 upp -2.22 Uracil phosphoribosyltransferase

b4006 purH -2.18 XICAR transformylase / IMP cyclohydrolase

b0238 gpt -2.14 xanthine-guanine phosphoribosyltransferase

Amino acid and peptide metabolism

b1487 ddpA -5.07 D-ala-D-ala transporter subunit

b1488 ddpX -4.58 D-alanyl-D-alanine dipeptidase

b2309 hisJ -2.93 Histidine-binding periplasmic protein

b1748 astC -2.43 Succinylornithine/acetylornithine transaminase

b2310 argT -2.39 Aysine/arginine/ornithine transporter subunit

b0674 asnB -2.10 Asparagine synthetase B

b3965 trmA -2.06 tRNA (uracil-5-)-methyltransferase

Nitrogen assimilation

b3869 glnL -2.83 Nitrogen regulation protein

b1988 nac -2.69 Nitrogen assimilation transcriptional regulator

b0451 amtB -2.57 Ammonium transporter

Porins

b0929 ompF -23.13 Outer membrane protein F Cpx(-),σE (-)

9

b0553 nmpC -11.24 Outer membrane porin protein

b2215 ompC -2.32 Outer membrane porin protein C Cpx(+), σE (-)

Iron homeostasis

b1905 ftnA -6.66 Ferritin iron storage protein Fur

Miscellaneous functions

b4314 fimA -2.80 Major type 1 fimbriae subunit Rcs(+)

Regulators

b1987 cbl -3.60 Transcriptional regulator

b4438 ryeE -2.95 Small regulatory RNA

b2369 evgA -2.84 DNA binding response regulator

b0034 caiF -2.70 DNA binding transcriptional activator

b2669 stpA -2.48 DNA binding protein

Predicted proteins

b4354 yjiY -10.06 Hypothetical protein

b0458 ylaC -2.32 Hypothetical protein

b0786 ybhL -2.25 Hypothetical protein

b4353 yjiX -2.21 Hypothetical protein

b2351 yfdh -2.17 Bactoprenol glucosyl transferase

Intergenic regions

IG 2660152/602_r -2.26 iscR/yfhP->tmrJ/yfhQ a FC, fold change. 1 b Known regulators of gene expression according to (1-4) and EcoCyc database (http://ecocyc.org/). When 2 established, the up(+)- or down(-)-action of the regulator is reported in brackets. 3 4 1. Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. 2006. Conserved and variable functions 5

of the sigmaE stress response in related genomes. PLoS Biol 4:e2. 6 2. De Wulf P, McGuire AM, Liu X, Lin EC. 2002. Genome-wide profiling of promoter 7

recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 8 277:26652-26661. 9

3. Ferrieres L, Clarke DJ. 2003. The RcsC sensor kinase is required for normal biofilm formation 10 in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid 11 surface. Mol Microbiol 50:1665-1682. 12

4. McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper 13 CE, Andrews SC. 2003. Global iron-dependent gene regulation in Escherichia coli. A new 14 mechanism for iron homeostasis. J Biol Chem 278:29478-29486. 15

16

10

1 Figure S1 Audrain et al 2

Sublethal concentrations of ApoEdpL-W have only a mild effect on E. coli growth. E. coli 3

growing cells were exposed to 0, 3 and 3.5 µM of ApoEdpL-W for 45 min and samples were 4

taken every 15 min, serially diluted and plated on LB plates. Percent of survival was calculated 5

by CFU counting and compared to numbers obtained at t=0 min. Statistical analysis: asterisks 6

indicate values significantly different from no ApoEdpL-W condition by the two-tailed unpaired 7

Student’s t-test : *p<0.05. 8

9

11

1 2

Figure S2 Audrain et al 3

The σE pathway is not required for E. coli tolerance to ApoEdpL-W. Decreased σE activity in 4

the wild-type strain or cpxR mutant did not significantly affect E. coli tolerance to ApoEdpL-W. 5

Survival of the wild-type strain carrying an empty vector or pCA24N-rseA (A) and cpxR mutant 6

carrying an empty vector or pCA24N-rseA (B) upon exposure to ApoEdpL-W. Cells were grown 7

in MH medium plus chloramphenicol and IPTG (0.01mM) until reaching OD600 0.1. They were 8

exposed to 0 and 5 µM (MIC) of ApoEdpL-W for 80 min. Samples were taken every 20 min, 9

serially diluted and plated on appropriate LB plates. Survival of each strain was estimated by 10

CFU counting and compared to numbers obtained prior to ApoEdpL-W treatment. NS: not 11

significant by two-tailed unpaired Student’s t-test. 12

12

1 2

3

Figure S3 Audrain et al 4

Impact of DegP on planktonic E. coli tolerance to ApoEdpL-W. degP mutation increased E. 5

coli susceptibility to ApoEdpL-W, whereas complementation of degP mutant with pCA24N-6

degP restored the wild-type phenotype. Wild-type strain, its corresponding degP mutant and the 7

complemented strain were grown in MH medium plus chloramphenicol and IPTG (0.025 mM) 8

until reaching OD600 0.1. They were exposed to 0 and 5 µM (MIC) of ApoEdpL-W for 60 min. 9

Survival of each strain was estimated by CFU counting and compared to numbers obtained prior 10

to ApoEdpL-W treatment. Statistical analysis: *p<0.05; NS: not significant by two-tailed 11

unpaired Student’s t-test. 12

13

14

15

13

1

2 3

4

Figure S4 Audrain et al 5

Induction of the Cpx pathway increased E. coli tolerance to ApoEdpL-W. Overexpression of 6

NlpE increased E. coli tolerance to ApoEdpL-W in a CpxR dependent manner. Survival of the 7

wild type strain carrying an empty vector or pBAD-nlpE and cpxR mutant carrying an empty 8

vector or pBAD-nlpE upon exposure to ApoEdpL-W. Cells were grown in MH medium plus 100 9

µg/ml ampicillin and 0.05% arabinose until reaching OD600 0.1. They were exposed to 0 and 5 10

µM (MIC) of ApoEdpL-W for 80 min. Survival of each strain was estimated by CFU counting 11

and compared to numbers obtained prior to ApoEdpL-W treatment. Statistical analysis: *p<0.05 12

and **p<0.01 by two-tailed unpaired Student’s t-test. 13

14 15

16 17 18 19 20