taral manish indian power sector,

87
INDIAN POWER SECTOR & TRANSFORMER DEMAND FORECAST

Upload: ronypatel

Post on 13-Nov-2014

633 views

Category:

Documents


6 download

DESCRIPTION

this is market research ON TATA INDUSTRY by me for helping people study and information and helping in its task

TRANSCRIPT

Page 1: Taral Manish Indian Power Sector,

INDIAN POWER SECTOR

& TRANSFORMER DEMAND

FORECAST

Page 2: Taral Manish Indian Power Sector,

A

PROJECT REPORT

ON

INDIAN POWER SECTOR

&

TRANSFORMER DEMAND

FORECAST

TOWARDS THE PARTIAL FULFILLMENT OF

MASTERS OF BUSINESS ADMINISTRATION PROGRAMME

Submitted By:

Tanish Dadhania (Roll No 13) Taral Dave (Roll No 14)

Manish Vasava (Roll No 58)

AES Post Graduate Institute of Business Management

Ahmedabad

Page 3: Taral Manish Indian Power Sector,

ACKNOWLEDGEMENT

At the outset of this project we would like to extend our sincere thanks to the Human

Resource Department of Transformer & Rectifiers (India) Ltd. for giving us a

wonderful opportunity to work & in the due course to learn more.

We would also like to thank our project guide Mr. Mehul Dave, for guiding us through

the successful completion of the project. Without his suggestions and valuable inputs

on the technicalities, this project couldn’t have been completed in such a short span

of time. It was a great learning experience not only pertaining to this project, but also

shaping a vision & philosophy towards life.

Our heartfelt thanks to Dr. A. H. Kalro, Director AES PG IBM for giving us this

opportunity to undertake summer training. We also sincerely thank Prof. Rajendra

Sharma and Prof. Jinal Parikh, faculty AES PG IBM, for their valuable guidance.

Last but not the least we would like to extend our gratitude to Mr. Jitu Mamtora, MD,

Transformer & Rectifier (India) Ltd., Mr. Anirban Kapat, HRM Head, Mr. Kunal –

HRD Mr. Devdatt Bhatt, Marketing Department and all the employees of the

company for providing a helping hand whenever needed & in understanding the

company’s work culture.

Tanish Dadhania

Taral Dave

Manish Vasava

Page 4: Taral Manish Indian Power Sector,

PREFACE

Power and Infrastructure are the backbone of any nation. Growth of these sectors

defines the development of country. India’s power market is the fifth largest in the

world with an installed generation capacity of 124.8 GW, generation of more than

600 billion kWh, and a transmission & distribution network of more than 6.3 million

circuit kilometers. With increase in GDP demand for power has also increased

significantly. Our country is facing power deficit of 7% .It is very important to forecast

the growth of power sector and its installed capacity in order to meet the demand.

Electricity is produced by generators in which the conductors are made to rotate in

the magnetic field. But the rotation of huge blades and turbines is produced by

pressure of steam, water; wind etc. steam is produced by burning of coal or

petroleum derivatives. Water is generally flowing from river water stored in dams,

tides and ebbs in oceans.

Transformers are needed for stepping up and stepping down the voltage so as to

minimize the losses and transfer of power from generating complexes located at

feasible but remote areas to load centers over vast geographical areas.

Need for development of this project arise from need of increasing production

capacity of the company. As power sector grows, to keep constant growth rate or

grab higher, one need to find future demand for the same. Here we mainly focus to

find transformer demand at the end of electricity forecast.

In this project we have tried to quantify the growth of transformer Industry and future

installed power capacity in India for next two five year plan. We also found the past

trend of power sector growth to align it with past GDP growth. Along with that we

have studied the power sector of other countries in order to evaluate the prospect for

Indian companies in those countries. We have also studied the modes of

advertisements for Industrial product. The data has been collected from secondary

sources. Data has been processed by bench mark so as to get MVA required for

transformer.

Page 5: Taral Manish Indian Power Sector,

MODULE - I

COMPANY PROFILE PRODUCT PORTFOLIO INDIAN POWER SECTOR SCENARIO SWOT ANALYSIS OF INDIAN POWER SECTOR THE TENTH PLAN SWOT ANALYSIS OF T & R

Page 6: Taral Manish Indian Power Sector,

COMPANY PROFILE

Established in 1981, Transformers & Rectifiers (I) Limited has consolidated its

position in the Indian Transformer Industry as a manufacturer of a wide range of

transformers, which conform to the quality expectations of both the domestic and the

international market. An ISO 9001:2000 company today, T & R as it is more

popularly known, is proud to have executed a number of prestigious orders from

developed countries such as Canada and the United Kingdom.

The capability to develop world class power, distribution, furnace and specialty

transformers is credited to the creation of a world class infrastructure at Changodar,

near Ahmedabad, one of the leading industrialized cities of India. This facility is

equipped with world class state of the art equipment and managed by a high skilled

and experienced team of production personnel who consistently ensure that each

and every production activity factors in an adherence to the high quality benchmarks

established by the organization.

A Value Based Organization

As one of India’s leading transformer manufacturing companies, and one that is held

in high esteem even by our competitors, a great deal of relevance is attached to

living up to our image as a value based organization. We are an ethically responsible

company, operate with transparency, validate commitment and sincerity, both

vertically and horizontally across the organization and inculcate a spirit of integrity.

We also try and extend these values to our business associates, be it vendors or our

valued customers.

Page 7: Taral Manish Indian Power Sector,

Mission

Quality Policy

We perceive ourselves as a world class

manufacturer of Transformers

by establishing stringent quality

norms in a vibrant environment that

Values Continuous Improvement

Develops The Best Resource Partners

Nurtures Employee Skills And Performance

Inculcates A High Standard of Integrity

Believes in Team Work

In a Persistent Endeavour to ensure that

each customer values their relationship with us.

Page 8: Taral Manish Indian Power Sector,

Company History

1981 Transformers & Rectifiers (India) was incorporated.

1981-95 Manufactured Distribution & Power Transformers up to 15 MVA, 66 KV

and Furnace transformers up to 13.75 MVA.

1996 Expanded up to 220 KV transformers at our new plant at Changodar,

Ahmedabad.

1996–99 Manufactured transformers up to 30 MVA, up to 132 KV and received

orders up to 50 MVA, 132 KV class.

2000-02 Manufactured transformers up to 100 MVA, up to 220 KV

2002-03 Re-Certified for ISO:9001:2000 Valid up to 14th August

2003-04 Single Order of 36 Transformers of 110 KV Class Delta Connected for

TNEB.

Single Order of 10 Transformers of 220 KV Class for GEB.

2004-05 Got PGCIL (Power Grid Corporation India Ltd.) Approval order for

Engineering, Manufacturing, supply and Installation of Station, UAT,

Station ATs for Sripad 2 x 500 MW, Super Thermal Power Station of

NTPC (National Thermal Power Corporation

2 Nos. 75 MVA, 33/220 kV, Generator Transformers for Non Conventional

Wind Power Energy Project from SUZLON Developers

Power Perfect – A punch line given

Successfully done Dynamic Short Circuit Test up to / on 50 MVA, 245 kV

class Transformer

2005-06 18 Nos. 100 MVA, 245 kV class Transformers from various utility under

execution.

2005-06 More than 120 Nos. 132kV class transformers under execution.

Page 9: Taral Manish Indian Power Sector,

Manufacturing and testing facilities available for Ratings up to 200

MVA up to 245 KV Class

• Auto Cad and Inventor facility for designing/preparation of drawings.

• Machinery includes:

4 Two EOT crane of 100-ton capacity.

4 Winding Machines for winding coils upto 3500 mm length and with soft

start for better winding quality.

4 Auto clave and vacuum system to achieve vacuum of 0.05 torr. With

facility to raise the Temperature at a predetermined rate to avoid thermal

shock. Hydraulic press, for coil pressing, of 200-ton capacity.

• Testing facility:

The testing facilities enable us to perform all routine, type and special tests,

including impulse test up to 1200 KVp (Impulse Generator of Haefely make,

Switzerland) as per IS-2026, IEC-76 and other international standards. We can

conduct Heat Run Test up to 200 MVA Auto Transformer.

Appraisals by leading Electricity Boards, PGCIL, NTPC, Public

Sector Enterprises, Utilities and Contractors

Domestic:

• National Thermal Power Corporation

• Power Grid Corporation India Limited

• Gujarat Electricity Board

• Maharashtra State Electricity Board

• Punjab State Electricity Board

• Tamilnadu Electricity Board

• Andrapradesh State Electricity Board

• Rajasthan Rajya Vidyut Prasaran Nigam Limited

• Meghalaya State Electricity Board

• Karnataka Power Transmission Corporation Limited

Page 10: Taral Manish Indian Power Sector,

• Kerala State Electricity Board

• Bombay Suburban Electricity Supply,

• Ahmedabad Electricity Co. Limited,

• Asea Brown Boveri Limited,

• Surat Electricity Co. Limited,

• Tata Consulting Engineers,

• Tata Projects Limited

• Siemens Limited

• Larsen & Toubro Limited

• Engineers India Limited

• Udhe India Limited

Exports:

• Power and Distribution Transformers Ltd, Leeds, U.K

• Steel Makers Zimbabe (Pvt) Ltd, Redcliff

• FCN Trading, Philipines

• Fluor Daniel Ltd, Kazakhistan

• Linco Power Ltd, Canada

• Mobile Source Industries INC, Canada

• Quality Castings Ltd Corporartion, U.A.E

• AL-Dahman Foundry, Dubai

• Melbourn Metals Pvt Ltd, Sri-Lanka

• Shameem Metal Industries Ltd, Bangladesh

• Bright Son Export Pvt Ltd, Kenya

• P.T Sumbermitra Sarijaya, Indonesia

• Siemens Ltd-Saudi Arabia

• Melbourne Metal-Sri Lanka

• Woofer Industries Ltd., Saudi Arabia

• M. N. Electro, Philippines

• CONCO, South Africa

• Active Power Projects, South Africa

• DHT Metals, Azerbaijan

• Sharq Sohar, Oman

Page 11: Taral Manish Indian Power Sector,

Future Plans

The Company already enjoys the privilege of being a well known supplier to all State

Electricity Boards in the country and number of private industries. Also the Company

has tasted the success in the Global Market and has exported products to various

foreign utilities and industries.

Export would continue to be the thrust area but with the greater accent on expanding

the world market especially foraying into Europe, North America, Middle East, Africa

countries and Asia.

Being an engineering firm with more than 200 man years of experience, diversifying

towards providing of total power solutions of Substations and Transmission up to 245

kV will be a major essence and core area where the company will be focusing on.

The Company intends to continue the progress and intends to widen its base in

manufacturing better Products-technically and economically. We assure that growth

is the essence of life in here and to compete in 21st century, the company would

continuously endeavors to remain in step with the times, positively responding to

changes in and around the business world.

Page 12: Taral Manish Indian Power Sector,

PRODUCT PORTFOLIO Transformer Transformer is static electrical equipment which transforms a.c. electrical power from

one voltage two another voltages at the same frequency by electromagnetic

induction

Principle of operation A transformer has two or more separate winding placed on a common magnetic

core. It works on induction principle. The primary winding is supplied with alternation

current of supply frequency.

There by alternating magnetic flux of the same frequency is produced in magnetic

core. The flux linkage of the secondary winding also changes at the same frequency,

resulting in induced e.m.f. of the same frequency in the secondary winding.

Different Types of Transformers POWER TRANSFORMERS Three phase a.c. system at 50 Hz is used for generation, transmission, distribution

and utilization of electrical power. Power transformers are necessary between

consecutive voltage levels for raising or lowering a.c. voltage at the same frequency.

As the transformation of voltage is carried out successively in generating stations,

substations, distributions systems and near load points, the total cumulative installed

MVA capacity of the power transformer is 8 to 10 times the cumulative installed MVA

capacity of generators.

The transformers are designed and built in several sizes from a few kVA to several

hundred MVA, from low voltage to extra high voltages (EHV) and ultra high voltages

(UHV) and also for converters in high voltage direct current transmission (HVDC).

The kVA ratings of power transformers cover a wide range between 5kVA to 650

MVA. Very large transformers (250 MVA to 650 MVA) are installed in generating

Page 13: Taral Manish Indian Power Sector,

stations. Very small transformers are used in low voltage circuits. The choice of kVA

rating of transformers in a particular installation depends upon the kVA load.

Types of power transformers GENERATOR TRANSFORMERS Generator transformer LV terminals are connected to generator terminals via

isolated phase bus system. HV terminals are connected to outdoor bus bars by

flexible ACSR conductors via overhead flexible bus. The purpose of generator

transformer is to feed generator grid.

Generator transformers supplied by TNR uses Core Type technology. TNR

manufactures up to 200MVA 220KV class.

UNIT AUXILIARY TRANSFORMER (150MVA 220 KV class) Purpose of unit auxiliary transformers is to feed power to generator auxiliaries of that

unit. For each auxiliary unit one unit auxiliary transformer is provided. HV side of unit

auxiliary transformer is rated at voltage corresponding to generator rated voltage.

LV side corresponds to rated voltage corresponding to auxiliary bus voltage. It is

rated at 15% of generator rating kVA.

STATION AUXILIARY TRANSFORMER It is provided for each group of generators. Rated voltage of HV corresponds to rated

voltage of outer bus bars. Rated voltage on LV corresponds to auxiliary bus voltage.

Rated kVA corresponds to load of common auxiliaries for the complete station flux

load of one unit auxiliaries, approximately 20% of generator unit rating. TNR

manufactures station auxiliary transformers up to 150 MVA, 220 kVA classes.

INTERCONNECTING TRANSFORMERS Auto transformers to Inter connect different transmission voltages.

Up to 500 MVA, 500 KV class, three phase transformer.

Up to 900 MVA, 500 KV class, bank of single phase transformer.

Page 14: Taral Manish Indian Power Sector,

It uses single primary and secondary windings. It is useful when conversion rate is

not so large.

TRACTION TRANSFORMERS These are useful for large varying load applications. These transformers have high

surge and large number of secondary. These transformers are used in locomotive engines to step down the voltage

collected from the overhead lines. These are also used for trackside railway

substations for stepping down transmission voltage to the traction voltage.

TNR manufactures traction transformers up to 11 MVA.

FURNACE TRANSFORMERS Furnace transformers have wide range applications for very demanding and cyclic

a.c. steel furnace operations with frequent short circuit condition in the furnace, to

the submerged arc operation in Ferro alloy and similar furnaces. It is protected

against harmonics and frequent over voltage generated by the operation of the

process and very high mechanical and thermal stress has to be contained by a rigid

design.

Types of furnace transformers AC ARC FURNACE/SUBMERGED ARC FURNACE/LADLE FURNACE TRANSFORMERS Furnace transformer is the heart of the furnace installation. It is a power transformer

with 11 or 33 kVA voltage primary and low voltage secondary. The secondary

currents are very much high (between 1000 amps and 10000 amps) the secondary

is frequently short circuited. Frequent current surges occur during the melting period.

The furnace transformer is ruggedly built. The secondary is permanently delta

connected. The secondary voltage is low in the range 70 to 550 volt. Te secondary

voltage is changed by means of tap changers on HV side. The primary is provided

with 6points tap changers. There is also a provision of delta star switches. Thus, 6

secondary voltages are available corresponding to the 6 tap positions of primary with

delta connection and 6 more with star connection. The several secondary voltages

are useful in controlling the rate of heat input to the furnace. During the initial melting

Page 15: Taral Manish Indian Power Sector,

period higher secondary voltage is tapped to obtain higher rate of heat input. The

tapes are subsequently changed to get lower secondary voltages, as the melting

continues.

DC ARC FURNACE TRANSFORMER

An electric arc furnace used for steelmaking consists of a refractory-lined vessel,

usually water-cooled in larger sizes, covered with a retractable roof, and through

which one or more graphite electrodes enter the furnace. A mid-sized modern

steelmaking furnace would have a transformer rated about 60,000,000 volt-amperes

(60 MVA), with a secondary voltage around 800 volts and a secondary current in

excess of 44,000 amperes. In a modern shop such a furnace would be expected to

produce a quantity of 55 metric tons of liquid steel in approximately 70 minutes from

charging with cold scrap to tapping the furnace. To produce a ton of steel in an

electric arc furnace requires on the close order of 400 kilowatt-hours per short ton or

about 440 kWh per metric ton (1.5kJ/g). Electric arc furnace steelmaking is only

economical where there is a plentiful supply of electric power, with a well-developed

electrical grid.

INDUCTION FURNACE TRANSFORMERS

An induction furnace is an electrical furnace in which the heat is applied by induction

heating of a conductive medium (usually a metal) in a crucible around which water-

cooled magnetic coils are wound. The advantage of the induction furnace is a clean,

energy-efficient and well-controllable melting process compared to most other

means of metal melting. Induction furnace capacities range from one kilogram to one

hundred tones capacity, and are used to melt iron and steel, copper, aluminum, and

precious metals. Operating frequencies range from mains frequency (50 or 60 Hz) to

10 kHz, usually depending on the material being melted, the capacity of the furnace

and the melting speed required - a higher frequency furnace is usually faster to melt

a charge. Lower frequencies generate more turbulence in the metal, reducing the

power that can be applied to the melt.

Page 16: Taral Manish Indian Power Sector,

TNR provides wide range of transformers with following specifications and ratings

POWER TRANSFORMERS: Applicants/Load conditions

Range voltage Cooling

Generator Transformer

Unit Auxiliary Transformer

Station Auxiliary Transformer Interconnecting Transformer

Up to 200 MVA Up to 245 kV ONAN/ONAF/OFAF

Distribution Transformer

160 kVA and above

33 kV ONAN/ONAF/OFAF

LOCOMOTIVE TRANSFORMERS: Applicants/Load conditions

Range voltage Cooling

Traction Transformer 7.5 MVA 25 kV ONAN/ONAF/OFAF

FURNACE TRANSFORMERS: Applicants/Load conditions

Range voltage Cooling

Arc Furnace transformer

Submerged Arc Furnace Transformer Ladle Furnace Transformer

DC Arc Furnace Transformer

Up to 63 MVA

Up to 33 kV OFWF

Induction Furnace Transformer

Up to 63 MVA

33 kV ONAN/ONAF

Page 17: Taral Manish Indian Power Sector,

ONAF - Oil natural air forced cooling

ONAN - Oil natural air natural cooling

OFAF - Oil forced air forced cooling

OFWF - Oil forced water forced cooling

Page 18: Taral Manish Indian Power Sector,

INDIAN POWER SECTOR SCENARIO

From the time of India’s independence in 1947, the demand for electricity has grown

rapidly. India had 1,24,827 MW of generating capacity on 22nd May, 2006. In

addition to this utility owned capacity, a substantial amount of auto-production

capacity exists mainly in the industrial sector. During 10th Plan (2002-2007) & 11th

Plan (2007-2012), a total capacity addition of 1, 13,000 MW is envisaged. That

entails an investment of Rs. 5750bn in power generation, transmission and

distribution. Growth in power generation has increased rapidly in recent years,

with an average annual rate of growth of just over 5%. The International Energy

Agency’s World Energy Outlook 2000 projects electricity demand in India to increase

by 5.4% per year from 1997 to 2020, faster than the assumed GDP growth rate of

4.9% (IEA, 2000a).

The Government has announced ambitious plan to add around 100GW of additional

generation capacity by the year 2012. It is proposed to add this capacity through

Central Power Utilities, State Power Utilities and private investors. The transmission

system to evacuate the above quantum of power shall be taken up by Power Grid

Corporation of India Ltd. (POWERGRID) - Central Transmission Utility (CTU), State

Power/Transmission Utilities and private investors. An investment of about Rs.

71,000 crores is envisaged in transmission under central sector, out of which

POWERGRID has planned to invest about Rs. 50,000 crores on its own and the

remaining Rs. 21,000 crores is expected to be brought in by the private investors.

Indian Power Sector at a Glance As On 22nd May, 2006

Total Installed Capacity:

Sector MW Percentage

State Sector 70,224 56.2

Central Sector 40,464 32.4

Private Sector 14,139 11.4

Total 1,24,827

Page 19: Taral Manish Indian Power Sector,

Installed Capacity, 22 May, 2006

26%

66%

3% 5%

HydroThermalNuclearRES

Installed Capacity By Ownership

57%

11%

32%StatePrivateCentral

Fuel MW Percentage

Total Thermal 82,410 66.0

Coal 68,519 54.8

Gas 12,690 10.2

Oil 1,201 1.0

Hydro 32,326 25.9

Nuclear 3,900 3.1

Renewable 6,191 5.0

Total 1,24,827

Page 20: Taral Manish Indian Power Sector,

High Voltage Transmission Capacity:

Capacity MVA Circuit Km

765/800 KV ----- 1,323

400 KV 76,010 63,129

220 KV 1,42,242 1,07,625

HVDC 3,000 5,876

Per Capita Consumption of Electricity:

Year (2004-05) 606 KWh / Year

Rural Electrification:

No. of Villages (Census 1991)

Villages Electrified (31st March 2004)

Electrification Percentage

5,93,732

4,74,982

80%

Rural Households (Census 2001)

Having Access

Electrification Percentage

138,271,559

60,180,685

44% Power Situation:

Demand Met Surplus/Deficit

Energy 575,384 MU 527,539 MU -8.3%

Peak Demand 92,968 MW 81,370 MW -12.5%

MVA : Mega Volt Ampere

MW : Mega Watt

MU : Million Unit

Page 21: Taral Manish Indian Power Sector,

Main Power Plants

Page 22: Taral Manish Indian Power Sector,

Transmission & Distribution lines

Page 23: Taral Manish Indian Power Sector,

THE TENTH PLAN

Physical Performance

Against the originally envisaged Tenth Plan target of 41,110 MW of capacity

addition, the likely capacity addition will at most be 31,290 MW, a shortfall of at least

23.9 per cent. The likely capacity addition includes 4293 MW of capacity that was not

part of the original Tenth Plan targets. If the unplanned capacity is excluded, the

shortfall would rise to 34.4 per cent.

Tenth Plan likely

achievement

Tenth

Plan

Target

2002-

03

Actual

2003-

04

Actual

2004-

05

2005-

07

Likely

In

Respect of

Tenth Plan

Projects

Including

Projects Not

Included in

Tenth Plan

Centre 22,823 1,210 3,035 3,630 9,222 14,847

(65.0%)

17,097

(74.9%)

State/

UT

11,157 1,114 819 1,443 7,727 9,483

(85.0%)

11,103

(99.5%)

Private 7,121 548 232 173 2,137 2,667

(37.5%)

3,090

(43.4%)

Total 41,110 2,872 4,086 5,246 19,086 26,997

(65.6%)

31,290

(76.1%)

Source: Planning commission of India

Above table indicates the actual achievement in capacity addition during the first four

years, anticipated capacity addition in 2005-07 and likely achievement for the last

year of the Tenth Plan period.

Page 24: Taral Manish Indian Power Sector,

Generating Capacity Anticipated at the End of Tenth Plan:

Hydro Thermal Nuclear Renewable Total

Capacity as on

22nd May, 2006

32,325.77 82410.54 3900 6190.86 1,24,827.17

Tenth Plan

Target

14,393 25,417 1,300 ---- 41,110

Likely Addition

During Tenth

Plan

10,800

(75%)

19,190

(75.5%)

1,300

(100%)

---- 31,290

(76.1%)

Likely Installed

Capacity on

31st March,

2007

37,069 95,247 4,020 ---- 1,36,336

Source: Planning commission of India

The use of the larger and more efficient units was shifted to the Eleventh Five- Year

Plan in order to realize higher physical performance based on the proven 500 MW

units. The capacity addition target for nuclear plants will be realized in full. The

Central sector is expected to have a shortfall of 23 per cent, while the state sector is

likely to have a marginal shortfall of 0.5 per cent. The private sector shortfall will be

as high as 57 per cent, which largely reflects the fact that the distribution segment of

the power sector remains financially unviable. The financial closure of private sector

projects remains difficult in the absence of a payment security mechanism and the

difficulties of obtaining fuel linkage both in respect of coal and gas.

Significant shortfalls in achieving Plan targets for capacity addition have been a

consistent phenomenon, except during the Seventh Plan period. The inadequate

creation of capacity has been partially addressed through higher plant load factor

(PLF). But high PLFs lower both quality and reliability of supply. System operators

have handled capacity shortfalls by shifting agricultural load to low peak night hours

and through scheduled power cuts. Low reliability, poor quality of supply and high

tariffs has pushed industrial and commercial units to resort increasingly to captive

generation.

Page 25: Taral Manish Indian Power Sector,

Large gaps remain in rural electrification. Out of 5,93,732 inhabited villages, an

estimated 4,95,000 villages were electrified up to the end of 22nd May 2006 yielding

an all-India village electrification level of 83.37 per cent. However, this is based on

the earlier definition of village electrification, which states .a village will be deemed to

be electrified if electricity is used in the inhabited locality within the revenue boundary

of the village for any purpose whatsoever. The new definition of village electrification

requires that: Basic infrastructure such as distribution transformer and distribution

lines is to be provided. The number of households electrified should be at least 10

per cent of the total number of households in the village. If this new definition is

applied, and if deelectrified villages are also included, the number of unelectrified

villages is expected to at least double, thereby reducing village electrification to little

less than 70 per cent.

Villages Electrified (no.)

74000

587000

1500 3061

494000471000

1947 1950 1970 1990 2003 2012

Year

The level of household electrification is, of course, much lower. The 2001 Census

data indicates that only 44 per cent of the rural households are electrified, leaving 56

per cent of the households without electricity.

Page 26: Taral Manish Indian Power Sector,

Reported Status of Rural Electrification:

Better Electrified States Poorly Electrified States

States Electrified

villages

(%)

Electrified

household

s (%)

States Electrified

villages

(%)

Electrified

households

(in %)

Himachal

Pradesh 99.3 94.8 Rajasthan 98.3 54.7

Punjab 100.0 91.9 Chhattisgarh 94.0 53.1

Haryana 100.0 82.9 West Bengal 83.6 37.5

Gujarat 100.0 80.4 North-East

Region 75.3 33.2

Maharashtra 100.0 77.5 Uttar Pradesh 58.7 31.9

Madhya

Pradesh 97.4 70.0 Orrisa 80.1 26.9

Karnataka 98.9 78.5 Jharkhand 26.0 24.3

Tamilnadu 100.0 78.2 Bihar 50.0 10.3

Kerala 100.0 70.2

Andhra

Pradesh 100.0 67.3

Development of National Power Grid

The Power Grid Corporation of India Ltd. (PGCIL) has envisaged the establishment

of an integrated National Power Grid by 2012 with an inter-regional power transfer

capacity of 30,000 MW. The major considerations taken up while formulating such a

perspective plan are creation of .transmission highways from potential surplus

regions (mainly east and northeast) to load centres in the northern, southern and

western regions. The inter-regional power transfer capacity had increased from

1,200 MW in 1997 to 8,000 MW by March 2004 and in terms of energy flow it has

increased from 3600 MUs to 22,000 MUs during the same period. The performance

of PGCIL in creating evacuation facilities and laying down the base for the National

Grid is progressing as planned. Creation of such inter-regional transfer capacity

augurs well for both system operation as well as promoting trading and open access.

Page 27: Taral Manish Indian Power Sector,

Transmission Lines (ckm)

2700

350000

250000

67000

172000

1950 1970 1990 2004 2012

Year

km

The Tenth Plan approved outlay was fixed at Rs.96,041.19 crore at constant 2001-

02 prices. The likely expenditure for the first four years of the Tenth Plan is

Rs.73966.67 crore at constant prices of 2001-02. Based on the trend of expenditure

during first four years, the likely expenditure for 2006-07 is assessed at Rs.22796.35

crore. Thus, the likely expenditure for the Tenth Plan is assessed at Rs.96763.02

crore at constant 2001-02 prices, which will be 100.75 per cent of the Tenth Plan

approved outlay. However, it may be seen that expenditure on exploration and

production activities will be higher than the approved outlays.

Renewable Energy Resources The total commercially exploitable potential from renewables is estimated at about

47,000 MW: 20,000 MW from wind, 10,000 MW from small hydro, and 17,000 MW

from biomass/bio-energy. The government is promoting renewables with increasing

allocations in its five-year plans. But renewables still have only a negligible share of

total commercial primary energy in India (2.5%, including hydro in 1998).

Nonetheless, their share is growing and translates into large absolute numbers,

given the size of the Indian energy sector. As a result, India is emerging as a world

leader in the diffusion and development of several renewable energy technologies.

Installed wind-power capacity, which totaled about 1,200 MW in 2000, is among the

highest in the world. It increased rapidly in the 1990s, boosted by subsidies and

financial incentives. Its projected rise to 4 GW by 2020 (IEA) will require an even

stronger government commitment. One initiative is a proposal to introduce a fossil-

fuel levy to fund the development of renewables. India’s solar potential is also large

Page 28: Taral Manish Indian Power Sector,

and is being tapped for heating and photovoltaic power. A 140 MW Integrated Solar

Combined-Cycle power plant is under construction in Rajasthan.

Planwise Outlay for Power Sector

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10Plan

Perc

enta

ge

Demand Supply Position and Expected Trends The per capita consumption presently stands at 606 kWh (2005), far below the world

average of 2,429 kWh. At an 8 percent GDP growth, the per capita consumption of

India in 2032 is estimated to be 2,643 kWh, which is just comparable to the present

day world average. With an installed capacity of 123 GW, the country currently faces

energy shortage of 8 percent and a peak demand shortage of 11.6 percent. In order

to sustain a growth rate of 8 percent, it is estimated that the power generation

capacity in India would have to increase to 306 GW in the next ten years which is 2.5

times current levels.

Demand is expected to grow to 782 billion KWh by 2006-07.

India has set itself an ambitious target of more than doubling per-capita electricity

consumption by FY 2011 and the Ministry of Power projects an investment need of

9,000 billion Indian Rupees (INR), or US$ 200 billion to make it possible. The

investment plan aims to expand the power infrastructure base for economic growth

while making electricity accessible to all. Nobody is quite betting on its success just

yet but it is clear that Government and policymakers are taking the problems of the

sector seriously. Transforming the state-led bureaucratic Indian power sector into a

competitive market attractive to private investors was never going to be easy. But

economic liberalization of the nineties along with the pressures from the country’s

Page 29: Taral Manish Indian Power Sector,

economic growth has forced open the sector. Previous reform efforts etched slowly

into industry’s regulatory structure, ownership, investment, and management

practices. Political will has gradually coalesced through the reform process of the

nineties and the Electricity Act 2003 is now galvanizing change. With the

implementation of the Electricity Act, progress on structural and regulatory reforms

has achieved enough critical mass to become irreversible. The change has sparked

renewed interest in private investment opportunities. What happens next in the

sector will now depend critically on two things:

(1) How India overcomes the remaining elements of restructuring that seek to sever

the last few vestiges of political influence.

(2) How India deals with the emerging challenges of fuel shortages that threaten to

derail power capacity expansion plans. The remainder of this article discusses the

two identified challenges to growth in the Indian power sector.

Page 30: Taral Manish Indian Power Sector,

SWOT ANALYSIS OF INDIAN POWER SECTOR Strengths and opportunities in the sector

• Abundant coal reserves (enough to last at least 200 years)

• Vast hydroelectric potential (150,000 MW). 78% Hydro potential to be

harnessed

• High opportunities in Generation, Transmission and Distribution

• Shelf of generation projects identified

• Large pool of highly skilled technical personnel.

• Impressive power development in absolute terms (comparable in size to those

of Germany and UK).

• Expertise in integrated and coordinated planning (CEA and Planning

Commission).

• Emergence of strong and globally comparable central utilities (NTPC,

POWERGRID,).

• Wide outreach of state utilities.

• Enabling framework for private investors.

• Well laid out mechanisms for dispute resolution.

• Political consensus on reforms.

• Potentially, one of the largest power markets in the world.

• Convergence of Transmission, Telecom and Information Technology

• Renovation and Modernization

• Cross Country Grids

• Efficiency improvement in generation

• Reduction of T&D losses: Energy Audit / metering

• Energy Conservation and Demand Side Management

Page 31: Taral Manish Indian Power Sector,

Problems confronting the sector

The achievement of increasing installed power capacity from 1362 MW to over

124,000 MW since independence and electrification of more than 500,000 villages

are impressive. However, it is a matter of concern that the annual per capita

consumption, at about 606 kWh is among the lowest in the world. Still many

households in a large number of villages have no access to electricity.

The major reasons for inadequate, erratic and unreliable power

supply are:

• Inadequate power generation capacity;

• Lack of optimum utilization of the existing generation capacity;

• Inadequate inter-regional transmission links;

• Inadequate and ageing sub-transmission & distribution network leading to

power cuts and local failures/faults;

• Large scale theft and skewed tariff structure;

• Slow pace of rural electrification;

• Inefficient use of electricity by the end consumer.

Key Issues Facing the Sector

SOCIO-POLITICAL INFLUENCES

Over the decades, the power sector in India has become an instrument for

implementation of State Government’s social policies. It is characterized by heavy

subsidies, mostly poorly targeted and State Government’s involvement in functioning

of the power utilities. The agricultural sector is a major consumer of electricity and

together with other economically weaker sections of society has led to large costs for

the utilities in serving these consumers. This combined with poor state of State

Government finances led to inadequate compensation to the power utilities

contributing to degradation of the financial position.

Page 32: Taral Manish Indian Power Sector,

HIGH LEVEL OF NETWORK LOSSES

The power utilities in India suffer from a very high level of network losses of around

40 percent largely due to theft, pilferage and non-collection of dues and also due to

the state of the network involving long low voltage lines. Non-realization of revenue

for power generated has led to financial degradation and spiral of worsening

performance.

HIGH LEVEL OF FINANCIAL LOSSES

Due to the reasons mentioned above, the power sector in India suffers huge financial

losses to the tune of USD 6 billion per annum. These losses have accumulated over

time and resulted in inadequate financial resources for capacity augmentation.

INADEQUATE GENERATION AND TRANSMISSION CAPACITY

Inadequate resource generation for investments has led to generation capacity

shortfall of over 15 percent. Payment security mechanisms for private players have

been difficult to provide on account of the financial situation. Likewise, inadequate

transmission capacity in the country has led to a situation where regional surpluses

remained unutilized to meet deficits elsewhere.

POOR QUALITY OF SUPPLY

Inadequate generation capacity and the poor quality of the distribution network have

resulted in poor quality of supply. Supply is characterized by planned and unplanned

interruptions and deviations in voltage and frequency from prescribed parameters.

There has been some improvement in these parameters in recent years owing to

penalties and incentives for utilities for deviations. Lately, availability of fuel for power

generation is becoming a significant constraint. Coal shortages are increasing and

gas shortages are leading to a situation where plants are not able to operate to full

capacity.

Page 33: Taral Manish Indian Power Sector,

Threats

THE RACE FOR THE FUELS: While India’s reforms have attained enough critical mass and are slowly winding their

way through the states, a more immediate concern on fuel shortages threatens to

derail short-term growth prospects in the power sector. At the end of February, 24

plants (23,000 MW, 35% of total coal capacity) had coal stock of less than 7 days out

of which about 8,000 MW had stock of less than 4 days. The failure to activate fuel

supplies has threatened the operation of some plants and postponed the building of

several others. In January, NTPC had to begin seeking alternate fuel supply options

because the mines supporting its new pit head plants (Talcher –II and Rihand-II, total

2,000 MW) had yet to receive clearance. Of the 4,300 MW planned capacity

additions off-track in the Xth Plan, almost 65% had slipped for fuel supply reasons10.

The 100,000 MW of capacity additions needed through FY 2011 is unlikely to

materialize unless India can find the fuel supply sources and distribution networks to

support the projected growth.

Page 34: Taral Manish Indian Power Sector,

Objectives

• To provide 'Power on Demand by 2012'.

• To make the sector commercially sound and self sustaining.

• To provide reliable and quality power at an economic price.

• To achieve environmentally sustainable power development.

• To promote general awareness to achieve consensus on the need for

reforms.

Strategies

The strategies to realize above objectives have been evolved after a comprehensive,

integrated and realistic assessment of the strengths of the sector and of the

challenges confronting it. The process has led to a range of mutually interdependent

and complementary strategies to counter the challenges and exploit the

strengths/opportunities. The strategies integrate the supply side imperatives with

demand side management, short and medium term measures with long-term action

plans, operational measures with institutional and structural changes.

The laid down objectives can be realized only if the plan is effectively implemented

by all stake-holders in the power sector. Power is a concurrent subject under the

Constitution. The states have the greater share of generation and transmission

assets and almost the entire distribution under their control. They would need to play

a very proactive role in effecting institutional and result oriented changes.

Page 35: Taral Manish Indian Power Sector,

SWOT ANALYSIS OF T&R

Strengths

• New plant with installed capacity of 6000MVA is under construction which will

be functional by 2007 that will increase market share of TNR

• Monopoly in induction furnace transformer range

• ISO 9001:2000 certificate for adherence of international standards in design,

development, procurement, production, installation & servicing. It also has

BVQi certification.

• Good corporate image

• Overheads are less

• On time deliveries

• Established since 1981 so years of experience down the line rendering high

techno-commercial excellence

• Manufacturing shop floor and the corporate office at the same location

renders better coordination of all the departments

• One of the few national producers in the 220kv transformer segment

Weakness

• Traction transformer segment remains largely unexplored for T&R.

• Power transformer segment requires still greater penetration both nationally

and internationally.

• Not having zonal corporate at strategic locations causes loss of market due to

lack of vicinity with potential customers of different zones.

• The installed capacity is 5500MVA but only 4000MVA is manufactured

yearly(72% capacity utilization)

Opportunities

• Very few national producers in 220kv transformer segment

• The whole of national power sector is expanding under the program ‘Power

for all by 2012’. Almost around 100000MW of capacity addition is planned by

2012 in various small, medium and large different power plants.

Page 36: Taral Manish Indian Power Sector,

• With increase in infrastructural facility and growth of power sector future

prospect for T&R are good

Threats

• Entry of global players of transformer manufacturing in India poses a major

threat for TNR.

• Under Utilization of capacity causes the organization to suffer losses on

depreciation and other fronts that could cumulate to bigger amounts in long

run.

Critical Issues

• Paradigm shift to efficiency based designs.

• Innovations and developments through continuous R&D.

• Time schedules and deadlines meet every time.

• Perfect positioning of the product by selection of an appropriate method

(using technology, cost, quality, service, either as them as a tool for that).

• Identification suitable and aggressive marketing strategy.

• Complete and continuous compliance to global standards.

• To compete with global players the company has to find ways to provide

transformers at the lowest cost.

Page 37: Taral Manish Indian Power Sector,

MODULE - II

DEMAND FORECAST FOR ELECTRICITY BASIS OF DEMAND FORECAST OF TRANSFORMERS GROWTH TREND OF INDIAN POWER SECTOR DEMAND FOR TRANSFORMER ELECTRICITY FORECAST UPTO 2030 SUGGESTIONS

Page 38: Taral Manish Indian Power Sector,

DEMAND FORECAST FOR ELECTRICITY

Forecasting demand is both a science and an art. Econometric methods of

forecasting, in the context of energy demand forecasting, can be described as ‘the

science and art of specification, estimation, testing and evaluation of models of

economic processes’ that drive the demand for fuels. The need and relevance of

forecasting demand for an electric utility has become a much-discussed issue in the

recent past. This has led to the development of various new tools and methods for

forecasting.

Need for good forecast

There is an urgent need for precision in the demand forecasts. An underestimate

could lead to under capacity, which would result in poor quality of service including

localized brownouts, or even blackouts. An overestimate could lead to the

authorization of a plant that may not be needed for several years.

In view of the ongoing reform process, with associated unbundling of electricity

supply services, tariff reforms and rising role of the private sector, a realistic

assessment of demand assumes ever-greater importance. These are required not

merely for ensuring optimal phasing of investments, a long term consideration, but

also rationalizing pricing structure.

The gestation period for power plants, which are set up to meet consumer demand,

typically varies between 7 to12 years in the case of thermal and hydro plants and 3

to 5 years for gas-based plants. As a result, utilities must forecast demand for the

long run (10 to 20 years), make plans to construct facilities and begin development

well before the indices of forecast growth reverse or slowdown. The forecast further

drives various plans and decisions on investment, construction and conservation.

Page 39: Taral Manish Indian Power Sector,

Existing methods

There is an array of methods that are available today for forecasting demand. An

appropriate method is chosen based on the nature of the data available and the

desired nature and level of detail of the forecasts.

TREND METHOD

This method falls under the category of the non-causal models of demand

forecasting that do not explain how the values of the variable being projected are

determined. Here, we express the variable to be predicted purely as a function of

time, rather than by relating it to other economic, demographic, policy and

technological variables. This function of time is obtained as the function that best

explains the available data.

This method has been used by the 16th Electric Power Survey (EPS) of the Central

Electricity Authority to forecast the consumption of most consumer categories except

HT Industries. The Base Paper of the EPS, detailing the methodological issues,

states that in the domestic, commercial and miscellaneous categories, the observed

time series in the number of consumers and consumption per capita have been

projected into the future, with adjustments for increase in appliance ownership. It is

only for the HT industries that an end-use method is used. It also mentions that

adjustments have been made to account for unmet demands due to the presence of

power cuts, though the specific assumptions have not been elaborated upon. Thus,

unrestricted demands were worked out for the future.

The trend method has the advantage of its simplicity and ease of use. However, the

main disadvantage of this approach lies in the fact that it ignores possible interaction

of the variable under study with other economic factors.

For example, the role of incomes, prices, population growth and urbanization, policy

changes etc., are all ignored by the method. The underlying notion of trend analysis

Page 40: Taral Manish Indian Power Sector,

is that time is the factor determining the value of the variable under study, or in other

words, the pattern of the variable in the past will continue into the future.

END-USE METHOD

The end-use approach attempts to capture the impact of energy usage patterns of

various devices and systems. The end-use models for electricity demand focus on its

various uses in the residential, commercial, agriculture and industrial sectors of the

economy.

E = S x N x P x H

E = energy consumption of an appliance in kWh

S = penetration level in terms of number of such appliances per customer

N = number of customers

P = power required by the appliance in kW

H = hours of appliance use.

This, when summed over different end-uses in a sector, gives the aggregate energy

demand.

The end-use approach is most effective when new technologies and fuels have to be

introduced and when there is lack of adequate time-series data on trends in

consumption and other variables. However, the approach demands a high level of

detail on each of the end-uses.

ECONOMETRIC APPROACH

This approach combines economic theory with statistical methods to produce a

system of equations for forecasting energy demand.

ED = f (Y, Pi, Pj, POP, T)

Where ED = electricity demand

Y = output or income

Pi = own price

Pj = price of related fuels

Page 41: Taral Manish Indian Power Sector,

POP = population

T = technology

Several functional forms and combinations of these and other variables may have to

be tried till the basic assumptions of the model are met and the relationship is found

statistically significant.

The econometric methods require a consistent set of information over a reasonably

long duration. This requirement forms a pre-requisite for establishing both short-term

and long-term relationships between the variables involved.

Thus, for instance, if one were interested in knowing the price elasticity of demand, it

is hard to arrive at any meaningful estimates, given the long period of administered

tariffs and supply bottlenecks. However, the price effect will have an important role to

play in the years to come. In such a case, one may have to broaden the set of

explanatory variables apart from relying on more rigorous econometric techniques to

get around the problem. Another criticism of this method is that during the process of

forecasting it is incorrect to assume a particular growth rate for the explanatory

variables. Further, the approach fails to incorporate or capture, in any way, the role

of certain policy measures/ economic shocks that might otherwise result in a change

in the behavior of the variable being explained.

TIME SERIES METHODS

A time series is defined to be an ordered set of data values of a certain variable.

Time series models are, essentially, econometric models where the only explanatory

variables used are lagged values of the variable to be explained and predicted. The

intuition underlying time-series processes is that the future behavior of variables is

related to its past values, both actual and predicted, with some

adaptation/adjustment built-in to take care of how past realizations deviated from

those expected. Thus, the essential prerequisite for a time series forecasting

technique is data for the last 20 to30 time periods. In an econometric model, the

explanatory variables (such as incomes, prices, population etc.) are used as causal

factors while in the case of time series models only lagged (or previous) values of

the same variable are used in the prediction.

Page 42: Taral Manish Indian Power Sector,

Econometric models are usually preferred for long term forecasts. Another

advantage of time series models is their structural simplicity. They do not require

collection of data on multiple variables. Observations on the variable under study are

completely sufficient. A disadvantage of these models, however, is that they do not

describe a cause-and-effect relationship. Thus, a time series does not provide

insights into why changes occurred in the variable.

Method used for Electricity Demand Forecasting in report

We have used the Trend analysis approach for forecasting the demand of

transformers (Electricity) because it is a simple method and considers the effect of

few economic variables. It is not possible to evaluate all the variables which affect

the growth of power sector. While studying the past data on increase in installed

capacity in India, we found that the installed capacity has increased at a

compounded growth rate of 5.5% in last 15 years in spite of different variations in

different variables. Hence, we analyze that the same trend will continue in future.

The same approach was used by the 16th electric power survey (EPS) of the central

electricity authority (CEA) to forecast the electricity consumption pattern.

Page 43: Taral Manish Indian Power Sector,

BASIS OF DEMAND FORECAST OF TRANSFORMERS Transformer is an industrial product whose growth has remained parallel with the

growth in the power sector. So to forecast the demand of transformers we need to

forecast the growth of power sector.

Study of Transformers Demand

Demand forecast for Generation, Transmission & Distribution.

Generation:-

Transformers for Generating Station, different norms are followed as detailed under

For Thermal, Hydel, Nuclear & Gas based Power Stations

Power Station Transformer Requirements for each 1 MW Addition

Thermal 1.625 : 1

Hydro 1.30 : 1

Nuclear 1.55 : 1

Gas 1.30 : 1

Average 1.5 times

Replacement Demand

Power Transformer

Either by Aging or Failure

1% of Installed Capacity A

Distribution Transformer 3% of Installed Capacity

B Standby Demand OR Demand for Expansion Demand

Key Parameters used for Projecting the Transformation Demand

for each 1MVA Addition of Generation

MVA of G. T.

1 Transmission Capacity v/s Installed

Generating Capacity i.e. (T.C./I.G.C.)

1.2 (800/400kV)

+1.2 (400/220kV)

2.4

2 System Peak Demand to Installed

Generating Capacity i.e. (S.P.D./I.G.C.)

3 Transmission Capacity to System

Peak Demand

1.2

Page 44: Taral Manish Indian Power Sector,

4 Connected Load to Installed Generating

Capacity

i.e. (C.L. /I.G.C.)

2.4 (132/33kV)

(66/11-22kV)

(33/11kV)

5 Power Transformer Capacity to

Distribution Load

i.e. (P.T. /D.T.)

1.2 (11/0.433kV)

(11/0.230kV)

Total Transmission & Distribution Demand /

Generating Capacity

7.2 times

Total (1+2+3) = 7.2(Transmission + Distribution) + 1.5(Generation) +

1(Replacement)

= 9.7 time of Generation Capacity

The above standards are followed in Industry.

Formulae used for calculation of electricity demand

Compounded Growth Rate:

Expected Growth Rate = (Current Year/ Base Year) ^ (No. of years between

current year and base year) – 1

Flat Growth Rate:

Annual Growth Rate = (Current Year – Base Year) / Base Year *100/No. of years

between current and base year

Page 45: Taral Manish Indian Power Sector,

GROWTH TREND OF INDIAN POWER SECTOR GROWTH BASED ON GENERATION CAPACITY Generating Capacity of India:

Year Thermal Hydro & Wind Nuclear RES Total

1991-92 48086 19194 1785 ---- 69065

1995-96 60083 20985 2225 ---- 83293

1999-00 70493 25012 2680 ---- 98185

2003-04 77974 31995 2720 ---- 112689

2005-06 82410 32326 3900 6191 124827

Source: Ministry of Power

0

15000

30000

45000

60000

75000

90000

Ele

ctri

city

(MW

)

1991-92 1995-96 1999-00 2003-04 2005-06

Year

Energy Generation Pattern

Compounded Growth Rate Taking 1991-92 as base year:

Annual Growth Rate Taking 1991-92 as base year:

Year Percentage Average

1995-96 4.12

1999-00 4.68

2003-04 4.86

2005-06 5.38

4.76

Year Growth Rate Percentage Average

1995-96 1.0382 3.82

1999-00 1.0399 3.99

2003-04 1.0384 3.84

2005-06 1.0402 4.02

3.92

Page 46: Taral Manish Indian Power Sector,

Compounded Growth Rate Taking 1995-96 as Base Year:

Year Growth Rate Percentage Average

1999-00 1.0420 4.2

2003-04 1.0385 3.85

2005-06 1.0413 4.13

4.06

Annual Growth Rate taking 1995-96 as base year:

Year Percentage Average

1999-00 4.47

2003-04 4.41

2005-06 4.99

4.62

Compounded Growth Rate taking 1999-00 as base year:

Year Growth Rate Percentage Average

2003-04 1.0350 3.50

2005-06 1.0408 4.08 3.79

Annual Growth Rate taking 1999-00 as base year:

Year Percentage Average

2003-04 3.693

2005-06 4.522 4.11

Compounded Growth Rate taking 2003-04 as base year

Year Growth Rate Percentage

2005-06 1.0525 5.25

Annual Growth Rate taking 2003-04 as base year

Year Percentage

2005-06 5.386

Growth rate in 1991 to 2000 has remained low because of various issues related to

the sector( these reasons have already been discussed in SWOT analysis of Indian

Power Sector).The increase in growth rate from 2001 to 2006 is as a result of power

sector reforms (Electricity Act 2003) and increase in GDP of the country.

Page 47: Taral Manish Indian Power Sector,

GROWTH BASED ON ELECTRICITY GENERATED

Electricity Generated

0100200300400500600700

1992-93 1998-99 2002-03 2003-04 2004-05 2005-06Year

Elec

tric

ity (B

n K

Wh)

Compounded Growth Rate taking 1992-93 as base year

Annual Growth Rate Taking 1991-92 as base year

Year Percentage Average

1998-99 8.31

2002-03 7.66

2003-04 7.78

2004-05 7.83

2005-06 7.90

7.89

Compounded Growth Rate taking 1998-99 as base year

Year Growth Rate Percentage Average

2002-03 1.0420 4.20

2003-04 1.0437 4.37

2004-05 1.0440 4.40

2005-06 1.0441 4.41

4.35

Year

No. of units

Generated (in

Billion KWh)

1992-93 301

1998-99 451

2002-03 531.6

2003-04 558.6

2004-05 583.8

2005-06 610

Year Growth Rate Percentage Average

1998-99 1.0697 6.97

2002-03 1.0585 5.85

2003-04 1.0578 5.78

2004-05 1.0568 5.68

2005-06 1.0558 5.58

5.97

Page 48: Taral Manish Indian Power Sector,

Annual Growth Rate Taking 1998-99 as base year

Year Percentage Average

2002-03 4.47

2003-04 4.77

2004-05 4.91

2005-06 5.04

4.8

Compounded Growth Rate taking 2002-03 as base year

Year Growth Rate Percentage Average

2003-04 1.0508 5.08

2004-05 1.0479 4.79

2005-06 1.0469 4.69

4.85

Annual Growth Rate Taking 1998-99 as base year

Year Percentage Average

2003-04 5.08

2004-05 4.91

2005-06 4.92

4.97

Compounded Growth Rate taking 2003-04 as base year

Year Growth Rate Percentage Average

2004-05 1.0451 4.51

2005-06 1.0450 4.50 4.51

Annual Growth Rate Taking 2003-04 as base year

Year Percentage Average

2004-05 4.51

2005-06 4.60 4.56

Compounded Growth Rate taking 2004-05 as base year

Year Growth Rate Percentage

2005-06 1.0449 4.49

Annual Growth Rate Taking 2004-05 as base year

Year Percentage

2005-06 4.49

Page 49: Taral Manish Indian Power Sector,

DEMAND FOR TRANSFORMER

Because of renovation and modernization of power plants, efficiency improvement in

generation, reduction of T & D losses, energy generated has increased at the rate of

7% though the installed capacity has increased at the rate of 5-5.5%.

Ministry of power has projected capacity addition of 100 GW by 2012. That means

total capacity in 2012 will be 212 GW but, past trend shows that only 60-65% of the

projected capacity has actually been implemented. Hence, capacity addition till 2012

will be

0.65*Projected = 0.6*100 = 60 GW, this is actually feasible.

Total installed capacity in 2012 will be 124.827 + 60 = 172.827 GW.

Therefore compounded growth rate = (172.627 / 124.827)1/6 – 1 = 5.57%

Taking GDP growth rate nearly 6%, the Electricity-GDP elasticity would be 0.95 for the tenth plan. Electricity-GDP elasticity in India Plan Year Elasticity

I 1951-1956 3.14

II 1956-1961 3.38

III 1961-1966 5.04

IV 1969-1974 1.85

V 1974-1979 1.88

VI 1980-1985 1.39

VII 1985-1990 1.5

VIII 1992-1997 0.97

IX 1997-2002 0.75

X 2002-2007 0.95

Source: calculated and compiled from data from the planning commission and ministry of finance (economic

surveys)

Looking at the above table we see that rapid growth occurred in earlier decades, and

current growth in electricity capacity has been less than that of GDP. While some of

this might be due to sectoral changes in the economy (For Example, increased role

of the service sector), this also highlights the difficulties for planners when attempting

Page 50: Taral Manish Indian Power Sector,

to interpret correlation versus causality. Nonetheless, given the shortfall of today

(energy deficit of 8.3% and peak deficit of 12.5%), we can safely forecast that 8%

economic growth will require 8000-10000 MW increase in capacity per annum, if not

more.

Looking at the relation between growth in demand of transformers with respect to

growth in power sector we found that,

Demand of transformer (MVA) = 9.7 * installed generating capacity

Therefore, demand of transformer will be = 100000 MW (Projected addition) *

0.6(Expected implementation of plan) * 9.7

= 582000 MVA (for next 6 Years)

That calls for a yearly demand of 582000 / 6 = 97000 MVA

Hence for next 6 years average demand of power transformers will be 97000 MVA

yearly. This excludes the demand of transformers being used for industrial purpose

in captive power plants.

Energy Consumption Pattern in India in 2006

We have an installed capacity of about 1,24,827 MW of electricity, which is only 3%

of world capacity. Forecasts of our Energy requirements by 2030, when our

population may touch 1.4 billion people, indicate that demand from power sector will

increase from the existing capacity to about 450,000 MW. This assumes an energy

growth rate of 5.5% per annum.

Page 51: Taral Manish Indian Power Sector,

ELECTRICITY FORECAST UP TO 2030

Based on our calculations we forecast a growth rate of 5.57% for power sector, we

have forecasted installed generating capacity up to the year 2030.

0

100000

200000

300000

400000

500000

Uni

ts In

stal

led

(MW

)

2004 2006 2010 2015 2020 2025 2030

Year

Energy Generation Pattern

Calculations:

Electricity generation in current year= Electricity generation in previous year*

(1.0557)^ (Number of years between

Current year and previous year)

DEMAND FORECAST FOR POWER AND DISTRIBUTION TRANSFORMER

FOR T&R

Year (1)

Capacity Addition (2)

Transformer Requirement (3)

Yearly requirement of Transformer (4)

Share of TNR- 5% (5)

Required capacity for TNR – Utilized capacity 72% (6)

2006 12824 124.42 62210 3110.54 4320

2010 29812 289.18 72295 3615 5021

2015 47468 460.44 92087.92 4604.4 6395

2020 62038 610.77 120353.72 6018 8358

2025 81082 786.5 157300 7865 10924

2030 105971 1027.92 205584 10279 14276

Year Electricity (MW)

2004 112000 2006 124827 2010 154639 2015 202107 2020 264145 2025 345227 2030 451198

Page 52: Taral Manish Indian Power Sector,

Formulae used:

1. Capacity Addition = installed capacity in present year – installed capacity in previous year

2. Yearly requirement = capacity addition / no. of years 3. Yearly requirement of transformer = 9.7 * Yearly addition in installed

capacity

4. Share of TNR = 0.05 * yearly requirement of transformers

5. Required manufacturing capacity for TNR = share of TNR / 0.72 At present T&R’s market share is 5%. Out of the total manufacturing capacity of

5500 MVA T&R is utilizing 72% only. So by taking the constant capacity utilization of

72% we have found the required manufacturing capacity in order to maintain

constant market share of 5%.

The above data takes into account only the power transformer requirement of the

country. So the required installed capacity has been forecasted considering the

requirement of power transformers only.

Furnace transformer is an industrial product and its demand is highly industry

specific. So it is merely impossible to forecast the demand of furnace transformers.

That’s why we have forecasted the capacity based on the demand of power

transformers only.

MARKET SCENARIO FOR T&R UP TO 2010 Financial

year

Total

Generating

Capacity

Capacity

addition -

Country

Requirement

of

transformer

Projected

production of

T&R

Market

Share

– T&R

2004-05 118238 ---- ---- ---- ----

2005-06 124827 6589 63913.3 4600 7.1

2006-07 131780 6953 67444.1 5800 8.6

2007-08 139120 7340 71198 7000 9.83

2008-09 146870 7750 75175 7200 9.58

2009-10 155050 8180 79346 7200 9.07

Page 53: Taral Manish Indian Power Sector,

Formulae used:

• Total generating capacity is taken 5.5% growth in installed generating

capacity in the country

• Capacity addition = generating capacity in current year – generating capacity

in previous year

• Requirement of transformers = 9.7 * capacity addition

• Projected production of T&R – Data taken from company’s future plans

• Market share = projected production / requirement of transformer * 100

Page 54: Taral Manish Indian Power Sector,

CONCLUSIONS

With the efforts of government of India to harness the power sector, it is bound to

grow. And as seen earlier the growth in demand of transformer is directly

proportional to the growth of power sector. Hence transformer industry as a whole

has great future.

Transformer is basically a capital intensive product. Its life span expectation is 20-25

years normally. It operates with an efficiently of 90-97% due to absence of rotating

parts. However due to continuous and high voltage operation it is highly prone to

faults, deterioration of oil, puncturing of insulators etc. Transformers are bought

through open bids and tenders. So the company from who to purchase is decided

depending on price, quality, after sales service, and company’s reputation and last

but not the least relations.

Looking at T&R’s present market position and past sales it holds around 5% of the

total transformer market. It is going to expand its operation by opening a new plant

with capacity of 6000MVA (which will be functional from January 2007) that will

increase the market share of the company. The company’s main product is power

transformer which contributes 65% of the total revenue and it has monopoly in

furnace transformer which contributes 35% of the revenue.

We can say that it is well established in furnace transformer segment. It is doing well

in 220 & 132 kV class transformers. In order to sustain competition T&R has to

expand its areas of operation. Demand of 440kV class transformer is high, so it

should enter into this segment.

Marketing is only factor in attracting and keeping customers. Best marketing

departments in the world cannot sell product that are poorly made or fail to meet a

need. Marketing department is made effectively only in companies whose employees

have implemented a comparatively superior Customer Value Delivery System. A

high performance companies generally focus on cross functional skill rather than

functional strengths.

Page 55: Taral Manish Indian Power Sector,

Advertisement strategy plays vital role in increasing the market share of company.

Past data shows that T&R is spending too little in advertisements.

In order to increase its customer base it should give more weightage to

advertisements. It should adopt recent modes of advertisements like industrial

magazines, online advertisements, sponsorships, trade fairs, industrial directories,

online directories, easy access from search engines, and institutional memberships.

.

Page 56: Taral Manish Indian Power Sector,

MODULE - III

MODES OF ADVERTISEMENT T & R IN DIFFERENT SEARCH ENGINES ANALYSIS AND RECOMMENDATIONS

Page 57: Taral Manish Indian Power Sector,

MODES OF ADVERTISEMENT For different kind of products, different modes of advertising are suitable.

Transformer is a customized and specialty product and it is having a special class of

industrial customers. Advertising on Television or by hoarding would not target to the

specific audience. Advertisement for T&R should be targeted to the Industrial

customers, specially purchasing departments of an industry.

The best modes of advertisement for industrial product could be industrial

magazines, online advertisements, sponsorships, trade fairs, industrial directories,

online directories, easy access from search engines, and institutional memberships.

There are many national and international magazines available for electrical

industrial information. Subscription of many of these magazines is free so circulation

copies are generally large in number.

Some of the magazines are: CHIP, Electronics for U, Electrical Engineer.

Internet advertisement which includes online directories and CD version of the same

data. Some of online directories also include hard copy.

1. Kompass: It is the world’s largest online directory with presence in 75 global

markets, listing of 19lakh companies and available in 25 international

languages. It includes online directory with CD and Hard copy (Country wise).

2. Trade India and IndiaMart: These are leading Indian online directories. It

contains over a million companies listed online.

3. TRIM: It is Indian industrial directory in CD and hard copy format.

As the Web is growing exponentially, online marketing has been changed by the

newly provided technological capacities and digital channels of sales. Online

marketing or e-marketing is the adaptation and development of marketing strategies

in the Web environment and includes all factors that affect a Web site's efficiency,

like the idea, the content, the structure, the interface, the implementation, the

maintenance, the promotion and the advertising. Since more and more businesses

are using the Web to conduct their activities, issues like interface usability, easy

navigation and effective supporting services become critical and influence its visiting

Page 58: Taral Manish Indian Power Sector,

success dramatically. However, one important problem that arises is that Web users

are confronted with too many options. Currently, Web personalization is the most

promising approach to alleviate this information overload and to provide users with

tailored experiences. It improves user interaction with Web sites and offers them the

ability to establish long-term and loyal relationships.

As customers gain Web site-specific skills they come to perceive the Web site

differently and more favorably than inexperienced customers. This is not only due to

familiarity, emotional attachment, liking, trust, etc. Often, it is the result of an

objective change in the utility of the interface as a result of skill acquisition.

The degree of international Internet access has increased with amazing speed in

recent years (How Many Online, 1999). In fact, some sources indicate that the

number of global Internet users grew from 563 million to 580 million in the last half of

2002 alone, with much of this growth occurring outside of North America ('Nielsen

Net Ratings,' 2003).

In industrialized nations, Internet access is expanding at an impressive pace.

Western Europe has experienced rapid growth in online business transactions. As a

report in The Economist notes, nearly 466 Swedes, 685 Brits, and 1,800 Germans

open a new online brokerage account every day ('Going for Brokers,' 2000).

Moreover, the 'UK Market Overview' for the Internet Marketing Hotlist (2000) claims

that one in three households in Europe will have Internet access by 2005. In Japan,

over 50% of the adult population is online, and the total number of Japanese Internet

users increased by some 13.5 million in 2002 ('AsiaBizTech,' 2003). As a result of

these trends, e-commerce in Western Europe is expected to account for 22.6% of

the global online market in 2004 ('Forrester Projects $6.8 Trillion for 2004,' 2001).

Similarly, Japan is expected to account for 8.4% of e-commerce sales in 2004

(compared with 12.8% in North America) and Japanese has become the third most

prevalent language in online exchanges ('Forrester Projects $6.8 Trillion for 2004,'

2001; 'Global Internet Statistics,' 2003). Such growth brings with it a new group of

online consumers companies can tap.

The most astounding international growth, however, is taking place in developing

nations, due in part to a mix of public and private sector projects.

Page 59: Taral Manish Indian Power Sector,

It is increasingly important that marketers develop effective international e-marketing

materials now, while much of the world is only starting to get online. By taking

advantage of such opportunities, organizations can gain online orders in relatively

untapped overseas markets at a time when the online marketplace in these regions

remains relatively open. Taking advantage of such an international opportunity,

however, is more complicated than one might think.

Increased access to international markets does not necessarily mean increased

acceptance of ideas or products. Rather, differing expectations of how concepts

should be presented affect cross-cultural transfers of information. Cultural

differences in presentation expectations, moreover, can be pronounced in relation to

visual design. As Web sites are essentially visual media, these expectations can

have an important effect on the success of e-marketing materials.

People across the world generally access the information about the different

business from search engines. It is the gateway for all required information on

internet. Most popular search engines are Google, MSN and Yahoo. And others

which are being popular are altavista, vivisimo, ask etc.

Click on the website through search engines depends on the place in different

search engines. Search algorithm is set in search engine such that each search

keyword gives different results.

Page 60: Taral Manish Indian Power Sector,

T & R RANK IN DIFFERENT SEARCH ENGINES

Company and product specific keywords which could be used for general business

purpose and important for T&R and place of the link in three search engines are

found as below:

Place in search engine Search Key Word Google MSN Yahoo!

1 Transformers and Rectifiers India Ltd

1st page 1st place

1st page 3rd place

1st page 1st place

JMTRIL-2nd page 1st place

2 Transformer India 1st page 1st place

6th page 3rd place

Transformerindia-3rd page 5th place

3 Transformer Not found in first 30 pages

Not found in first 15 pages

Not found in first 5 pages

1st page 2nd place

4 Transformer manufacturers India Pages from

India- not in first 5 pages

Not found In first 15 pages

Not found in first 5 pages

JMTRIL-2nd page 5th place

5 Power Transformer India

Not found in first 10 pages

1st page 8th place

Transformerindia-2nd page 9th place

- As on 06th June, 2006.

Google found 37300000 results for transformer as search key word.

T&R has two domains, transformerindia.com and jmtril.com.

Page 61: Taral Manish Indian Power Sector,

ANALYSIS & RECOMMENDATIONS

Survey reveals most search engine users do not look further than the third page of

results and of them 70% will look only from first page and most of others will turn

back from third page.

We can see that for company specific name search, key word search gives result on

the first page only. But by generalized words the results could not be seen in 1st

page in MSN and Yahoo! search engines. And for product specific search like Power

transformer or Furnace transformer the results are not satisfactory in any of the

search engines.

Optimization in Google is satisfactory, but product name specific optimization is

required which are the most potential keywords. Also MSN and Yahoo! are the

search engines which are widely used in US, UK and many other countries. So

Optimization for these search engines is also necessary.

Another way to increase rank in search engine is to add material (catalogues,

technical information etc.) in website itself which give clicks on the link and the rank

will automatically come within popular range.

Voting through other websites could also be used. This facility is generally paid.

Some SEO (Search Engine Optimization) service provider companies, whose

website’s rank in search engine is high, provides votes (Attracts the customer’s

company link click by putting it on their website). They also put company links in

different websites whose click rate is high so its clicks would automatically increase

and rank goes higher. A SEO provider charge for such facility is generally $500-

$2000 per year. But it keeps top rank in almost all search engines which are widely

used.

Page 62: Taral Manish Indian Power Sector,

MODULE - IV

POWER SECTOR STUDY FOR DEVELOPING COUNTRIES VIETNAM PHILIPPINES SOUTH AFRICA GHANA

Page 63: Taral Manish Indian Power Sector,

VIETNAM Vietnam presently has 28 operational power stations having total capacity of 11,200

MW. Per capita electricity consumption remained at a modest 400kWh last year.

Vietnam's electric power industry supplied 53 billion kWh in 2005 and predicts to rise

to 100 billion in 2010.

During the period from 2001 – 2005, demand for electricity grew faster than

projected, achieving average annual growth of 14.7 percent. Based on continuing

strong energy demand, combined with forecasted annual GDP growth rates of about

7–8 percent over the period of 2005 – 2010, Vietnam’s Ministry of Industry estimates

the demand for electricity will grow annually by 15-17 percent over the next five

years (2010).

The Government of Vietnam is seeking to encourage foreign investment in electric

generation projects, although the sector remains largely under the control of

Electricity of Vietnam (EVN), a state-owned monopoly with 52 subsidiaries, which is

in turn overseen by the Ministry of Industry (MOI).

Economic expansion, rising living standards, increasing consumerism, accelerating

industrialization, and Vietnam's plan to increase the electrification rate in rural areas

from the current 91.25 percent to nearly 100 percent by 2020 is fueling strong energy

demand.

Demand in the power sector was acute. For example, electricity consumption was

growing on average by 12.6% annually between 1990 and 1995, almost double the

average GDP growth rate of 7.8% during this period. Nevertheless, the World Bank's

projections to the year 2010 estimate that electricity supply would need to increase

70% faster than GDP in order to meet demand under planned economic growth

targets of 4-5% (World Bank 1999).

EVN plans to develop a national electricity grid by 2020 by patching together several

regional grids. The country’s distribution infrastructure is poorly maintained.

Page 64: Taral Manish Indian Power Sector,

The $56 million project was funded by the World Bank. Vietnam is considering the

construction of a 500-KV, 188-mile power line from Pleiku to Danang city at a cost of

$130 million.

In September 2004, EVN announced plans to invest $330 million over five years to

upgrade transmission lines surrounding Hanoi.

Vietnam plans to complete its first nuclear power plant by 2020 as an alternate

means on meeting demand. In December 2004, the Vietnamese Ministry of Science

and Technology submitted a pre-feasibility study for the 2,000-MW nuclear plant to

the National Assembly.

The state power company, Electricity of Vietnam (EVN), plans to commission 16

hydropower plants by 2010.

Vinacoal also has plans to construct eight additional coal-fired power plants. Vietnam

currently has five hydroelectric expansions underway. The country’s Son La project,

which began construction in late 2005, is anticipated to have a generating capacity of

2,400 MW by 2012, will be the largest hydroelectric project in Vietnam when

completed.

Electricity Demand (base case scenario 4-5% GDP growth)

Page 65: Taral Manish Indian Power Sector,

Annual Demand Growth (base case scenario)

Source: World Bank, 1999

According to the Vietnamese Government’s Power Development Master Plan V, to

meet the growing demand for power estimated at 61 billion kWh in 2006, 89-93

billion kWh in 2010, and 160-220 billion kWh in 2020, an investment of $19-20 billion

from 2005–2010 will be needed. Achieving this goal would require development of

approximately 32 to 37 new power generation projects, totaling 12,400 MW in

capacity, including up to 20 hydroelectric plants with 4,000 MW in generating

capacity; eight gas or oil power plants (5,200 MW); and seven coal-fired plants

(3,200 MW). Implementation of these projects would also require construction of

about 400 km of 500kV transmission lines; 2,639 km of 220 kV transmission line;

eight 500 kV substations with a total capacity of 4.200 MVA; 43 220 kV substations

with a combined capacity of 7,689 kVA; together with 300,000 km of low and

medium voltage distribution lines.

Page 66: Taral Manish Indian Power Sector,

Composition Forecast of Power Generation Capacity for 2004

Gas40%

Coal 17%

Others2%

Hydro41%

Composition Forecast of Power Generation Capacity for 2010

Gas27%

Coal 16%

Others1%

Hydro56%

Specific Opportunities

• Sales opportunities in 33 ongoing and 28 upcoming power generation and

transmission projects (a specific list of these projects will be provided upon

request).

• $327.8 million Second Transmission and Distribution Project II funded by the

World Bank ($200 million) and the Vietnamese government (approved in July

2005 and to be completed in December 2010).

Page 67: Taral Manish Indian Power Sector,

• $380 million Northern Rural Power Project funded by ADB ($120 million), AFD

(EUR0 40 million) and the Vietnamese government ($103 million). This project

was approved in August 2005 and is to be completed in June 2009.

• Vietnam Needs US$4 Bn for Power Sector Development in 2006-15

• The Energy Institute June 5, 2006 submitted its complete supplement to the

power development plan for the 2006-2015 period, through which Vietnam’s

power sector will need some VND63,100 billion (roughly US$4 billion) a year

to develop new power sources and works to serve power purchase from

outside sources.

Under the supplemented plan, the northern region will build and operate four

hydropower and nine thermal power plants with combined capacity of 5,500

megawatt, including 600MW to be bought from China in 2007-2010 period, whereas

central Vietnam will construct 13 hydropower plants and one power works to

purchase electricity from outside with a combined capacity of some 2,600MW.

Meanwhile, seven hydroelectricity sources and five thermo-power plants with total

capacity of 4,600MW will be built in the southern region.

Southern Vietnam, which currently provides power to the northern and central

regions, will receive some 8 billion kWh of electricity back from the northern and

central regions from 2010.

In the 2006-2010 alone, the investment capital for the power sector will account for

13.7 per cent of Vietnam’s total investment.

In the 2006-2010, power growth rate for production activities is projected to rise 16.1

per cent; 11 per cent in 2011-2015; 9.1 per cent from 2016 to 2010 and down to 8

per cent from 2021 to 2025.

Page 68: Taral Manish Indian Power Sector,

THE PHILIPPINES

The Philippines is an archipelago of more than 7100 islands in South East Asia. The

country is divided into three major island groups. The Luzon group, including

Palawan, is the largest, representing about 35% of the total land area of the country.

The Mindanao group in the south is the second largest and includes the islands of

Sulu and Tawi-Tawi. The Visayas is the third major island group, and includes Cebu,

Bohol, Panay, Samar, Negros and Leyte.

In 2003, the Philippines generated a total of 52,863 Gigawatt-hours (GWh) of electric

power. Coal-fired plants accounted for 27 percent of total power generated, followed

by power plants running on indigenous energy sources such as natural gas (25

percent), geothermal (19 percent) and hydropower (15 percent). Oil-fired power

plants constituted the remaining 14 percent of total power generated throughout the

Philippines.

Installed Generating CapacityOil

14%

Coal27%

Natural Gas25%

Geothermal19%

Hydro15%

The Philippine Energy Plan, or PEP (2005-2014), projects power demand will

continue to grow strongly, at an estimated annual average of 7 to 9 percent. The

Philippine Department of Energy (DOE) estimates that the country will need to add

9,228 MW of new capacity over the next ten years.

The expected surge in electric power demand – due to such factors as population

growth, increased agro-industrial activity, and growth in mining, telecommunications,

Page 69: Taral Manish Indian Power Sector,

and commercial and residential construction – will necessitate the addition of new

generating capacity. The Philippine government is providing fiscal and other

incentives to encourage investment in the energy sector, notably energy sourcing,

power generation and transmission, and rural electrification. To assist in more

efficient market uptake, the Wholesale Electricity Spot Market (WESM) is currently

being developed and is expected to become operational by this year. The WESM

intends to pool electricity output for sale to end-users in real time. Significant

opportunities await suppliers to projects that will tap the country's indigenous

resources such as wind, geothermal, solar, hydro and biomass. Moreover, the

National Transmission Corporation (TransCo) is expanding and improving the

country's transmission infrastructure, creating further opportunity. Distribution

companies and electric cooperatives are also interested in products and technology

that will reduce system losses and provide more efficient servicing of their respective

franchise areas.

The Philippine power system consists of three major island grids, namely Luzon,

Visayas and Mindanao; there are also several small island grids. The Luzon grid is

the largest, accounting for 75% of total generation and installed capacity. The

Visayas grid comprises the islands of Cebu, Leyte, Negros, Panay, Samar and

(soon) Bohol. Together they amount to around 10% of total generation and installed

capacity. The Mindanao grid accounts for about 15% of total generation and installed

capacity.

Luzon, which includes the capital Manila, has about 75% of national electricity

demand. Prices are such that industrial and commercial customers subsidise

residential customers, and the Luzon grid subsidises those of the Visayas and

Mindanao.

The power supply and demand situation

In 2004, the Philippines had a total installed capacity of 15,763 MW of electric power

(79.14% located in Luzon) of which 14,008 MW was considered dependable.

Page 70: Taral Manish Indian Power Sector,

Forecasts of the Department of Energy (DOE) show that an additional 9,225 MW of

new capacity is needed over the next 10 years to avert the projected power supply

shortages up Mindanao by 2009, Visayas by 2010, and Luzon by 2012.

Philippines 2005 2006 2009 2010 2012

Luzon

Existing Demand

Peak Demand

11086

6953

11086

7397

11086

8948

10876

9545

10226

10870

Visayas

Existing Capacity

Peak Demand

1435

1113

1435

1170

1410

1383

1410

1463

1366

1644

Mindanao

Existing Capacity

Peak Demand

1515

1371

1566

1458

1681

1697

1681

1784

1681

2110

Source: Power Development Plan, 2004-2014, Department of Energy

The government’s forecast is for an average growth in demand of about 9% over the

next 10 years. This will require about 14 GW of plant construction and further funding

of over US$20 billion. The requirement is therefore to create a market environment

that encourages private investment to provide this additional capacity. The

government wants to reduce its own financial risks by requiring the private sector to

assume risks in the future generation market. This would mean doing without long-

term contracts with the government or other government guarantees.

Similarly, the government wishes to encourage investment in the distribution sector

to connect some 10 000 villages to the main system.

With the relatively recent power shortages in mind, together with high forecast

growth and the country’s present low per capita GDP and electricity consumption,

the government’s policy is focused on the requirement to deliver a reliable and

secure supply of electrical power. To improve social conditions for the population,

another, compatible, requirement is the total electrification of the country.

Page 71: Taral Manish Indian Power Sector,

To deliver these requirements the government has the following enabling objectives:

• Increase the investment of private capital in the power industry, while

• Minimizing the government’s financial commitment.

• Create an environment of competition and accountability.

• Deliver competitive and affordable prices.

• Improve operational and economic efficiency.

• Make transparent the social subsidies.

• Share social and other costs among all users.

Page 72: Taral Manish Indian Power Sector,

SOUTH AFRICA

Parastatal company Eskom, one of the largest utilities in the world, generates nearly

all of South Africa’s electricity. Eskom’s 35,060 megawatts (MW) of nominal

generating capacity, which is primarily coal-fired (34,532 MW), includes one nuclear

power station at Koeberg (1,930 MW), two gas turbine facilities (342 MW), six

conventional hydroelectric plants (600 MW), and two hydroelectric pumped-storage

stations (1,400 MW). Although Eskom has three mothballed coal-fired facilities

(3,800 MW), it produces adequate electricity for domestic use and exports power to

Botswana, Lesotho, Mozambique, Namibia, Swaziland, and Zimbabwe. Eskom has

asked for government permission to sell three coal-fired plants (1,460 MW) that

would otherwise be scrapped. Given the prospect of reaching its peak capacity in

2007, Eskom announced in June 2004 plans to bring its three mothballed power

stations back into service at a cost of $1.96 billion. The company, which has little

experience in the recommissioning of stations, is looking for a partner to assist in the

effort. South African municipalities own and operate 2,436 MW of generating

capacity, and an additional 836 MW of generating capacity is privately held.

Page 73: Taral Manish Indian Power Sector,

South Africa’s excess electricity capacity will likely be exhausted by 2011; if the

country’s economy grows at a higher rate than expected, capacity may be exhausted

by 2007. In 2004, fears that electricity was becoming unaffordable for the poor forced

the NER to stop charging inflated electricity rates to generate income into new

generation initiatives. The 2004 tariff rate of 2.5% was set below the rate of inflation

to ensure that electricity is affordable for everyone.

Improvements are being made to the South African electricity infrastructure. In

October 2004, the South African government announced that it would spend $26

billion on its power and transport sector over the next five years.

In terms of transmission, the national, integrated grid comprises 26000 km of lines.

Peak demand on the grid is about 28 000 MW.

On the demand side, in 1998, there were 5.8 million electricity customers. In terms of

total electricity consumed, domestic consumers accounted for 19% manufacturing –

49%, mining – 19% and commercial transport and agricultural users the rest. South

Africa sells electricity to neighboring countries (Swaziland, Botswana, Mozambique,

Namibia and Zimbabwe) representing less than 2% of total sales.

At first glance the South African Electricity Supply Industry has performed well.

Eskom supplies electricity at amongst the lowest prices in the world. Reliability and

quality of supply are good.

Page 74: Taral Manish Indian Power Sector,

The national electricity utility is commercially run with no recourse to the national

fiscal. The industry has accomplished an unprecedented national electrification

Programme, connecting about 2.5 million additional households over the past 6

years, thereby increasing the proportion of the population with access to electricity

from about one third of the population to about two thirds.

Page 75: Taral Manish Indian Power Sector,
Page 76: Taral Manish Indian Power Sector,

Electricity Demand Forecast

Long term energy growth in SA is primarily driven by increased industrial and

residential (electrification) load. In the medium term (i.e. between 1997 and 2002),

natural electricity consumption growth is predicted between 4.2 % and 2.2 % per

annum, with long term growth stabilizing between 3.5 % and 1.5 % per annum as

shown in figure below. Fairly broad growth rate ranges are used in the planning

process to account for a range of future economic growth scenarios. An average

growth rate (moderate) is used in the ensuing discussion however to illustrate the

relative contributions of end-uses to the system demand profile.

The growth in residential (electrification) load significantly alters the type of capacity

required to meet the demand. Annual load factor deterioration from almost 80 % to

about 70 % is projected, with the average winter week peak to off peak differential

ratio declining some 17 % between 1996 and 2016.

Page 77: Taral Manish Indian Power Sector,

Eskom Sales Growth Forecast

The Eskom generation capacity position is superimposed in Figure below, including

a 15 % reserve margin and current interruptible load agreements (treated as supply

side resources for modeling purposes).

Summary

Current structure of the electricity market in SA electricity market in SA

Generation - Eskom 96%

Transmission - Eskom 100%

Distribution – Eskom 50% Municipalities 50%

No competition

Page 78: Taral Manish Indian Power Sector,

GHANA

Facts on Ghana’s Electric Power

With a customer base of approximately 1.4 million, it has been estimated that 45- 47

percent of Ghanaians, including 15- 17 percent of the rural population, have access

to grid electricity with a per capita electricity consumption of 358 kWh. All the

regional capitals have been connected to the grid. Electricity usage in the rural areas

is estimated to be higher in the coastal (27 percent) and forest (19 percent)

ecological zones, than in the savannah (4.3 percent) areas of the country. In 2004,

Ghanaians consumed 5,158 gigawatthours (GWh) of electricity. It is estimated that

about half of this amount is consumed by domestic (or residential) consumers for

household uses. Commercial and industrial users account for the rest. The majority

of the customers are in service territories of the Electricity Company of Ghana (ECG)

and the Northern Electrification Department

(NED) and they are regulated.

Current Power System Facilities

The total installed generation capacity is 1,778 MW.

Electricity and population growth

In Ghana, electricity consumption has been growing at 10 to 15 percent per annum

for the last two decades. It is projected that the average demand growth over the

next decade will be about 6 percent per year. As a result, consumption of electricity

will reach 9,300 GWh by 2010. The projected electricity growth assumption has

profound economic, financial, social and environmental implications for the country.

The aspirations of developing countries for higher living standards can only be

satisfied through sustained development of their electric power markets as part of

their basic infrastructure. Electricity demand will grow much faster than overall

economic growth (4-5 percent per year) or than population growth (which is less than

Page 79: Taral Manish Indian Power Sector,

two percent a year) because continuing urbanization will allow newly urbanized

segments of the population to expand their electricity consumption manifold.

Urbanization in Ghana is expected to increase from around 40 percent in 2000 to

about 55 percent in 2012 and eventually to 60 percent by 2020. A little more than a

third of the urban population lives in Greater Accra and is expected to reach around

40 percent by 2020. A considerable percentage of household expenditure goes into

energy.

Clearly, with the Ghanaian economy growing, increasing urban populations will

consume more electricity.

The Energy Commission (EC) estimates that residential demand may reach

anywhere between 7,000 and 13,000 GWh by 2020 depending on the rate of

economic growth and urbanization. The residential sector is not the only segment

expected to grow; commercial and industrial consumption will grow as well to 3,000

to 10,000 GWh by 2020 according to the EC. If VALCO is fully operational, an

additional 2,000 GWh should be expected. In order to meet this increasing demand,

new power generation as well as transmission and distribution facilities will have to

be built. Ghanaian governments have been pursuing a national electrification policy.

Still, more than half of the population remains without access to grid-based

electricity.

3

Nevertheless, rural electrification will continue to be a challenge for Ghana.

Ghanaian generators have an installed capacity of more than 1,650 megawatts.

About 1,100 MW is hydroelectric and 550 MW is thermal capacity burning light crude

oil.

Page 80: Taral Manish Indian Power Sector,

Capacity vs. Actual Generation

In 2003, total demand was 8,500 gigawatthours (GWh). Electricity from

hydroelectricity facilities provided 6,500 GWh. The rest of our electricity is generated

from thermal power plants burning light crude oil, which is imported. Electricity is

usually dispatched first from hydroelectricity stations because it is cheaper per kWh

to generate power at these facilities as long as water is available.

As of December 2003,

• The existing transmission network system comprised 36 substations and

approximately 4000 circuit km of 161 kV and 69 kV lines. This includes 129

km of double circuit 161kV interconnection to Togo and Benin. There is also a

single circuit, 220 km of 225 kV inertia with La Côte d’Ivoire's network.

• The entire distribution system comprised 8,000 km of sub-transmission lines,

30,000 km of distribution networks with 22 bulk supply points and 1,800 MVA

of installed transformer capacity.

Ghana is the second largest electricity market after Nigeria both in terms of

generation capacity and consumption in the West African region.

Composition of Fuels in Final Energy Consumption, 2000

The electricity supply mix in the country is expected to change by the year 2010 from the largely

hydro-based system to a largely thermal-based one relying on natural gas as the main source of fuel.

This transition would be made possible by the West African Gas Pipeline Project, which is expected to

transport natural gas from Nigeria through Benin and Togo to Ghana.

Installed electricity generation capacity and electricity generation in 2004

Page 81: Taral Manish Indian Power Sector,

Installed capacity

in MW (1)

Electricity generation

in GWh (2)

Akosombo Hydroelectric Power

Plant 1038 4404

Kpong Hydroelectric Power

Plant 160 876

TAPCO Thermal Power Plant

TAPCO = Takoradi Power

Company

330 536

TICO Thermal Power Plant

TICO = Takoradi International

Comp.

220 222

Total 1748 6038

Sources: 1: Guide to Electric Power in Ghana, 1st Edition, University of Ghana, Legon, 2005.

2: VRA 2005.

3: Source: Energy Commission, Electricity Sector Overview, 2002

Need for Additional Generation

Domestic electric energy consumption in 2004 was 6,004 GWh. An additional 660

GWh was supplied to CEB (Central Electricity Board). It is projected that the average

local (Ghana) load growth over the next decade will be about six percent as a result

of which local consumption of electricity will reach 9,300 GWh by 2010. There is also

the potential for significant electricity exports and supply to VALCO when the smelter

resumes operations. The firm capability of hydro system of about 4,800 GWh

represents about half of the projected domestic consumption for 2010. This implies

that at least 50 percent of Ghana’s electricity requirement will be provided from

thermal sources by the year 2010.

In the medium to long term, up to 600 MW of additional generating capacity will be

required by 2012. It is planned that this additional capacity will be met through the

establishment of thermal as well as hydro plants such as the Bui Hydroelectric Plant.

An attractive candidate for generation expansion is the 300-MW combined cycle

thermal power plant to be located at Tema. The operation of this plant is intended to

Page 82: Taral Manish Indian Power Sector,

be synchronized with the delivery of natural gas through the West African Gas

pipeline project.

Page 83: Taral Manish Indian Power Sector,

APPENDIX - I

The watt (W) represents the unit of measure of electric power or rate of doing work.

Large amounts of electric power are denoted as follows:

Kilowatt (kW): equal to 1,000 W

Megawatt (MW): equal to 1,000,000 W or 1,000 kW

Gigawatt (GW): equal to 1,000,000,000 W; 1,000,000 kW or 1,000 MW

Terawatt (TW): equal to 1,000,000,000,000 W; 1,000,000,000 kW; 1,000,000 MW or

1,000 GW.

Page 84: Taral Manish Indian Power Sector,

BIBLIOGRAPHY www.ciionline.nic.in

www.ibef.org

www.toshiba.com

www.abb.com

www.bharatbijlee.co.in

http://leeh.ee.tut.fi/transformer/begin.html

www.apdrp.com

http://cesp.stanford.edu/

http://cesp.stanford.edu/events/electricity_reforms_in_india_firm_choices_emerging_

markets_and_externalities/

http://www.emcoindia.com/Html/brochure.htm

http://www.eia.doe.gov/oiaf/ieo/index.html

http://planningcommission.nic.in/midterm/english-pdf/chapter-10.pdf

http://www.smenetwork.net/itma/Coming_Events.htm

http://www.worldenergy.org/wec-

geis/publications/default/tech_papers/17th_congress/1_4_28.asp

http://www.poweringprogress.org/lao-energy/policies/pss.htm

http://www.phaseconverter.com/tptransformer.html

http://www.teriin.org/papers.php?num=5

http://www.tamini.com/tahome01.htm

http://www.toroid.com/standard_transformers/auto_transformers/step_down_transfor

mers.htm

http://www.uneprisoe.org/RETs/Africa.htm

http://www.chforum.org/library/papersindex.html

http://www.iea.org/dbtw-wpd/Textbase/work/2004/eswg/05_weo.pdf

http://nccr-ns.epfl.ch/autres_rech/UrbaNews/Urbanews8/UrbaNews_8_en.pdf

http://www.cid.harvard.edu

http://www.pwc.com/za/eng/pdf/pwc_oilandgaspublicationii.pdf

http://www.worldenergyoutlook.org/2006.asp

http://www.gnesd.org/Downloadables/2005_Regional_workshops/African Workshop

report.pdf

Page 85: Taral Manish Indian Power Sector,

http://www.ifc.org/ifcext/oeg.nsf/AttachmentsByTitle/psd_electric_power/$FILE/psd_e

lectric_power.pdf

http://www.powergenerationworld.com/2004/pow_ZA/confprog.asp?&T1=27/6/2006&

T1=27/6/2006

http://www.transformerindia.com

http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.eg.15.110190.001425

http://allafrica.com/stories/200606200843.html

http://www.adb.org/Documents/TARs/VIE/tar_vie34343.pdf

http://www.nationsencyclopedia.com/Africa/index.html

http://www.stanford.edu/home/atoz/letterp.html

http://vibforum.vcci.com.vn/opport.asp?post_id=1243

www.powermin.nic.in

www.presidentofindia.nic.in

www.ntpc.com

www.powergridindia.com

www.relianceenergy.com

www.nhpcindia.com

www.neepco.com

www.npcil.org

www.gspcl.com

www.cea.nic.in

For Vietnam

• Electricity of Vietnam Corporation (EVN)

• http://www.evn.com.vn

• Ministry of Industry (MOI)

• http://www.moi.gov.vn

• www.vibforum.vicci.com.vn-- June 27, 2006

• www.adb.org/Documents/Profiles/LOAN/32273013.ASP)

• www.worldbank.org.am/external/default/main?pagePK=64027221&piPK=640

27220&theSitePK=301579&menuPK=301612&Projectid=P084871)

• http://data.iea.org/ieastore/statslisting.asp

Page 86: Taral Manish Indian Power Sector,

• Power Sector Restructuring in Vietnam: The Construction and Transfer of

Risk

• Andrew B Wyatt

• Asia Power Sector Reforms Workshop 2002

• Vietnam & World Economy, VNA

For Ghana

• http://www.waterpowermagazine.com/storyprint.asp?sc=2034818

• International Water Power and Dam Construction ©2005

Published by Wilmington Media Ltd.

• Guide to Electric Power in Ghana-July 2005

• RESOURCE CENTER FOR ENERGY ECONOMICS AND REGULATION

Institute of Statistical, Social and Economic Research

University of Ghana

P. O. Box LG 74

Legon, Accra

Ghana

For South Africa

• https://www.engineering.perdue.edu/IE/Research/PEMRG/PPDG/SAPP

• http://www.eia.doe.gov/emeu/cabs/safrica.html

• The World Energy Book Issue 1: Autumn 2005

• The political-economy of power sector reform in South Africa

• Prof Anton Eberhard, Graduate School of Business University of Cape Town

University of Cape Town & Board of the National Electricity Regulatory

• http://www.esi-africa.com/last/ESI_1_2003/031_44.htm

• http://www.ctech.ac.za/conf/due/SOURCE/Web/Surtees/Surtees.html

• World Energy Council 18th Congress, Buenos Aires, October 2001

• http://www.wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2006/01/

24/000016406_20060124163745/Rendered/PDF/wps3829.pdf

Page 87: Taral Manish Indian Power Sector,

For Philippines

• Impact of power sector reform on the poor: case-studies of South and South-

East Asia

• A.R. Sihag, Neha Misra and Vivek Sharma

The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi

Road, New Delhi-110 003, India

E-mail (Sihag): [email protected]

• Energy for Sustainable Development, Volume VIII No. 4, December 2004

• Workshop on power sector restructuring in Asia held on 7— 10 October 2002

in Bangkok, Thailand organized by the Transnational Institute, Prayas India,

and the Focus on the Global South.

• http://data.iea.org/ieastore/statslisting.asp

• IEA Energy Statistics