tatap muka 1 the history of life on earth 2015.ppt

130
The History of Life on Earth

Upload: dian

Post on 10-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Tatap muka 1 The History of Life on Earth 2015.ppt

The History of Life on Earth

Page 2: Tatap muka 1 The History of Life on Earth 2015.ppt

Memahami dan mampu menjelaskan konsep kunci :

1. Conditions on early Earth made the origin of life possible

2. The fossil record documents the history of life

3. Key events in life’s history include the origins of unicellular and multicellular organisms and the colonization of land

4. The rise and fall of groups of organisms reflect differences in speciation and extinction rates

5. Major changes in body form can result from changes in the sequences and regulation of developmental genes

6. Evolution is not goal oriented

Page 3: Tatap muka 1 The History of Life on Earth 2015.ppt

Overview: Lost Worlds

• Past organisms were very different from those now alive

• The fossil record shows macroevolutionary changes over large time scales including• The emergence of terrestrial vertebrates • The origin of photosynthesis• Long-term impacts of mass extinctions

Page 4: Tatap muka 1 The History of Life on Earth 2015.ppt

Antarctica

Page 5: Tatap muka 1 The History of Life on Earth 2015.ppt

On what continent did these dinosaurs roam?

Page 6: Tatap muka 1 The History of Life on Earth 2015.ppt

Cryolophosaurus

Page 7: Tatap muka 1 The History of Life on Earth 2015.ppt

Conditions on early Earth made the origin of life possible• Chemical and physical processes on early Earth

may have produced very simple cells through a sequence of stages:1. Abiotic synthesis of small organic molecules

2. Joining of these small molecules into macromolecules

3. Packaging of molecules into “protobionts”

4. Origin of self-replicating molecules

Page 8: Tatap muka 1 The History of Life on Earth 2015.ppt

Synthesis of Organic Compounds on Early Earth

• Earth formed about 4.6 billion years ago, along with the rest of the solar system

• Earth’s early atmosphere likely contained water vapor and chemicals released by volcanic eruptions (nitrogen, nitrogen oxides, carbon dioxide, methane, ammonia, hydrogen, hydrogen sulfide)

Page 9: Tatap muka 1 The History of Life on Earth 2015.ppt

• A. I. Oparin and J. B. S. Haldane hypothesized that the early atmosphere was a reducing environment

• Stanley Miller and Harold Urey conducted lab experiments that showed that the abiotic synthesis of organic molecules in a reducing atmosphere is possible

Page 10: Tatap muka 1 The History of Life on Earth 2015.ppt

• However, the evidence is not yet convincing that the early atmosphere was in fact reducing

• Instead of forming in the atmosphere, the first organic compounds may have been synthesized near submerged volcanoes and deep-sea vents

Page 11: Tatap muka 1 The History of Life on Earth 2015.ppt
Page 12: Tatap muka 1 The History of Life on Earth 2015.ppt

Did life originate in deep-sea alkaline vents?

Page 13: Tatap muka 1 The History of Life on Earth 2015.ppt

• Amino acids have also been found in meteorites

Page 14: Tatap muka 1 The History of Life on Earth 2015.ppt

Abiotic Synthesis of Macromolecules

• Small organic molecules polymerize when they are concentrated on hot sand, clay, or rock

Page 15: Tatap muka 1 The History of Life on Earth 2015.ppt

Protobionts

• Replication and metabolism are key properties of life

• Protobionts are aggregates of abiotically produced molecules surrounded by a membrane or membrane-like structure

• Protobionts exhibit simple reproduction and metabolism and maintain an internal chemical environment

Page 16: Tatap muka 1 The History of Life on Earth 2015.ppt

• Percobaan-percobaan laboratorium menunjukkan bahwa protobion dapat terbentuk secara spontan dari senyawa-senyawa organik yang dihasilkan secara abiotik

• Misalnya, beberapa tetesan kecil terlingkup-membran yang disebut liposom dapat terbentuk ketika lipid atau molekul-molekul organik lain ditambahkan ke air

Page 17: Tatap muka 1 The History of Life on Earth 2015.ppt

(a) Reproduksi sederhana dari protobion

(b) Metabolisme sederhana

Phosphate

Maltose

Phosphatase

Maltose

Amylase

Starch

Glucose-phosphate

Glucose-phosphate

20 µm

Protobion versi laboratorium

Page 18: Tatap muka 1 The History of Life on Earth 2015.ppt

RNA yang Bereplikasi-Sendiri dan Awal Kemunculan Seleksi Alam

• The first genetic material was probably RNA, not DNA

• RNA molecules called ribozymes have been found to catalyze many different reactions• For example, ribozymes can make complementary copies of

short stretches of their own sequence or other short pieces of RNA

Page 19: Tatap muka 1 The History of Life on Earth 2015.ppt

• Early protobionts with self-replicating, catalytic RNA would have been more effective at using resources and would have increased in number through natural selection

• The early genetic material might have formed an “RNA world”

Page 20: Tatap muka 1 The History of Life on Earth 2015.ppt

The fossil record documents the history of life

• The fossil record reveals changes in the history of life on earth

Page 21: Tatap muka 1 The History of Life on Earth 2015.ppt

Catatan Fosil

• Batuan Endapan adalah sumber fosil terkaya. Akibatnya, catatan fosil didasarkan terutama pada urutan terakumulasiny fosil di lapisan batuan endpam yang disebut strata

Page 22: Tatap muka 1 The History of Life on Earth 2015.ppt

Present

Dimetrodon

Coccosteus cuspidatus

Fossilizedstromatolite

Stromatolites Tappania, aunicellulareukaryote

Dickinsoniacostata

Hallucigenia

Cetakan amonit

Rhomaleosaurus victor, a plesiosaur

10

0 m

illi

on

ye

ars

ag

o2

00

17

53

00

27

04

00

37

55

00

52

55

65

60

03

, 500

1, 5

0 0

2.5 cm4.5 cm

1 cm

Page 23: Tatap muka 1 The History of Life on Earth 2015.ppt

Fossilizedstromatolite

Stromatolites Tappania, aunicellulareukaryote

Dickinsoniacostata

Hallucigenia

500

525

565

600

3,50

0 1,

500

2.5

cm

4.5 cm

1 cm

Page 24: Tatap muka 1 The History of Life on Earth 2015.ppt

Present

Dimetrodon

Coccosteus cuspidatus

Casts ofammonites

Rhomaleosaurus victor, a plesiosaur

100

mill

ion

yea

rs a

go

200

175

300

270

400

3754.5 cm

Page 25: Tatap muka 1 The History of Life on Earth 2015.ppt

Rhomaleosaurus victor, a plesiosaur

Page 26: Tatap muka 1 The History of Life on Earth 2015.ppt

Dimetrodon

Page 27: Tatap muka 1 The History of Life on Earth 2015.ppt

Casts of ammonites

Page 28: Tatap muka 1 The History of Life on Earth 2015.ppt

Coccosteus cuspidatus

4.5 cm

Page 29: Tatap muka 1 The History of Life on Earth 2015.ppt

Hallucigenia

1 cm

Page 30: Tatap muka 1 The History of Life on Earth 2015.ppt

Dickinsonia costata 2.5 cm

Page 31: Tatap muka 1 The History of Life on Earth 2015.ppt

Tappania, a unicellular eukaryote

Page 32: Tatap muka 1 The History of Life on Earth 2015.ppt

Stromatolites

Page 33: Tatap muka 1 The History of Life on Earth 2015.ppt

Fossilized stromatolite

Page 34: Tatap muka 1 The History of Life on Earth 2015.ppt

• Few individuals have fossilized, and even fewer have been discovered

• Catatan fosil yang diketahui cenderung pada spesies-spesies yang bertahan lama, berjumlah melimpah, dan tersebar luas di lingkungan-lingkungan tertentu, serta memiliki cangkang, rangka atau bagian lain yang keras sehingga mudah terfosilisasi

Page 35: Tatap muka 1 The History of Life on Earth 2015.ppt

Bagiamana Umur Bebatuan dan Fosil ditentukan

• Strata sedimen mengungkapkan umur relatif fosil• Umur yang sesungguhnya (absolut) dari fosil

dapat ditentukan dengan penentuan umur radiometrik, yang didasarkan pada peluruhan isotop radioaktif

• Sebuah Isotop ‘induk’ radioaktif meluruh menjadi isotop ‘anakan’ dengan laju yang konstan

• Laju peluruhan dinyatakan sebagai waktu-paruh (half-time), waktu yang diperlukan bagi 50% isotop induk untuk meluruh

Page 36: Tatap muka 1 The History of Life on Earth 2015.ppt

Waktu (waktu-paruh)

Isotop “anak” yang terakumulasi

Sisa isotop “induk”

Fra

ksi

dar

i si

sa

iso

t op

in

du

k

1 2 3 4

1/2

1/41/8 1/16

Penentuan umur radiometrik

Page 37: Tatap muka 1 The History of Life on Earth 2015.ppt

• Radiocarbon dating can be used to date fossils up to 75,000 years old

• For older fossils, some isotopes can be used to date sedimentary rock layers above and below the fossil

Page 38: Tatap muka 1 The History of Life on Earth 2015.ppt

• Magnetisme bebatuan juga menyediakan informasi penentuan umur

• Pengukuran magnetisme berbagai lapisan bebatuan mengindikasikan bahwa kutub magnetik utara dan selatan telah berganti-ganti posisi berulang kali di masa lalu.

Page 39: Tatap muka 1 The History of Life on Earth 2015.ppt

The Origin of New Groups of Organisms

• Mammals belong to the group of animals called tetrapods

• The evolution of unique mammalian features through gradual modifications can be traced from ancestral synapsids through the present

Page 40: Tatap muka 1 The History of Life on Earth 2015.ppt

Very late cynodont (195 mya)

Later cynodont (220 mya)

Early cynodont (260 mya)

Therapsid (280 mya)

Synapsid (300 mya)

Temporalfenestra

Temporalfenestra

Temporalfenestra

EARLYTETRAPODS

Articular

Key

Quadrate

Dentary

Squamosal

Reptiles(includingdinosaurs and birds)

Dimetrodon

Very late cynodonts

Mammals

Sy

na

ps

ids

Th

era

ps

ids

Ea

rli er c

yn

od

on

ts

The origin of mammals

Page 41: Tatap muka 1 The History of Life on Earth 2015.ppt

Therapsid (280 mya)

Synapsid (300 mya)

Temporalfenestra

Temporalfenestra

Articular

Key

Quadrate

DentarySquamosal

Page 42: Tatap muka 1 The History of Life on Earth 2015.ppt

Very late cynodont (195 mya)

Later cynodont (220 mya)

Early cynodont (260 mya)

Temporalfenestra

Articular

Key

Quadrate

Dentary

Squamosal

Page 43: Tatap muka 1 The History of Life on Earth 2015.ppt

Key events in life’s history include the origins of single-celled and multicelled organisms and the colonization of land

• The geologic record is divided into the Archaean, the Proterozoic, and the Phanerozoic eons

Page 44: Tatap muka 1 The History of Life on Earth 2015.ppt

• Fanerozoikum meliputi kehidupan eukariotik multiseluler

• Fanerozoikum dibagi menjadi tiga era: Paleozoikum, Mesozoikum, dan Kenozoikum

• Batas utama antara divisi geologi sesuai dengan peristiwa kepunahan dalam catatan fosil

Page 45: Tatap muka 1 The History of Life on Earth 2015.ppt
Page 46: Tatap muka 1 The History of Life on Earth 2015.ppt
Page 47: Tatap muka 1 The History of Life on Earth 2015.ppt
Page 48: Tatap muka 1 The History of Life on Earth 2015.ppt

Animals

Colonizationof land

Paleozoic

Meso-

zoic

Humans

Ceno-zoic

Origin of solarsystem andEarth

ProkaryotesProterozoic Archaean

Billions of years ago

1 4

32

Multicellulareukaryotes

Single-celledeukaryotes

Atmosphericoxygen

Page 49: Tatap muka 1 The History of Life on Earth 2015.ppt

The First Single-Celled Organisms

• The oldest known fossils are stromatolites, rock-like structures composed of many layers of bacteria and sediment

• Stromatolites date back 3.5 billion years ago• Prokaryotes were Earth’s sole inhabitants from 3.5 to about 2.1 billion years ago

Page 50: Tatap muka 1 The History of Life on Earth 2015.ppt

Prokaryotes

Billions of year

s ag

o

4

32

1

Page 51: Tatap muka 1 The History of Life on Earth 2015.ppt

Photosynthesis and the Oxygen Revolution

• Most atmospheric oxygen (O2) is of biological origin

• O2 produced by oxygenic photosynthesis reacted with dissolved iron and precipitated out to form banded iron formations

• The source of O2 was likely bacteria similar to modern cyanobacteria

Page 52: Tatap muka 1 The History of Life on Earth 2015.ppt

• By about 2.7 billion years ago, O2 began accumulating in the atmosphere and rusting iron-rich terrestrial rocks

• This “oxygen revolution” from 2.7 to 2.2 billion years ago

• Menimbulkan tantangan bagi kehidupan• Memberikan kesempatan untuk mendapatkan energi dari

cahaya• Organisme diperbolehkan untuk mengeksploitasi ekosistem

baru

Page 53: Tatap muka 1 The History of Life on Earth 2015.ppt

Atmosphericoxygen

Billions of year

s ag

o4

32

1

Page 54: Tatap muka 1 The History of Life on Earth 2015.ppt

Formasi lajur-lajur besi: bukti fotosintesis

Page 55: Tatap muka 1 The History of Life on Earth 2015.ppt

The First Eukaryotes

• The oldest fossils of eukaryotic cells date back 2.1 billion years

• The hypothesis of endosymbiosis proposes that mitochondria and plastids (chloroplasts and related organelles) were formerly small prokaryotes living within larger host cells

• An endosymbiont is a cell that lives within a host cell

Page 56: Tatap muka 1 The History of Life on Earth 2015.ppt

Single-celledeukaryotes

Billions of year

s ag

o

4

32

1

Page 57: Tatap muka 1 The History of Life on Earth 2015.ppt

• The prokaryotic ancestors of mitochondria and plastids probably gained entry to the host cell as undigested prey or internal parasites

• In the process of becoming more interdependent, the host and endosymbionts would have become a single organism

• Serial endosymbiosis supposes that mitochondria evolved before plastids through a sequence of endosymbiotic events

Page 58: Tatap muka 1 The History of Life on Earth 2015.ppt

Nucleus

Cytoplasm

DNAPlasma membrane

Endoplasmic reticulum

Nuclear envelope

Ancestralprokaryote

Page 59: Tatap muka 1 The History of Life on Earth 2015.ppt

Aerobicheterotrophicprokaryote

Mitochondrion

Ancestralheterotrophiceukaryote

Page 60: Tatap muka 1 The History of Life on Earth 2015.ppt

Ancestral photosyntheticeukaryote

Photosyntheticprokaryote

Mitochondrion

Plastid

Page 61: Tatap muka 1 The History of Life on Earth 2015.ppt

Ancestral photosyntheticeukaryote

Photosyntheticprokaryote

Mitochondrion

Plastid

Nucleus

Cytoplasm

DNAPlasma membrane

Endoplasmic reticulum

Nuclear envelope

Ancestralprokaryote

Aerobicheterotrophicprokaryote

Mitochondrion

Ancestralheterotrophiceukaryote

Page 62: Tatap muka 1 The History of Life on Earth 2015.ppt

• Key evidence supporting an endosymbiotic origin of mitochondria and plastids:• Similarities in inner membrane structures and functions

• Division is similar in these organelles and some prokaryotes

• These organelles transcribe and translate their own DNA

• Their ribosomes are more similar to prokaryotic than eukaryotic ribosomes

Page 63: Tatap muka 1 The History of Life on Earth 2015.ppt

Asal-usul Multiselularitas

• Setelah eukariota pertama muncul, beraneka ragam bentuk uniselular berevolusi, memunculkan keanekaragaman eukariota bersel tunggal

• A second wave of diversification occurred when multicellularity evolved and gave rise to algae, plants, fungi, and animals

Page 64: Tatap muka 1 The History of Life on Earth 2015.ppt

The Earliest Multicellular Eukaryotes

• Comparisons of DNA sequences date the common ancestor of multicellular eukaryotes to 1.5 billion years ago

• The oldest known fossils of multicellular eukaryotes are of small algae that lived about 1.2 billion years ago

Page 65: Tatap muka 1 The History of Life on Earth 2015.ppt

• The “snowball Earth” hypothesis suggests that periods of extreme glaciation confined life to the equatorial region or deep-sea vents from 750 to 580 million years ago

• The Ediacaran biota were an assemblage of larger and more diverse soft-bodied organisms that lived from 565 to 535 million years ago

Page 66: Tatap muka 1 The History of Life on Earth 2015.ppt

Multicellulareukaryotes

Billions of year

s ag

o

4

32

1

Page 67: Tatap muka 1 The History of Life on Earth 2015.ppt

The Cambrian Explosion

• The Cambrian explosion refers to the sudden appearance of fossils resembling modern phyla in the Cambrian period (535 to 525 million years ago)

• The Cambrian explosion provides the first evidence of predator-prey interactions

Page 68: Tatap muka 1 The History of Life on Earth 2015.ppt

Animals

Billions of year

s ag

o

4

32

1

Page 69: Tatap muka 1 The History of Life on Earth 2015.ppt

Sp

on

ge

s

LateProterozoiceon

EarlyPaleozoicera(Cambrianperiod)

Cn

idar

ian

s

An

nel

ids

Bra

ch

iop

od

s

Ec

hin

od

erm

s

Ch

ord

ate

s

Mill

ion

s o

f y

ears

ag

o

500

542

Art

hro

po

ds

Mo

llus

cs

Page 70: Tatap muka 1 The History of Life on Earth 2015.ppt

• DNA analyses suggest that many animal phyla diverged before the Cambrian explosion, perhaps as early as 700 million to 1 billion years ago

• Fossils in China provide evidence of modern animal phyla tens of millions of years before the Cambrian explosion

• The Chinese fossils suggest that “the Cambrian explosion had a long fuse”

Page 71: Tatap muka 1 The History of Life on Earth 2015.ppt

(a) Tahap dua-sel 150 µm 200 µm(b) Tahap lebih lanjut

Fosil-fosil Proterozoikum yang mungkin merupakan embrio hewan yang berumur 575 jut tahun (SEM)

Page 72: Tatap muka 1 The History of Life on Earth 2015.ppt

The Colonization of Land

• Fungi, plants, and animals began to colonize land about 500 million years ago

• Plants and fungi likely colonized land together by 420 million years ago

• Arthropods and tetrapods are the most widespread and diverse land animals

• Tetrapods evolved from lobe-finned fishes around 365 million years ago

Page 73: Tatap muka 1 The History of Life on Earth 2015.ppt

Colonization of land

Billions of year

s ag

o4

32

1

Page 74: Tatap muka 1 The History of Life on Earth 2015.ppt

The rise and fall of dominant groups reflect continental drift, mass extinctions, and adaptive

radiations

• The history of life on Earth has seen the rise and fall of many groups of organisms

Page 75: Tatap muka 1 The History of Life on Earth 2015.ppt

Continental Drift

• At three points in time, the land masses of Earth have formed a supercontinent: 1.1 billion, 600 million, and 250 million years ago

• Earth’s continents move slowly over the underlying hot mantle through the process of continental drift

• Oceanic and continental plates can collide, separate, or slide past each other

• Interactions between plates cause the formation of mountains and islands, and earthquakes

Page 76: Tatap muka 1 The History of Life on Earth 2015.ppt

(a) Irisan bumi (b) Lempeng-lempeng benua utama

Innercore

Outercore

Crust

MantlePacificPlate

NazcaPlate

Juan de FucaPlate

Cocos Plate

CaribbeanPlate

ArabianPlate

AfricanPlate

Scotia Plate

NorthAmericanPlate

SouthAmericanPlate

AntarcticPlate

AustralianPlate

PhilippinePlate

IndianPlate

Eurasian Plate

Page 77: Tatap muka 1 The History of Life on Earth 2015.ppt

(a) Cutaway view of Earth

Innercore

Outercore

Crust

Mantle

Page 78: Tatap muka 1 The History of Life on Earth 2015.ppt

(b) Major continental plates

PacificPlate

NazcaPlate

Juan de FucaPlate

Cocos Plate

CaribbeanPlate

ArabianPlate

AfricanPlate

Scotia Plate

NorthAmericanPlate

SouthAmericanPlate

AntarcticPlate

AustralianPlate

PhilippinePlate

IndianPlate

Eurasian Plate

Page 79: Tatap muka 1 The History of Life on Earth 2015.ppt

Consequences of Continental Drift

• Formation of the supercontinent Pangaea about 250 million years ago had many effects• A reduction in shallow water habitat• A colder and drier climate inland• Changes in climate as continents moved toward and away

from the poles• Changes in ocean circulation patterns leading to global

cooling

Page 80: Tatap muka 1 The History of Life on Earth 2015.ppt

SouthAmerica

Pangaea

Mil

lio

ns

of

year

s ag

o

65.5

135

Mes

ozo

ic

251

Pal

eozo

ic

Gondwana

Laurasia

Eurasia

IndiaAfrica

AntarcticaAustralia

North Americ

a

Madagascar

Cen

ozo

ic

Present

Sejarah hanyutan benua selama eon fanerozoikum

Page 81: Tatap muka 1 The History of Life on Earth 2015.ppt

SouthAmerica

Mil

lio

ns

of

year

s ag

o

65.5

Eurasia

IndiaAfrica

AntarcticaAustralia

North Americ

a

Madagascar

Cen

ozo

ic

Present

Page 82: Tatap muka 1 The History of Life on Earth 2015.ppt

Pangaea

Mil

lio

ns

of

year

s ag

o

135

Mes

ozo

ic

251

Pal

eozo

ic

Gondwana

Laurasia

Page 83: Tatap muka 1 The History of Life on Earth 2015.ppt

• The break-up of Pangaea lead to allopatric speciation

• The current distribution of fossils reflects the movement of continental drift

• For example, the similarity of fossils in parts of South America and Africa is consistent with the idea that these continents were formerly attached

Page 84: Tatap muka 1 The History of Life on Earth 2015.ppt

Mass Extinctions

• The fossil record shows that most species that have ever lived are now extinct

• At times, the rate of extinction has increased dramatically and caused a mass extinction

Page 85: Tatap muka 1 The History of Life on Earth 2015.ppt

The “Big Five” Mass Extinction Events• In each of the five mass extinction events, more

than 50% of Earth’s species became extinct

Page 86: Tatap muka 1 The History of Life on Earth 2015.ppt

To

tal e

xtin

cti

on

ra

te(f

amili

es

pe

r m

illio

n y

ears

):

Time (millions of years ago)

Nu

mb

er o

f fa

mili

es:

CenozoicMesozoicPaleozoicE O S D C P Tr J

542

0

488 444 416 359 299 251 200 145

EraPeriod

5

C P N

65.5

0

0

200

100

300

400

500

600

700

800

15

10

20

Mass extinction and the diversity of life

Page 87: Tatap muka 1 The History of Life on Earth 2015.ppt

• The Permian extinction defines the boundary between the Paleozoic and Mesozoic eras

• This mass extinction occurred in less than 5 million years and caused the extinction of about 96% of marine animal species

• This event might have been caused by volcanism, which lead to global warming, and a decrease in oceanic oxygen

Page 88: Tatap muka 1 The History of Life on Earth 2015.ppt

• The Cretaceous mass extinction 65.5 million years ago separates the Mesozoic from the Cenozoic

• Organisms that went extinct include about half of all marine species and many terrestrial plants and animals, including most dinosaurs

Page 89: Tatap muka 1 The History of Life on Earth 2015.ppt

• The presence of iridium in sedimentary rocks suggests a meteorite impact about 65 million years ago

• The Chicxulub crater off the coast of Mexico is evidence of a meteorite that dates to the same time

Page 90: Tatap muka 1 The History of Life on Earth 2015.ppt

NORTHAMERICA

ChicxulubcraterYucatán

Peninsula

Trauma bagi Bumi dan kehidupan Kreta

Page 91: Tatap muka 1 The History of Life on Earth 2015.ppt

Apakah kepunahan Keenam sedang berlangsung?

• Para saintis memperkirakan bahwa tingkat laju kepunahan adalah 100 sampai 1.000 kali lebih besar daripada laju latar tipikal yang terlihat dalam catatan fosil

• Data menunjukkan bahwa kepunahan massal keenam (akibat manusia) mungkin akan terjadi dalam beberapa abad atau melenium mendatang apabila tindakan dramatis tidak diambil

Page 92: Tatap muka 1 The History of Life on Earth 2015.ppt

Konsekuensi Kepunahan Massal

• Kepunahan massal dapat mengubah komunitas ekologi

• Catatan fosil menunjukkan bahwa biasanya diperlukan 5-100 juta tahun bagi keanekaragaman makhluk hidup untuk pulih setelah kepunahan massal

• Kepunahan massal dapat membuka jalan bagi radiasi adaptif

Page 93: Tatap muka 1 The History of Life on Earth 2015.ppt

Pre

dat

or

gen

era

(pe

rcen

tag

e o

f m

arin

e g

en

era

)

Time (millions of years ago)

CenozoicMesozoicPaleozoicE O S D C P Tr J

542

0

488 444 416 359 299 251 200 145

EraPeriod C P N

65.5 0

10

20

30

40

50

Kepunahan massal dan ekologi

Page 94: Tatap muka 1 The History of Life on Earth 2015.ppt

Adaptive Radiations

• Radiasi adaptif (Adaptive radiation) adalah periode perubahan evolusioner ketika kelompok-kelompok organisme membentuk banyak spesies baru dengan adaptasi yang memungkinkan mereka mengisi peran ekologis, atau relung, yang berbeda dalam komunitas

Page 95: Tatap muka 1 The History of Life on Earth 2015.ppt

Radiasi Adaptif berskala Dunia

• Mamalia mengalami radiasi adaptif besar-besaran setelah kepunahan dinosaurus darat 65,5 juta tahun lalu.

• Dengan lenyapnya dinosaurus (kecuali burung), mamalia berkembang pesat dalam keanekaragaman maupun ukuran, mengisi peran-peran ekologis yang sebelumnya ditempati oleh dinosaurus darat.

• Other notable radiations include photosynthetic prokaryotes, large predators in the Cambrian, land plants, insects, and tetrapods

Page 96: Tatap muka 1 The History of Life on Earth 2015.ppt

Millions of years ago

Monotremes(5 species)

250 150 100200 50

ANCESTRALCYNODONT

0

Marsupials(324 species)

Eutherians(placentalmammals;5,010 species)

Ancestralmammal

Adaptive radiation of mammals

Page 97: Tatap muka 1 The History of Life on Earth 2015.ppt

Radiasi adaptif Regional

• Radiasi adaptif dapat terjadi ketika organisme mengolonisasi wilayah yang hanya terdapat sedikit kompetisi

• Kepulauan Hawaii merupakan salah satu tempat pameran terbesar di dunia dari radiasi adaptif regional

Page 98: Tatap muka 1 The History of Life on Earth 2015.ppt

Close North American relative,the tarweed Carlquistia muirii

Argyroxiphium sandwicense

Dubautia linearisDubautia scabra

Dubautia waialealae

Dubautia laxa

HAWAII0.4

millionyears

OAHU3.7

millionyears

KAUAI5.1

millionyears

1.3millionyears

MOLOKAIMAUI

LANAI

Adaptive radiation on the Hawaiian Islands

Page 99: Tatap muka 1 The History of Life on Earth 2015.ppt

Close North American relative,the tarweed Carlquistia muirii

Page 100: Tatap muka 1 The History of Life on Earth 2015.ppt

Dubautia waialealae

Page 101: Tatap muka 1 The History of Life on Earth 2015.ppt

Dubautia laxa

Page 102: Tatap muka 1 The History of Life on Earth 2015.ppt

Dubautia scabra

Page 103: Tatap muka 1 The History of Life on Earth 2015.ppt

Argyroxiphium sandwicense

Page 104: Tatap muka 1 The History of Life on Earth 2015.ppt

Dubautia linearis

Page 105: Tatap muka 1 The History of Life on Earth 2015.ppt

Perubahan besar pada bentuk tubuh dapat menyebabkan perubahan di dalam sekuens dan regulasi gen

perkembangan

• Mempelajari mekanisme genetik perubahan dapat memberikan wawasan perubahan evolusioner skala besar

Page 106: Tatap muka 1 The History of Life on Earth 2015.ppt

Efek-efek Evolusiner dari gen-gen Perkembangan

• Gen-gen yang mengatur perkembangan mempengaruhi laju, waktu terjadi, dan pola spasial dari perubahan pada bentuk organisme ketika ia berkembang dari zigot menjadi dewasa

Page 107: Tatap muka 1 The History of Life on Earth 2015.ppt

Perubahan pada laju dan waktu terjadi

• Heterokroni (Heterochrony) adalah perubahan evolusioner dalam laju atau waktu terjadinya peristiwa perkembangan

• Sebagai contoh, bentuk suatu organisme sebagian bergantung pada laju pertumbuhan relatif dari bagian-bagian tubuh yag berbeda selama perembangan

• Perubahan kecil sekali pun dalam laju pertumbuhan relatif dapat mengubah bentuk dewasa secara substansial, seperti yang terlihat pada bentuk tengkorak manusia dan simpanse yang sangat kontras

Page 108: Tatap muka 1 The History of Life on Earth 2015.ppt

(a) Laju perkembangan diferensial pada manusia

NewbornAge (years)

Adult1552

Page 109: Tatap muka 1 The History of Life on Earth 2015.ppt

(b) Comparison of chimpanzee and human skull growth

Chimpanzee fetus Chimpanzee adult

Human fetus Human adult

Page 110: Tatap muka 1 The History of Life on Earth 2015.ppt

• Chimpanzee infant Chimpanzee adult

Page 111: Tatap muka 1 The History of Life on Earth 2015.ppt

• Heterokroni juga dapat mengubah waktu perkembangan reproduktif terhadap organ-organ nonreproduktif

• Pada pedomorfosis (paedomorphosis), laju perkembangan organ reproduksi lebih cepat daripada organ-organ yang lain, tahap kedewasaan secara seksual dari satu spesies mungkin tetap mempertahankan ciri-ciri tubuh yang merupakan struktur juvenil pada spesies nenek moyang

Page 112: Tatap muka 1 The History of Life on Earth 2015.ppt

Gills

Pedomorfosis pada salamander axolotl

Page 113: Tatap muka 1 The History of Life on Earth 2015.ppt

Perubahan Pada Pola Spasial

• Perubahan evolusioner yang substansial juga dapat terjadi akibat perubahan pada gen-gen yang mengendalikan penempatan dan penataan spasial bagian-bagian tubuh

• Gen-gen regulator induk yang disebut Gen homeotik (homeotic gene) menentukan ciri-ciri dasar seperti letak sepasang sayap dan sepasang kaki yang akan berkembang pada burung atau cara penataan bagian-bagian bunga dari suatu tumbuhan

Page 114: Tatap muka 1 The History of Life on Earth 2015.ppt

• Produk dari salah satu kelas gen homeotik, gen-gen Hox menyediakan informasi posisi pada embrio hewan

• Informasi ini mendorong sel-sel untuk berkembang menjadi struktur yang sesuai bagi lokasi tertentu

• Perubahan pada gen-gen Hox atau pada cara gen-gen tersebut diekspreasikan dapat memiliki dampak yang besar pada morfologi

• Misalnya, di antara krustasea, perubahan pada lokasi tempat 2 gen Hox (Ubx dan Scr) diekspresikan akan berkorelasi dengan konversi dari kaki renang menjadi kaki untuk makan

Page 115: Tatap muka 1 The History of Life on Earth 2015.ppt

• Evolusi vertebrata dari hewan invertebrata mungkin juga dipengaruhi oleh sejumlah perubahan pada gen-gen Hox dan gen-gen yang meregulasi mereka

• Dua duplikasi dari gen-gen Hox telah terjadi pada garis keturunan vertebrata, dan semua genom vertebrata yang sudah diuji telah memiliki kedua duplikasi ini

• Duplikasi-duplikasi ini mungkin berperan penting dalam kemunculan karakteristik baru pada vertebrata

Page 116: Tatap muka 1 The History of Life on Earth 2015.ppt

Vertebrata (berahang) dengan empat gugus Hox

Vertebrata awal hipotesis (tak berahang) dengan dua gugus Hox

Nenek moyang vertebrata hipotesi (invertebrata) dengan gugus Hox tunggal

Duplikasi Hox yang kedua

Duplikasi Hox yang pertama

Page 117: Tatap muka 1 The History of Life on Earth 2015.ppt

Evolusi Perkembangan

• The tremendous increase in diversity during the Cambrian explosion is a puzzle

• Developmental genes may play an especially important role

• Changes in developmental genes can result in new morphological forms

Page 118: Tatap muka 1 The History of Life on Earth 2015.ppt

Perubahan pada Gen

• Bentuk-bentuk morfologi baru mungkin berasal dari peristiwa duplikasi gen yang menghasilkan gen-gen perkembangan baru

• Sebuah mekanisme yang mungkin untuk evolusi serangga berkaki enam dari nenek moyang serupa-krustasea yang memiliki lebih dari enam kaki ditunjukkan dalam percobaan laboratorium

• Perubahan spesifik dalam gen Ubx telah diidentifikasi yang dapat “menekan" pembentukan kaki

Page 119: Tatap muka 1 The History of Life on Earth 2015.ppt

Hox gene 6 Hox gene 7 Hox gene 8

About 400 mya

Drosophila Artemia

Ubx

Asal-usul bangun tubuh serangga

Page 120: Tatap muka 1 The History of Life on Earth 2015.ppt

Perubahan dalam Regulasi gen

• Perubahan bentuk organisme mungkin disebabkan oleh mutasi-mutasi yang mempengaruhi regulasi, bukan susunan, gen-gen perkembangan

• Misalnya ikan stickleback berduri-tiga yang hidup di danau memiliki duri lebih sedikit dari kerabat mereka yang hidup di laut

• Sekuens gen tetap sama, tetapi regulasi ekspresi gen berbeda dalam dua kelompok ikan

Page 121: Tatap muka 1 The History of Life on Earth 2015.ppt

Uji Hipotesis A:Adakah perbedaan pada sekuens pengkode gen Pitx1 milik stickleback yang hidup di laut dan di danau?

hasil:tidak

Embrio stickleback laut

Tampak-dekat permukaan ventral

Uji Hipotesis B:Adakah perbedaan dalam hal regulasi ekspresi Pitx1?

Pitx1 diekspresikan pada wilayah duri ventral dan wilayah mulut stickleback laut yang sedang berkembang, namun hanya wilayah mulut pada stickleback danau yang sedang berkembang

Tidak. Ke-283 aasam amino protein Pitx1 pada populasi stickeback laut dan danau ternyata identik

Hasilt:Ya

Embrio stickleback danau

Tampak dekat mulut

RESULTS

Apa yang menyebabkan hilangnya duri pada ikan stickleback danau?

Page 122: Tatap muka 1 The History of Life on Earth 2015.ppt

Evolusi bukan berorientasi kepada tujuan• Evolusi bagaikan mengutak-atik proses kemunculan

bentuk-bentuk baru melalui modifikasi kecil dari bentuk-bentuk yang sudah ada.

Page 123: Tatap muka 1 The History of Life on Earth 2015.ppt

Hasil baru evolusi• Ketika spesies baru terbentuk , struktur-struktur yang baru

dan kompleks dapat muncul sebagai modifikasi bertahap dari struktur nenek moyang

• Dalam kingdom hewan, mata kompleks telah berevolusi secara mandiri dari gugusan sederhana sel-sel fotoreseptor yang ada pada nenek moyang bersama.

• Eksaptasi (Exaptations) adalah struktur-struktur yang berevolusi dalam suatu konteks namun menjadi terlibat untuk fungsi lain

• Seleksi alam tidak dapat memperkirakan masa depan, melainkan hanya bisa meningkatkan suatu struktur dalam konteks kegunaan saat ini

Page 124: Tatap muka 1 The History of Life on Earth 2015.ppt

(a) Topok sel-sel berpigmen

Saraf optiklapisan berpigmen (retina)

Sel-sel berpigmen (fotoreseptor)

Rongga berisi caira

Epithelium

Epitelium

(c) Mata tipe kamera lubang-jarum

Optic nerve

Cornea

Retina

Lens

(e) Mata tipe kamera kompleks

(d) Mata dengan lensa primitif

Saraf optik

KorneaMassa selular (lensa)

(b) Mangkuk mata

Sel-sel berpigmen

Serabut saraf Serabut sarf

Page 125: Tatap muka 1 The History of Life on Earth 2015.ppt

TREN EVOLUSI

• Mengambil satu progresi evolusi tunggal dari catatan fosil dapat menyesatkan

• Tren evolusi jelas harus diperiksa dalam konteks yang lebih luas

Page 126: Tatap muka 1 The History of Life on Earth 2015.ppt

Recent(11,500 ya)

NeohipparionPliocene(5.3 mya)

Pleistocene(1.8 mya)

Hipparion

Nannippus

Equus

Pliohippus

Hippidion and other genera

Callippus

Merychippus

Archaeohippus

Megahippus

Hypohippus

Parahippus

Anchitherium

Sinohippus

Miocene(23 mya)

Oligocene(33.9 mya)

Eocene(55.8 mya)

Miohippus

Paleotherium

Propalaeotherium

Pachynolophus

Hyracotherium

Orohippus

Mesohippus

Epihippus

Browsers

Grazers

Key

Evolusi Bercabang dari kuda

Page 127: Tatap muka 1 The History of Life on Earth 2015.ppt

Oligocene(33.9 mya)

Eocene(55.8 mya)

Miohippus

Paleotherium

Propalaeotherium

Pachynolophus

Hyracotherium

Orohippus

Mesohippus

Epihippus

Browsers

Grazers

Key

Page 128: Tatap muka 1 The History of Life on Earth 2015.ppt

Recent(11,500 ya)

NeohipparionPliocene(5.3 mya)

Pleistocene(1.8 mya)

Hipparion

Nannippus

Equus

Pliohippus

Hippidion and other genera

Callippus

Merychippus

Archaeohippus

Megahippus

Hypohippus

Parahippus

Anchitherium

Sinohippus

Miocene(23 mya)

Page 129: Tatap muka 1 The History of Life on Earth 2015.ppt

• seleksi spesies: spesies yang mampu bertahan paling lama dan menghasilkan spesies keturunan baru paling banyak akan menentukan arah tren evolusi utama

• Apapun penyebabnya, suatu tren evolusi tidak berarti bahwa ada suatu dorongan intrinsik menuju fenotip tertentu

• Evolusi adalah akibat dari interaksi antara organisme dan lingkungannya saat ini; jika kondisi-kondisi lingkungan berubah, suatu tren evolusi bisa berhenti atau mungkin berbalik

Page 130: Tatap muka 1 The History of Life on Earth 2015.ppt

Millions of years ago (mya)

1.2 bya:First multicellular eukaryotes

2.1 bya:First eukaryotes (single-celled)

3.5 billion years ago (bya):First prokaryotes (single-celled)

535–525 mya:Cambrian explosion(great increasein diversity ofanimal forms)

500 mya:Colonizationof land byfungi, plantsand animals

Pre

sen

t

500

2,00

0

1,50

0

1,00

0

3,00

0

2,50

0

3,50

0

4,00

0