tetsuya miki the university of electro-communications, tokyo [email protected] optical network...

59
Tetsuya Miki The University of Electro-Communications, Tokyo [email protected] Optical Network Research and Next Generation Highspeed Networks CERNET2007

Post on 19-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Tetsuya MikiThe University of Electro-Communications Tokyo

mikiiceuecacjp

Optical Network Researchand

Next Generation Highspeed Networks

CERNET2007

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN (Next Generation Networks)

Optical Network Research forNext Generation

Telecommunication Services in Japan

87 90 95 2000 05 100

20M

40M

60M

(613M)

80M

ISDN(68M)

POTS(474M)

Broadband Internet272M (20076)

Mobile Internet

Telephone(POTS + ISDN)

100M

(542M)

MobilePHS1031M (20076)

Internet

Source 2007 ICT White Paper Ministry of Internal Affairs and Communications

(856M)

Broadband Access Progress in Japan

ADSL 138M

CATV 37M

2000 2002 2004 2006 2008 2010

FTTH 97M

0

10

5

15

20

30

25

35

40

FTTH30M (2010)

15k(Jan2000)

Su

bsc

rib

er (

Mil

lio

n)

ブロードバンドアクセス合計2237百万 (200512 )

Broadband Subscriber272M (June 2007)

16k(Jan2001) 12k

(Jan2002)

Source Ministry of Internal Affairs and Communications ( 200767 )

November 2002

May 2007

Progress in Router LAN and Access

Year1990 1995 2000 2005 2010 2015

Th

rou

gh

pu

t T

ran

smis

sio

n S

pee

d

(b

ps

) 10P

1P

100T

10T

1T

100G

10G

1G

100M

10M

1M

CISCO12000

M160

CISCO7500

FDDI

10M-Ethernet

100M-Ethernet

1G-Ethernet

10G-Ethernet

Router

LAN

CISCO8600

CISCO CRS-1

M640+TXS

ISDN

Access

CATVADSL

FTTH10M

FTTH100M

HSDPA-36MIMT-2000

Wireless

Wired

HSDPA-144M

40G100G-Ethernet

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 2: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN (Next Generation Networks)

Optical Network Research forNext Generation

Telecommunication Services in Japan

87 90 95 2000 05 100

20M

40M

60M

(613M)

80M

ISDN(68M)

POTS(474M)

Broadband Internet272M (20076)

Mobile Internet

Telephone(POTS + ISDN)

100M

(542M)

MobilePHS1031M (20076)

Internet

Source 2007 ICT White Paper Ministry of Internal Affairs and Communications

(856M)

Broadband Access Progress in Japan

ADSL 138M

CATV 37M

2000 2002 2004 2006 2008 2010

FTTH 97M

0

10

5

15

20

30

25

35

40

FTTH30M (2010)

15k(Jan2000)

Su

bsc

rib

er (

Mil

lio

n)

ブロードバンドアクセス合計2237百万 (200512 )

Broadband Subscriber272M (June 2007)

16k(Jan2001) 12k

(Jan2002)

Source Ministry of Internal Affairs and Communications ( 200767 )

November 2002

May 2007

Progress in Router LAN and Access

Year1990 1995 2000 2005 2010 2015

Th

rou

gh

pu

t T

ran

smis

sio

n S

pee

d

(b

ps

) 10P

1P

100T

10T

1T

100G

10G

1G

100M

10M

1M

CISCO12000

M160

CISCO7500

FDDI

10M-Ethernet

100M-Ethernet

1G-Ethernet

10G-Ethernet

Router

LAN

CISCO8600

CISCO CRS-1

M640+TXS

ISDN

Access

CATVADSL

FTTH10M

FTTH100M

HSDPA-36MIMT-2000

Wireless

Wired

HSDPA-144M

40G100G-Ethernet

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 3: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Telecommunication Services in Japan

87 90 95 2000 05 100

20M

40M

60M

(613M)

80M

ISDN(68M)

POTS(474M)

Broadband Internet272M (20076)

Mobile Internet

Telephone(POTS + ISDN)

100M

(542M)

MobilePHS1031M (20076)

Internet

Source 2007 ICT White Paper Ministry of Internal Affairs and Communications

(856M)

Broadband Access Progress in Japan

ADSL 138M

CATV 37M

2000 2002 2004 2006 2008 2010

FTTH 97M

0

10

5

15

20

30

25

35

40

FTTH30M (2010)

15k(Jan2000)

Su

bsc

rib

er (

Mil

lio

n)

ブロードバンドアクセス合計2237百万 (200512 )

Broadband Subscriber272M (June 2007)

16k(Jan2001) 12k

(Jan2002)

Source Ministry of Internal Affairs and Communications ( 200767 )

November 2002

May 2007

Progress in Router LAN and Access

Year1990 1995 2000 2005 2010 2015

Th

rou

gh

pu

t T

ran

smis

sio

n S

pee

d

(b

ps

) 10P

1P

100T

10T

1T

100G

10G

1G

100M

10M

1M

CISCO12000

M160

CISCO7500

FDDI

10M-Ethernet

100M-Ethernet

1G-Ethernet

10G-Ethernet

Router

LAN

CISCO8600

CISCO CRS-1

M640+TXS

ISDN

Access

CATVADSL

FTTH10M

FTTH100M

HSDPA-36MIMT-2000

Wireless

Wired

HSDPA-144M

40G100G-Ethernet

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 4: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Broadband Access Progress in Japan

ADSL 138M

CATV 37M

2000 2002 2004 2006 2008 2010

FTTH 97M

0

10

5

15

20

30

25

35

40

FTTH30M (2010)

15k(Jan2000)

Su

bsc

rib

er (

Mil

lio

n)

ブロードバンドアクセス合計2237百万 (200512 )

Broadband Subscriber272M (June 2007)

16k(Jan2001) 12k

(Jan2002)

Source Ministry of Internal Affairs and Communications ( 200767 )

November 2002

May 2007

Progress in Router LAN and Access

Year1990 1995 2000 2005 2010 2015

Th

rou

gh

pu

t T

ran

smis

sio

n S

pee

d

(b

ps

) 10P

1P

100T

10T

1T

100G

10G

1G

100M

10M

1M

CISCO12000

M160

CISCO7500

FDDI

10M-Ethernet

100M-Ethernet

1G-Ethernet

10G-Ethernet

Router

LAN

CISCO8600

CISCO CRS-1

M640+TXS

ISDN

Access

CATVADSL

FTTH10M

FTTH100M

HSDPA-36MIMT-2000

Wireless

Wired

HSDPA-144M

40G100G-Ethernet

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 5: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

November 2002

May 2007

Progress in Router LAN and Access

Year1990 1995 2000 2005 2010 2015

Th

rou

gh

pu

t T

ran

smis

sio

n S

pee

d

(b

ps

) 10P

1P

100T

10T

1T

100G

10G

1G

100M

10M

1M

CISCO12000

M160

CISCO7500

FDDI

10M-Ethernet

100M-Ethernet

1G-Ethernet

10G-Ethernet

Router

LAN

CISCO8600

CISCO CRS-1

M640+TXS

ISDN

Access

CATVADSL

FTTH10M

FTTH100M

HSDPA-36MIMT-2000

Wireless

Wired

HSDPA-144M

40G100G-Ethernet

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 6: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

May 2007

Progress in Router LAN and Access

Year1990 1995 2000 2005 2010 2015

Th

rou

gh

pu

t T

ran

smis

sio

n S

pee

d

(b

ps

) 10P

1P

100T

10T

1T

100G

10G

1G

100M

10M

1M

CISCO12000

M160

CISCO7500

FDDI

10M-Ethernet

100M-Ethernet

1G-Ethernet

10G-Ethernet

Router

LAN

CISCO8600

CISCO CRS-1

M640+TXS

ISDN

Access

CATVADSL

FTTH10M

FTTH100M

HSDPA-36MIMT-2000

Wireless

Wired

HSDPA-144M

40G100G-Ethernet

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 7: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Progress in Router LAN and Access

Year1990 1995 2000 2005 2010 2015

Th

rou

gh

pu

t T

ran

smis

sio

n S

pee

d

(b

ps

) 10P

1P

100T

10T

1T

100G

10G

1G

100M

10M

1M

CISCO12000

M160

CISCO7500

FDDI

10M-Ethernet

100M-Ethernet

1G-Ethernet

10G-Ethernet

Router

LAN

CISCO8600

CISCO CRS-1

M640+TXS

ISDN

Access

CATVADSL

FTTH10M

FTTH100M

HSDPA-36MIMT-2000

Wireless

Wired

HSDPA-144M

40G100G-Ethernet

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 8: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Requirement on Transfer Data Sizeand DelayResponse Time

1k 10k 100k 1M 10M 100M 1G 10G 100G

100

10

1

100m

10m

De

lay

R

esp

on

se

Tim

e (S

ec)

Data Size (Byte)

10K

bps

100K

bps

1Mbp

s

10M

bps

100M

bps

1Gbp

s

Telephone   Tele-Education

Tele-Conference(High Quality)

Game

Information Retrieval

Tele-Work

10G

bps

100G

bps

1Tbp

s

Data TransferData Backup etc

1995 2000 2005   2010   2015

Tele-Conference

TVBroadcast

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 9: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Internet Traffic Growth in Japan

Source Ministry of Internal Affairs and Communications ( 2007822 )

(Total Traffic for Major 7 ISP)

Use

rs T

raff

ic (

Gb

ps)

May2005

May2004

May2006

50

100

150

200

0

250

Dial-upLeased Line Access

CATVADSLFTTH Access

300

Up

Down

May2007

May2003

May2002

May2001

+ 150-200per year

+ 65 per year

+ 40 per year

Down

Up

350

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 10: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Prediction of Traffic Growth

Year

100K

10K

1K

100

10

1

011995 2000 2005 2010

DataInternet(40 growth per year)

Relative value compared to as of 1995 1000 times

in next 20 years

2015

Re

lati

ve

Tra

ffic

Vo

lum

e

2020 2025

10 timesduring

1995-2005

Telephone (5 growth per year)

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 11: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 12: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

2000 2005 2010 2015 2020

Digital Broadcasting

Mobile Phone

FixedTelephone

Mobile Internet

Internet BroadbandInternet

BIC(Broadcasting Internet Convergence)

FMC (Fixed-Mobile Convergence)

TIC (Telephone Internet Convergence)

NGN

Convergence of Network Services

Mobile Phone

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 13: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Quality No guaranteed QoS (Quality of Service)

Security Network intrusion Virus DoS etc Lack of risk management Terrorism Disaster

Service Management Lack of SLA (Service Level Agreement)

Reliability

User Support

Problems of Conventional Internet

Lack of Dependability

NGN High Performance IP Networks with Guaranteed Quality Security and Reliability

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 14: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

2005 - Trial in Cambridge and Woolwich

Dec 2006 - Start Commercial Service - in Cardiff - VoIP Broadband 24Mbps etc - 350000 sub (June 2007)

2009 50 Penetration

2011 100 Penetration

Dec 2006 - Trial in Tokyo and Osaka

March 2008 - Start Commercial Service - in Tokyo Osaka and Nagoya - VoIP Broadband 100Mbps Multicast etc Around 2010 100 Penetration

NGN Deployment in UK and Japan

21CN British Telecom NGN NTT

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 15: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Macro Model for Next Generation Network

Backbone Network

ApplicationService

Mobile Access

Access Network

Fixed Access

Fixed Access(Large LAN)

Edge Node

Fixed Wire AP

Mobile Wireless AP

Core Node

L1 ~ L3   Functions

Mobile Gateway Media Gateway

LAN Gateway

L4 ~  Functions

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 16: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Ma

na

ge

men

t F

un

cti

on

En

d U

se

rF

un

cti

on

Service UserProfile

Transport UserProfile

Network AttachmentControl Functions

Resourceand

AdmissionControl

Functions

Transport Control Functions

Transport Functions

Service Control Functions

Transport Stratum

Service Stratum

Oth

er

Ne

two

rks

Application Support Functions and Service Support Functions

Application

API

NNIUNI

Source ldquoFunctional requirements and architecture of the NGNrdquo ITU-T Y2012

ITU-T NGN ArchitectureAPI Application InterfaceUNI User-Network InterfaceNNI Network-Network Interface

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 17: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Optical Network Systems

1980 1990 2000 2010 2020 2030

Optical Network

SDH

FTTH

WDM SystemFiber Wireless

ASON

ROADM

OBS

OPS

Digital Network

FDDI

40G100G Ethernet

WDM PON

100BASE-T(MediaConv)

1000BASE-X

10GBASE-XRW

PDHATM

LAN

OPS Optical Packet SwitchOBS Optical Burst SwitchASON Automatic Switched Optical NetworkROADM Reconfigurable Optical Add Drop Multiplexer

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 18: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Source httpwwwieee802org3hssgpublicmar07vandoorn_01_0307pdf

Progress in Server IO Speed

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 19: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

10BASE5(19836)

10BASE-T(19909)

100BASE-T(19956)

1000BASE-X(19986)

1000BASE-T(19996)

IEEE802 Standardization for Ethernet

10GBASE XRW(20026)

10GBASE-TLRM(20069)

100GBASE(20105)

40GBASE(20105)

10GE-PONP8023av(20093)

GE-PON(20054)

1980 1985 1990 1995 2000 2005 2010 2015

100G

10G

1G

100M

10M

TransmissionSpeed (bps)

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 20: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

40G100G Ethernet (Objectives)Support full-duplex operation onlyPreserve the 8023Ethernet frame format utilizing the 8023 MACPreserve minimum and maximum Frame Size of current 8023 standardSupport a BER better than or equal to 10 at the MACPLS serviceInterfaceProvide appropriate support for OTN (Optical Transport Network)

Support a MAC data rate of 40 GbpsProvide Physical Layer specifications supporting 40 Gbs operation over 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly 1048713 at least 1m over a backplane

Support a MAC data rate of 100 GbpsProvide Physical Layer specifications supporting 100 Gbs operation over 1048713 at least 40km on SMF 1048713 at least 10km on SMF 1048713 at least 100m on OM3 MMF 1048713 at least 10m over a copper cable assembly

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 21: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Physical Layer of 40G100G Ethernet

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 22: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Source httpwwwieee802org3hssgpublicjan07nishimura_01_0107pdf

Example of 100G Ethernet Interface(Proposal by HITACHIOpnext)

for future

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 23: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Speed Progress Electronics vs Photonics T

ran

smis

sio

n S

pee

d (

bp

s)

100G

1G

10G

100M

1970 1980 1990 2000       2010

400M 16G

10G

40G

25G

400M

Electronics

Photonics

100M

80G-100G

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 24: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Estimation of Transmission Speed and Capacity

Wavelength 4 32-40 128 ~500 gt1000 _

Speedper CH 25G 25-10G 10-40G 10-100G 10-100Gbps

Channelspacing 200G 100G 50-100G 25-50G 625-25GHz

Efficiency 001 01 02-04 04-16 16-4 bitHz

1995 20252005 2015

1P

100T

10T

1T

100G

10G

1G

Capacity per Fiber

Capacity per Cable

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 25: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

APCN2-256Tbps(2001) Japan-Korea-China-HongKong-Taiwan- Malaysia -Singapore- PhilippinesC2C-768Tbps(2001)Japan-Korea-China-Taiwan-HongKong-Philippines-SingaporeFNALRNAL-384Tbps(2001) Japan-Korea-Taiwan-HongKongEAC-256Tbps(2001) Japan-Korea-China-Taiwan-HongKong-SingaporeKJCN- 288Tbps(2002) Korea-Japan

Submarine Cable connecting East Asia

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 26: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Outline

Progress of Broadband Networks

Broadband and Highspeed for NGN

Optical Network Research forNext Generation

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 27: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Transmission Capacity per Fiber 25Gbps x m (m=32 ndash 128) = 80Gbps ndash 320 Gbps 10Gbps x m (m=32 ndash 128) = 320Gbps ndash 128Tbps 40Gbps x m (m=16 ndash 64) = 640Gbps ndash 256Tbps

WDM Wavelength Division Multiplexing

Impact of Optical WDM Transmission

ReceiverReceiver25G ndash 10Gbps ch

TransmitterTransmitter25G ndash 10Gbps ch

PDMOD

MOD

MOD

MOD

LD

LD

LD

LD

Optical Multiplexer REG

REG

REG

REG

PD

PD

OpticalAmplifier

OpticalAmplifier

OpticalDe-multiplexer

PD

m

LD Laser Diode Mod Modulator PD Photo-Diode REG Regenerator

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 28: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Anchor Frequency

OpticalFreq

Wavelength

Frequency

AllowanceFrequency

ITU-T G6941

Optical Band Plan for WDM Systems

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 29: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Source FujitsuOFC2000 PD28-1

1530 1540 1560 1580 1600

Wavelength [nm]1550 1570 1590

Re

lati

ve

Op

tic

al P

ow

er

[5 d

Bd

iv]

C-band (153582-156101 nm)

01-nm (分解能)

L-band (157330-159975 nm)

01-nm (分解能)Noise Level

128 Tbits (128 times1066 Gbits) DWDM

~2519 nm ~2645 nm

(L840km SMFs)

Noise Level

Typical WDM Transmission System128Tbps (10Gbps x 128 Channels)

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 30: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Progress ofOptical Fiber Transmission Technology

1975 1980 1985 1990 1995 2000 2005 2010 20151M

10M

100M

1G

10G

100G

1T

10T

100T

1P

Bit

Ra

te (

bs

)

5 bitHz x 20 THz

1 bitHz x 20 THz

Limit of Electronics

132

128

10

3

2x 63M

2 x 150M

16 x 25G

F-16GF-400M

F-100MF-32M

F-25G

48 x 2510G

F-10G

10T(273x 40G)

WDM Commercial Systems

RampD for WDM Systems

Non WDM Commercial Systems

14T(140x 111G)

12T(128 x10G)

10T(1000 x 10G)

4 x 25G

256T(160x 170G)

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 31: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

256 Tbps DQPSK-WDM Transmission

Capacity 160λ x 1708 Gbps = 256 TbpsBandwidth 4 + 4 THz ( 1525-1560nm 1565-1600 nm )Efficiency 32 bitsHz

WDM DQPSK

PDMRZ

854G

80-ch

80-ch

854G 427G

427G

240km

Source Alcatel-Lucent PD OFC2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 32: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Experiment of 1000 Wavelength WDM Transmission

Source NEC 2006

15499 ~15531nm

32-ch125GHz spacing

  1000-ch 1525 ~ 1610nm

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 33: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Optimization of Wavelength Channel                     

   

S-Band 1460 to 1530 nmC-Band 1530 to 1565 nmL-Band 1565 to 1625 nm

1625 - 1460 = 165 nm 21 THz

Higher SpeedSmaller Channel λ

λ840CH (25GHzCH) x 10Gbps = 84Tbps

210CH (100GHzCH) x 40Gbps = 84Tbps

Lower SpeedLarger Channel

+)

Long Distance Application

O-Band 1260 nm 2381 THzU-Band 1671 nm 1791 THz

1671 - 1460 = 411 nm 59 THz-)

Short Distance Application

Transmission Efficiency=04bitHz

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 34: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Optimum Channel Speed and Output Power for WDM Transmission

Optimum Speed and Optimum Output Power may Exist

Transmission Speed Channel Average Output Power Channel

OSNR SNRSPMXPMFWM

FWM

SPM XPM

OSNR SNR

Dispersion

Tra

ns

mis

sio

n Q

ua

lity

Tra

ns

mis

sio

n Q

ua

lity

OptimumOptimum

FWM Four Wave MixingOSNR Optical Signal to Noise Ratio

SPM Self Phase ModulationXPM Cross Phase Modulation

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 35: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Q=1

2

34

56

25

Max Q=64

NRZ System

10

RZ-DPSK System

Q=1

2

34

5678910

Max Q=106

25

Transmission Efficiency=02bitHz Amplifier Spacing=60kmTransmission Distance=1020km (D(40km)=-2psnmkm D(20km)=4psnmkm)

Main Parameter for Simulation

Simulation of WDM Transmission Quality               

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 36: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Challenge for Highspeed Transmission

High Speed per Channel

25Gbps   10Gbps 40Gbps 80100160 Gbps

TDFA Thulium Doped Fiber Amplifier FEC Forward Error Correction

Efficient CodingModulationBinary FEC    Higher Modulation Efficiency SSB QPSK

Wide Wavelength BandC-band +L-band +S-band

TDFA Raman Amplifier

Channel Spacing (Large Number of Channels)

100GHz   50GHz   25125 GHz Polarization Multiplexing

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 37: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

λ1 λ2 λ3 λn

i j

Metro-Ring Networks with ROADM

ROADM

ROADM Reconfigurable Optical Add Drop Multiplexer

Operator

OSS

OSS Operation Support System

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 38: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Block Diagram of ROADM

Tran

spo

nd

er

WDMFilter

WDMFilter

Access Networks

Optical SW

Optical SW Control OSS

Optical Amplifier

Optical AmplifierOptical SW

Tran

spo

nd

er

Tran

spo

nd

er

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 39: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Optical Transport Networks by ASON

OXC(Optical) λ1 λ2 λ3 λn

Router(Electronic)

Routing Control Plane

Wavelength Path Control Plane

ASON

ASON Automatic Switched Optical NetworkOXC Optical Cross Connect

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 40: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Optical Transport Network for NGN

Multi-layer Control by GMPLS

OXC

Optical Router

Control Plane

Transport Plane

λ1 λ2 λ3 λn

Router(Electronic)

GMPLS Generalized Multi Protocol Label Switch

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 41: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Characteristics of Real Packet Traffic

WAN Traffic between DEC and the rest of the world

( Average = 24 Mbs σ= 056 Mbs )

Time (sec)Time (sec)

Pa

cke

t si

ze (

Byt

es)

Pa

cke

t si

ze (

Byt

es)

0 200 400 600 800 1000

100000

200000

300000

400000

500000

600000

700000lt Probability gt

Normal Distribution(Gaussian Function)

Heavy Tail

Heavy Tail Long Range Dependency

lt Packet Traffic in Real Network gt

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 42: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

10nS 1μS     10mS 1S 1min 1H

1M

10M

100M

1G

10G

100G

100k

ROADM

Optical Networks with Optical RouterBandwidthGranularity (bps)

Switch Response Time

Variable Bandwidth Path OPS

OXC Optical Cross ConnectOBS Optical Burst SwitchOPS Optical Packet Switch

Fast SwitchedWavelength Path

OXCOBS

OBS

ROADM Reconfigurable Optical Add Drop Multiplexer

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 43: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Optical Burst Switching (OBS) Networks

Ultra Fast OADM Switching Burst Size 100nS ~ severalμS

Very Fast OXC Switching Burst Size 100mS ~several S

Dynamic Bandwidth Path

WDM Networks

Large Scale Data Transfer (File Distribution etc)

General IP Traffic Routing (ISPASPIDCetc)

OXC

Router

UEC Proposal

Router

Router

Router

Fast Switched Burst Circuit

OADM with OBS

OXC with OBS

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 44: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Regional Network Node

Edge Node

i-Regional Network

Long HaulNetwork

aa

bb

ccdd

ee

ff

gghh

AA

BB

CCDD

EE

FF

GG

HH

光光 TDTD 処理処理 光光 TDTD 処理処理

Wavelength Path NetworkWavelength Path Network(OXC)(OXC)

j-Regional Network

k-Regional Network

λij  

λik  

OBS-ADMOBS-ADM OBS-ADM)OBS-ADM)

OBS Network Research in UEC

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 45: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Optical Burst Priority Control

10 11 12 13 14 15 16

Low Priority

High Priority

10

10

10

10

10

10

10

-1

-2

-3

-4

-5

-6

-7

1

γ = Available Max BandwidthAverage Input Bandwidth

λi j  

Regional Node Edge Node

aa

bb

ccddee

ff

gg

光光 TDTD 処理処理

A1 A2

Over Head

n                 n+k             n+m-1

1 slot = 24B

Low-Priority (m-k)-slot

17280BFrame SYNC ( 2x192B )123456789

Optical Burst

High-Priority k-slot

SDH-Frame( 125μm)

① Frame

RegionalNetwork-i

④ Slot Indication

② Request

⑤ Burst Data

③ Slot Assignment

Optical Frame

m-slotP

acke

t L

oss

Ra

te (

PL

R)

RegionalNetwork-j

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 46: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

High Priority

Low Priority QoS Control

Without QoS Control

0 500 1000 1500 2000 Assigned Total Slot Number

400 300 200 100

0 Ass

Thr

ough

put

(Mbp

s)

Static Performance of Priority Control

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 47: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Field Experiment of Dynamic Bandwidth Path Network

OTDM

ODEMUX

(OKI) (NEC)

160GbpsOTDMMUX

(OKI) (NEC)

(OU)( UEC)( NEC)( OKI)

DCF

(UEC)

GbEルータ

制 御系PC

制御 PC

10Gbps

10Gbps

   OFA

OE

EOGbEルータ

制 御系PC

制御 PC

OBSNode

(UEC)

GbEルータ

制 御系PC

制御 PC

(UEC)

10Gbps

10Gbps

HDTVPC端末

PC端末

160Gbps

Node-A

Edge Node-B

PC端末

JGN-II Fiber Test-bed

ltSourcegt

ltReceiversgt

EDFA

3R

160GbpsOTDM

DEMUX

DCF

Edge Node-C

OBSNode

OBSNode

HDTV

650km

Dec 9 ~ Dec16 2005 at NICT Keihanna Laboratory

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 48: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Node A

Edge Node B

Optical Switch

Setup for Field ExperimentltNode A and Edge Node Bgt

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 49: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Edge Node C

Controler (PC)

Setup for Field ExperimentltEdge Node Cgt

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 50: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

FPGA

10GbpsOpticalTrans-ponder

Header Processing

and Contrl( PC )

S-P

Co

nve

rter Optical

BurstTransmitterGbE

Router

SW Driver

OpticalReceive

rOpticalBranch

OpticalSwitchDetecting

Header

Ph

ase

Ad

jus

t

D

Block Diagram for Experimental Setup

OBS Add-Drop Multiplexer Node

OpticalBranch

10Gbps10Gbps

10Gbps10Gbps

1Gbps Ethernet

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 51: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Inserted Burst

1 Frame Period(125m)

Eye Pattern of 10Gbps Transmission Burst Switching

25 psdiv

Waveforms in Experimental Setup

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 52: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Broadband Wireless Access

HSDPA High Speed Digital Packet AccessFWA Fixed Wireless Access UWB Ultra Wide Band

Transmission Speed (Mbits)

Mo

bili

ty

100K 1M     10M 100M 1G 10G

W-CDMA

FWAW-LAN

( 3G)PHS

GMSPDC(2G)

Beyond 3G

MobileWi-Fi

HSDPASuper

3G

2000 2005

UWB

2015 ~ 20202010

MobileWi-MAX

5G4G

cdma2000

Stationary

Vehicular

Pedestrian

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 53: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Base Station

Radio over Fiber for Wireless Base Station

Optical Fiber

Base Station

Base Station

Cell sizesmaller to smaller

Huge numberof BSs

Cost Reduction Low cost BS Maintenance free

RadiooverFiber

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 54: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Fiber and Wireless ConvergenceFTTA Fiber To The Antenna

ONU ブロードバンドNGN

OLT

100M~1Gbps

BS

FTTA

FTTA

移動通信

TVFMONU

FTTH 移動通信

VDSL

30M~100Mbps

DSLAM ONU NGNFTTB

OLT

100M~1Gbps

BS

FTTAFTTA

Mobile Radio

TVFM

Emergency

ONU

FTTH WDM Branch

VDSL

30M~100Mbps

DSLAM

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 55: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

UTC-PD

LNA

pin-PD

EAMUTC-PD

LD

LD

RXTX ltUp-linkgt

ltDown-linkgt

ltOptical Power Supplygt ltOE Power Convertergt

UTC-PD Uni-Traveling-Carrier Photo-Diodepin-PD InGaAs pin-Photo-DiodeLNM Lithium Niobium Modulator

Base StationCentral Station

LD LNM

EAM Electro-Absorption ModulatorLNA Low Noise AmplifierRXTX Radio TransceiverLD Laser Diode

RXTX

ElectricPowerSupply

ltOptical Power Feedinggt

80 mW

Available Electric Power

15 mW

ROF BS without Local Power Supply

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 56: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Electric Power Source by High Power Optical Fiber Transmission

0

1

2

3

4

0 200 400 600 800 1000 1200

Load Resistance R [Ω]

Vo

ltag

e [

V]

Power LD(1470nm)

8 PDArray

R

1times8

4times2

2times4

8times1

PD Arrayn x m

n series PDm parallel PD

Optical input 80 mW

15 mW electric power is available

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 57: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Performance of Optical Power Feeding ROF

- 90

- 80

- 70

- 60

- 50

- 40

- 40 - 35 - 30 - 25 - 20 -15 -10

RF input power [dBm]

RF

ou

tpu

t P

ow

er [

dB

m]

- 100- 45- 50- 55

EAM Bias

50Ω Termination

LNA amp Matching Matching

Matching

LNA

Expected Improvement

Practical Requirement

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 58: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Past Present and Future Evolution onInformation and Communications

DependabilityMobilityReliabilityStability

Mono-service Multi-services Multi-media

AnalogIP W

irelessHeterogeneous

1950 1970 1990 2000 2010 2020 2030

DigitalBroadband IP

Expansion of facilities

Integration of facilities

Expansion of services

Integration and customization of services

NetworkInnovation

Ubiquitous media

Technology

Operation

Service

Business

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
Page 59: Tetsuya Miki The University of Electro-Communications, Tokyo miki@ice.uec.ac.jp Optical Network Research and Next Generation Highspeed Networks CERNET2007

Thank you for your attention

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59