technology and innovation for production of cellulosic...

44
Technology and Innovation for Production of Cellulosic Biofuels Toru Jojima , Ph.D. & Hideaki Yukawa, Ph.D. Molecular Microbiology and Biotechnology Group Research Institute of Innovative Technology for the Earth (RITE) United Nation Environmental Program Regional Workshop on Waste Agricultural Biomass March 2-5, 2010, Osaka, Japan

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Technology and Innovation for Production of

    Cellulosic Biofuels

    Toru Jojima, Ph.D. & Hideaki Yukawa, Ph.D.

    Molecular Microbiology and Biotechnology Group

    Research Institute of Innovative Technology for the Earth (RITE)

    United Nation Environmental ProgramRegional Workshop on

    Waste Agricultural Biomass

    March 2-5, 2010, Osaka, Japan

  • 2

    Today’s outline

    RITE: Who we are

    Biofuel: current status

    RITE Bioprocess

    - Features

    - Biofuels

    - Biochemicals

  • Research Institute of Innovative

    Technology for the Earth (RITE)

    Established: 1990Established: 1990

    Status: NonStatus: Non--profit organization underprofit organization under

    the Ministry of Economy, Trade and Industrythe Ministry of Economy, Trade and Industry

    Annual budget: JPY 5.1 billion ($ 51 million)Annual budget: JPY 5.1 billion ($ 51 million)

    Mission:Mission:

    Development of environmental technologiesDevelopment of environmental technologies

    against global warming problemsagainst global warming problems

    Main research fields:Main research fields:

    BiorefineryBiorefinery

    COCO22 geological sequestrationgeological sequestration

    KyotoKyoto

  • 4

    Biorefinery group

    Production of biofuels /chemicals from biomass

  • 5

    Research fields

    Biorefinery: Production of energy and chemicals from Biomass

    Research projects

    Chemicals

    Succinic acid

    L-Lactate, D-Lactate

    Propanol (Raw material for propylene)

    Ethanol (Raw material for ethylene)

    Amino acid

    Biofuels

    Ethanol

    Propanol

    Butanol

    Energy

    H2

  • 6

    Biofuels: Current situation

    Sustainability?

    Food-Fuel issue, environmental effect…

    Solution: Cellulosic biofuels

    - Non-food resources

    - Countermeasures against

    global warming problems

    Challenge: Development of a cost-effective

    production process

  • 7Source: EPA Renewable Fuel Standard2

    Cellulosic biofuel in USA

    36 BG

    0

    5

    10

    15

    20

    25

    30

    35

    40

    2008

    2010

    2012

    2014

    2016

    2018

    2020

    2022

    Year

    Billiongallon Advanced fuel:

    unspecified

    Advanced fuel:Cellulose

    Biodiesel

    Corn

  • Growth-Arrested Bioprocess

    (RITE bioprocess)

    A novel and highly efficient bioprocess

    8

  • RITE strain

    Corynebacterium glutamicum

    Under oxygen deprivation

    - Growth-arrested

    - Maintains main

    metabolic capabilities

  • 10

    RITE bioprocess

    Microbial catalystpreparation

    (Aerobic cultivation)

    (Cell collection)Air

    Freezemicrobialcatalyst

    Growth by cell division

    Bioconversion

    Mixed sugars

    Microbialcatalyst

    Growth-arrested cells

    JP-Patent 3869788

    INDIA 209524

  • 11

    Sugars

    Phosphoenolpyruvate

    Pyruvate

    Glyoxylate

    Citrate

    Isocitrate

    Oxoglutarate

    Succinyl-CoAFumarate

    Malate

    Oxaloacetate

    GluGlu

    AcetateAcetate

    AspAsp

    Lys,Lys, ThrThrMetMet

    GlnGln

    LeuLeu, Lys, Lys

    Val,Val, LeuLeu, Ile, IleAcetyl-CoA

    Succinate

    EMP pathway PP pathway

    LL--LDHLDH

    Metabolic pathways of C. glutamicumunder oxygen deprivation (without CO2)

    L-Lactate

    J. Mol. Microbiol. Biotechnol. 7:182-196. 2004.

    Appl. Microbiol. Biotechnol. 68:475-480. 2005.

  • 12

    Sugars

    Phosphoenolpyruvate

    Pyruvate

    Glyoxylate

    Citrate

    Isocitrate

    Oxoglutarate

    Succinyl-CoAFumarate

    Malate

    Oxaloacetate

    GluGlu

    AcetateAcetate

    AspAsp

    Lys,Lys, ThrThrMetMet

    GlnGln

    LeuLeu, Lys, Lys

    Val,Val, LeuLeu, Ile, IleAcetyl-CoA

    Succinate

    EMP pathway PP pathway

    LL--LDHLDH

    Metabolic pathways of C. glutamicumunder oxygen deprivation (with CO2)

    L-LactateHCOHCO33

    --

    PEPCPEPC

    HCOHCO33--

    FUMFUM

    SDHSDH

    MDHMDH

    PCPC

    J. Mol. Microbiol. Biotechnol. 7:182-196. 2004.

    Appl. Microbiol. Biotechnol. 68:475-480. 2005.

  • 13

    growth

    Analysis of metabolic shift under oxygen deprivation

    Aerobic cultivation(Cell propagation)

    Oxygen-deprived condition

    Transcriptome (DNA microarray) analysisMid-exponential-phase cells vs

    Oxygen-deprived cells

    Sampling Sampling

    Mid-exponential phase

    harvest and wash

    Redox potential- 450mV

  • 14

    Gene expression analysis

    ・Entire gene (3080 genes)

    More than 2-fold 161 genesLess than 1/2-fold 221 genes

    The ratios of mRNA levels(oxygen-deprived conditions

    /aerobic cultivation)

    A gene expression profile is different greatly betweenaerobic and oxygen-deprived conditions

  • 15

    Expression analysis of glucose metabolism

    glycolytic system

    anapleroticpathway

    TCA cycle

    oxygen-deprived conditions / aerobic cultivation

    Genes encoding several key enzymesinvolved in the glycolytic and organicacid production pathways weresignificantly up-regulated undergrowth-arrested bioprocess.

    Relative enzyme activities

    oxygen-deprived conditions / aerobic

    GAPDH 5.3

    PGK 10.5

    TPI 19.1

    PEPC 4.5

    LDH 14

    MDH 25.8

    Enzyme

    Microbiology. 153:2491-2504. 2007.

  • Application of “RITE bioprocess”

    For the production of biofuels

    - Ethanol

    - Propanol

    - Butanol

    22

  • 17

    Biofuels: Current situation

    Sustainability?

    Biofuels “pros & cons”

    Cellulosic biofuels:

    - Non-food resources

    - Countermeasures against

    global warming problems

  • 18

    Soft biomass

    C6 & C5 sugars(glucose, xylose, arabinose etc.)

    Ethanol production from soft biomass

    Pre-treatmentEnzymatic

    saccharification

    Microorganism

    Bioethanol

    Saccharifyingenzyme

    Distillation Dehydration

  • 19

    Important traits for industrialization

    Dien BS et al. Appl Microbiol Biotechnol (2003) 63: 258-266

    Ethanol production

    High productivity

    Simultaneous utilization of C6 & C5 sugars

    Tolerance to “fermentation inhibitors”

    High productivity

    Simultaneous utilization of C6 & C5 sugars

    Tolerance to “fermentation inhibitors”

  • 20

    Development of the ethanol producing strain

    EthanolIntroducingIntroducing pdcpdc andand adhadh genegene

    fromfrom Zymomonas mobilisZymomonas mobilis

    Sugars

    Pyruvate

    Acetaldehyde

    Pyruvate decarboxylase

    Alcohol dehydrogenase

    adhBpdc

    J. Mol. Microbiol. Biotechnol. 8: 243-254. 2004.

  • 21

    Important traits for industrialization

    Dien BS et al. Appl Microbiol Biotechnol (2003) 63: 258-266

    Ethanol production

    High productivity

    Simultaneous utilization of C6 & C5 sugars

    Tolerance to “fermentation inhibitors”

  • Cellulose

    Hemicellulose

    OHOH

    OH

    HO

    CH2OH

    O

    OH

    O

    OH

    OH

    HO

    CH2OH

    OH

    OH

    CH2OH

    RITE strain

    Chromosomal integration for xylose metabolic abilityChromosomal integration for xylose metabolic ability

    Adaptive mutant forAdaptive mutant forcellobiose uptake abilitycellobiose uptake ability

    xylAxylAxylA xylBxylB

    promoter

    xylose isomerase xylulokinase

    promoterOHHOH2C

    OH

    OH

    O

    araDaraDaraDaraBaraB

    L-ribulokinase

    〜 〜araAaraA

    L-ribulose-5-P-4-epimeraseL-arabinose isomerase

    Chromosomal integration for arabinose metabolic abilityChromosomal integration for arabinose metabolic ability

    OHHOH2C

    OH OH

    O

    Introducing ability to utilize sugars derived from biomass

    OO

    1) Microbiology 149:1569-80. 2003. 2) Appl. Environ. Microbiol. 72:3418-28. 2006. 3) Appl. Microbiol. Biotechnol. 77:1053-62. 2008.

    Cellobiose (C6-C6)

    Glucose (C6)

    Xylose (C5)

    Arabinose (C5)

    1)

    2)

    3)

    22

  • G6P

    F6P

    F1,6P

    GAP

    PGP

    Pyruvate

    Ribu5P Xlu5PRib5P

    GAP Sed-7-P

    Ery-4-P

    GAP

    F-6-P

    F-6-P

    Glucose

    PEP PYR

    6-PG--lactone 6-PGluconate

    EMP

    pathway

    Xylulose

    xylAxylA

    Xylose

    xylBxylB

    Arabinose

    araAaraA

    araBaraB

    araDaraD

    Ribulose

    Ribulose-5P

    23

    Engineering of xylose and arabinose metabolic pathways

    PTS araEaraEPlasma membranePlasma membrane

    PP pathway

  • 24

    0

    50

    100

    150

    200

    0 2 4 6 8 10 12

    Time (h)

    Su

    ga

    r(m

    M)

    GlucoseXyloseArabinose

    0

    50

    100

    150

    200

    0 2 4 6 8 10 12

    Time (h)

    Su

    ga

    r(m

    M)

    Simultaneous Utilization of Mixed Sugar

    Introduction of a pentose transporter

    Appl. Microbiol. Biotechnol. (2009) 85: 105-115

    GlucoseXyloseArabinose

  • 25

    Important traits for industrialization

    Dien BS et al. Appl Microbiol Biotechnol (2003) 63: 258-266

    Ethanol production

    High productivity

    Simultaneous utilization of C6 & C5 sugars

    Tolerance to “fermentation inhibitors”

  • 26

    What is “fermentation inhibitors”?

    CelluloseHemicelluloseLignin

    Enzymaticsaccharification

    Pre-treatment

    EthanolEthanolEthanol fermentation

    Inhibit ethanolfermentation

    FermentationInhibitors

    CHOO

    O

    OH

  • 27

    Biomass

    Hexose

    Pentose

    Cellulose

    Lignin

    OH

    O

    Acetic acid

    Hemicellulose

    Phenols

    O

    OHOCH3

    Vanillin

    O

    OHOCH3CH3O

    Syringaldehyde

    O

    OH

    4-HB

    4-hydroxybenzaldehyde

    CHOO

    CHOOHOH2C

    Furans

    Furfural

    5-HMF

    5-hydroxymethyl-

    2-furaldehyde

    Major “fermentation inhibitors”

  • 28

    Growth Inhibition

    No inhibition to the ethanol producingmetabolic pathway!

    Inhibition mechanism

    Effect of lignocellulose-derived inhibitors on growth and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl. Environ. Microbiol. 74:754-760. 2007.

    “FermentationInhibitors”

    CHOO

    O

    OH

    Ethanol fermentation

  • 29

    Tolerance to the inhibitors

    4-HB

    Rela

    tive

    eth

    an

    ol

    0

    20

    40

    60

    80

    100

    0 5 10 15 20

    Concentration (mM)

    pro

    du

    cti

    vit

    y(%

    )

    0

    20

    40

    60

    80

    100

    0 20 40 60

    Concentration (mM)

    Rela

    tive

    eth

    an

    ol

    pro

    du

    cti

    vit

    y(%

    )

    Furfural

    RITE Bio-Process Z. mobilis S. cerevisiae

    O

    OH

    CHOO

  • 30

    Biobutanol as “fuel”

    Diesel additive

    High energy density

    Low water solubility

    Expected use as;

    - Fuel for diesel engines

    - Aviation fuel

    - Ethanol – Butanol: Mixed-use complementally

    (Synergistic effects)

  • 31

    Trends in Biobutanol R&D

    Will improve ABE fermentation

    Create novel producing microorganisms

    Prediction of practical application

    Fundamental research (3-5 years)

    +

    Industrialization research (2 years)

  • 32

    Clostridial ABE fermentation pathway

    Mixed sugars

    Acetyl-CoAAcetyl-PAcetate Acetaldehyde

    Acetoacetyl-CoAAcetoacetateAcetone

    Butyryl-CoAButyrate Butyraldehyde

    Ethanol

    ButanolButyryl-P

    2NAD+

    2NADH

    NADH

    NAD+

    NAD+NADHNAD+NADHADPATP

    NADH

    NAD+

    Pyruvate

    2NAD+

    2NADH

    Ferredoxin (reduced)

    Ferredoxin (oxidized)

    H2

    ADPATP NAD+NADH NAD+NADH

    Butanol

    Acetone

    Ethanol

    6

    3

    1

    Production ratio (mol)

  • 33

    Butanol production by recombinant E.coli.

    Mixed sugars

    2 Acetyl-CoA

    Acetoacetyl-CoA

    Butyryl-CoA

    Butyraldehyde

    NADH

    NAD+

    C6H12O6 C4H10O+H2O+2CO2

    H2O

    2CO2

    3-Hydroxybutyryl-CoA

    Crotonyl-CoA

    Thiolase

    3-HB-CoA dehydrogenase

    Crotonase

    Butyryl-CoAdehydrogenase

    Butyraldehyde dehydrogenase

    ButanolButanol dehydrogenase

    Appl. Microbiol. Biotechnol. 77:1305-1316.

    4NAD+

    4NADH

    NADH

    NAD+

    NAD+

    NADH

    NAD+

    NADH

  • Application of “RITE bioprocess”

    for the production of biochemicals

    Examples; L-Lactate

    D-Lactate

    Succinate

    Amino acid (L-Alanine)

  • 35

    Sugars

    Phosphoenolpyruvate

    Pyruvate

    Glyoxylate

    Citrate

    Isocitrate

    Oxoglutarate

    Succinyl-CoAFumarate

    Malate

    Oxaloacetate

    GluGlu

    AcetateAcetate

    AspAsp

    Lys,Lys, ThrThrMetMet

    GlnGln

    Val,Val, LeuLeu, Ile, IleAcetyl-CoA

    Succinate

    EMP pathway PP pathway

    LL--LDHLDH L-Lactate

    Metabolic engineering for L-Lactate production

    PEPCPEPC

    LeuLeu, Lys, Lys

  • 36

    Sugars

    Phosphoenolpyruvate

    Pyruvate

    Glyoxylate

    Citrate

    Isocitrate

    Oxoglutarate

    Succinyl-CoAFumarate

    Malate

    Oxaloacetate

    GluGlu

    AcetateAcetate

    AspAsp

    Lys,Lys, ThrThrMetMet

    Val,Val, LeuLeu, Ile, IleAcetyl-CoA

    Succinate

    LDHLDHL-LactateD-Lactic acid

    D-Lactate dehydrogenase

    (Lactobacillus delbrueckii )

    Metabolic engineering for D-Lactate production

    EMP pathway PP pathway

    Appl Microbiol Biotechnol (2008) 78:449-454

  • 37

    Comparison of D-lactate production

    Macromolecul Biosci.

    4: 1021-1027. (2004)1.363Lactobacillus delbrueckii

    Appl Environ Microbiol.

    65: 1384-1389. (1999)2.162E.coli RR1

    Appl Environ Microbiol.

    69: 399-407. (2003)0.549E. coli W3110 SZ63

    JP 2005-102625 (2005)1.365E. coli MT-10934/pGlyldhA

    J Biosci Bioeng.101: 172-177. (2006)

    1.462Saccharomyces cerevisiae OC2

    Biotechnol lett.

    28: 663-670. (2006)2.192E. coli SZ194

    Appl Microbiol Biotechnol.

    78: 449–454. (2008)40.0110RITE bioprocess

    ReferenceProductivity

    (g/l/h)

    Titer

    (g/l)Microorganism

    37

  • 38

    HCOHCO33--

    HCOHCO33--

    Sugars

    Phosphoenolpyruvate

    Pyruvate

    Glyoxylate

    Citrate

    Isocitrate

    Oxoglutarate

    Succinyl-CoAFumarate

    Malate

    Oxaloacetate

    GluGlu

    AcetateAcetate

    AspAsp

    Lys,Lys, ThrThrMetMet

    GlnGln

    Val,Val, LeuLeu, Ile, IleAcetyl-CoA

    EMP pathway PP pathway

    PEPCPEPC

    PCPC

    Metabolic engineering for succinic acid production

    LDHLDHLactate

    Succinate

  • 39

    Comparison of succinate production

    United States Patent5143834 (1992)

    2.150A. Succiniciproducens

    Biotechnol Bioeng.99:129-135. (2008)

    10.484A. Succiniciproducens

    United States Patent5573931 (1996)

    1.4106A. succinogens FZ53

    Appl Environ Microbiol.73:7837-7843. (2007)

    0.728E. coli NZN111

    J Ind Microbiol Biotechnol.28:325-332. (2002)

    1.399E. coli AFP111/pTrc99A-pyc

    Appl Microbiol Biotechnol.

    81:459-464. (2008)3.2146RITE bioprocess (case 1)

    Appl Microbiol Biotechnol.

    81:459-464. (2008)11.883RITE bioprocess (case 2)

    ReferenceProductivity

    (g/l/h)

    Titer

    (g/l)Microorganism

    39

  • 40

    Amino acids

    Amino acids production by RITE bioprocess

    RITE bioprocess

    L-Alanine: First trial of amino acidproduction by RITE bioprocess

    No growth

    No aerationNo energy loss for growthHigh productivity

    Simple system

    Metabolic engineeringof C. glutamicum R

  • 41

    Glucose

    PEP

    Pyruvate

    TCA cycle

    NAD+

    NADH

    Gly3P

    NADH

    D-Alanine

    PEPC

    OAA

    NAD+

    AlanineracemaseLDH

    Succinate

    Lactate

    COCO22

    L-Alanine

    Alaninedehydrogenase

    Metabolic engineering for L-Alanine production

    NADH NAD+

    NH4+

    Introducion of Alanine dehydrogenase(Bacillus sphaericus)→ammonia as an amino donor

    Disruption of byproducts-formingpathways (ldhA、ppc、alr)

  • 42

    Summary

    We have developed a novel process “RITE bioprocess”where we can utilize C. glutamicum cells like a catalyst.

    RITE bioprocess shows high productivity in bioethanol andbiochemicals production.

    Genetically-engineered C. glutamicum consumes mixedsugar simultaneously.

    RITE-bioprocess is tolerant to fermentation inhibitors.

    We continue to improve productivity of butanol.

  • Physiology of corynebacteria

    - DNA seq. 11:383-394. 2000.

    - Biochem. Biophys. Res. Commun. 289:1307-1313. 2001.

    - J. Biosci. Bioeng. 92:502-517. 2001.(Review)

    - Mol. Gen. Genomics. 271:729-741. 2004.

    - J. Mol. Microbiol. Biotechnol. 8:91-103. 2004.

    - Microbiology 153:1042-1058. 2007.

    - Appl. Microbiol. Biotechnol. 75:889-897. 2007.

    - Microbiology 153:2190-2202. 2007.

    - Appl. Microbiol. Biotechnol. 76:1347-1356. 2007.

    - Microbiology 154:264-274. 2008.

    - Mol. Microbiol. 67:597-608. 2008.

    - J. Mol. Microbiol. Biotechnol. 15:264-276. 2008.

    - Appl. Microbiol. Biotechnol. 78:309-318. 2008.

    - J. Bacteriol. 190:3264-3273. 2008.

    - Appl. Environ. Microbiol. 74:5290-5296. 2008.

    - Microbiology 154:3073-3083. 2008.

    - Appl. Microbiol. Biotechnol. 81:291-301. 2008.

    - J. Bacteriol. 191:968-977. 2009.

    - Microbiology 155:741-750. 2009.

    - Appl. Microbiol. Biotechnol. 83:315-357. 2009.

    - J. Bacteriol. 191:2964-2972. 2009.

    - Appl. Environ. Microbiol. 75:3419-3429. 2009.

    - Appl. Environ. Microbiol. 75:3461-3468. 2009.

    - J. Bacteriol. 191:4251-4258. 2009.

    - J. Biol. Chem. 284:16736-16742. 2009.

    - Microbiology 155:3652-3660. 2009.

    Host vector system

    - Agric. Biol. Chem. 54:443-447. 1990.

    - J. Industrial. Microbiol. 5:159-165. 1990.

    - Appl. Environ. Microbiol. 57:759-764. 1991.

    - Res. Microbiol. 144:181-185. 1993.

    - Biosci. Biotech. Biochem. 57:2036-2038. 1993.

    - Appl. Microbiol. Biotechnol. 81:1107-1115. 2009.

    Gene transformation methods

    - Mol. Microbiol. 11:739-746. 1994.

    - Mol. Gen. Genet. 245:397-405. 1994.

    - Biotech. Lett. 17:1143-1148. 1995.

    Gene expression system

    - FEMS Microbiol. Lett. 131:121-126. 1995.

    - Appl. Microbiol. Biotechnol. 82:491-500. 2009.

    RITE bioprocess

    - Microbiology 149:1569-1580. 2003.

    - J. Mol. Microbiol. Biotechnol. 7:182-196. 2004.

    - J. Mol. Microbiol. Biotechnol. 8:243-254. 2004.

    - Appl. Microbiol. Biotechnol. 68:475-480. 2005.

    - Appl. Environ. Microbiol. 72:3418-3428. 2006.

    - Appl. Environ. Microbiol. 73:2349-2353. 2007.

    - Microbiology 153:2491-2504. 2007.

    - Appl. Microbiol. Biotechnol. 77:853-860. 2007.

    - Appl. Microbiol. Biotechnol. 77:1053-1062. 2008.

    - Appl. Microbiol. Biotechnol. 78:449-454. 2008.

    - Appl. Environ. Microbiol. 74:5146-5152. 2008.

    - Appl. Microbiol. Biotechnol. 81:459-464. 2008.

    - Appl. Microbiol. Biotechnol. 81:505-513. 2008.

    - Appl. Microbiol. Biotechnol. 81:691-699. 2008.

    - Appl. Microbiol. Biotechnol. 85: 105-115. 2009

    - Appl. Microbiol. Biotechnol. 85:471-480. 2010.(Mini-Review)

    Chromosome engineering methods

    - Appl. Environ. Microbiol. 71:407-416. 2005.

    - Microbiology 151:501-508. 2005.

    - Appl. Microbiol. Biotechnol. 67:225-233. 2005.

    - Appl. Environ. Microbiol. 71:3369-3372. 2005.

    - J. Mol. Microbiol. Biotechnol. 8:243-254 2005.

    - Appl. Environ. Microbiol. 71:7633-7642. 2005.(Review)

    - Appl. Environ. Microbiol. 71:8472-8480. 2005.

    - Appl. Microbiol. Biotechnol. 69:151-161. 2005.

    - Appl. Environ. Microbiol. 72:3750-3755. 2006.

    - Appl. Microbiol. Biotechnol. 74:1333-1341. 2007.

    - Biosci. Biotechnol. Biochem. 71:1683-1690. 2007.

    - Appl. Microbiol. Biotechnol. 77:871-878. 2007.

    - Appl. Microbiol. Biotechnol. 79:519-526. 2008.(Mini-Review)

    C. glutamicum R

    The cover of AEM

    The cover of MM

  • 44

    Thank you for your attention

    Contact information:[email protected]