the effects of inhibi.ng neurons in layer-‐ii of the

1
The effects of inhibi.ng neurons in LayerII of the Medial Entorhinal Cortex on Hippocampal Place Cells in CA1 and CA3 Roshan Chikarmane, Daniel Avesar and Clifford G. Kentros Ins%tute of Neuroscience, University of Oregon. Eugene, Oregon 97403 U.S.A HM3: Experiments with CA1 place cells display global remapping and rate increase Figure 1: A) Rate maps from a CA1 place cell in HM3 mouse for experimental sessions (30 min per session). B) Spa%al correla%on scores comparing the CNO sessions to the Baseline 1 session. C) Mean firing rate (Hz) and D) field size for the baseline and CNO sessions. Green = 0.01mg/kg CNO injec%on, blue = 0.1 mg/kg CNO, red = 0.01 mg/kg CNO given to non doubleposi%ve mice as control. Background Methods We used an inducible gene expression technique to cons%tu%vely express HM4 or HM3 receptors in MECLII. These receptors are ac%vated by an otherwise inert ligand clozapineN oxide (CNO), which triggers membrane hyperpolariza.on (HM4) or depolariza.on (HM3). This animal model allows us to decrease (HM4) or increase (HM3) MECLII ac%vity. (Armbruster et al 2007) 1. Transgene Expression inject 10x CNO (1.0 mg/kg) Baseline 1 (BL1) CNO 30 min. Baseline 2 (BL2) 30 min. 30 min. 2 hr. CNO2 30 min. CNO3 30 min. CNO1 30 min. CNO4 30 min. 12 hrs. a`er start of CNO session 3. Experimental Procedure 2. Electrophysiology We implanted fourchannel adjustabledepth tetrodes into the hippocampus or MEC to record neuronal ac%vity while mice move freely through a familiar environment. Problems with the hippocampus, MEC, and other brain regions underlay neurodegenera%ve disorders like Alzheimer’s and Demen.a. Therefore it is important to understand how these brain regions work and interact. (Braak & Braak 1991) Previous data from our lab has shown that increasing the excitability of MECLII neurons causes some CA1 place cells to globally remap (see panel 3) and/or increase in place field firing rate The hippocampus and medial entorhinal cortex (MEC) are brain regions important for the forma%on and retrieval of memories. The MEC receives inputs from many regions of the cerebral cortex and projects into the hippocampus directly from Layer II. (Andersen et. al. 2007) Grid cells in the MEC Layer II (MECLII) fire in a repea%ng triangular pacern that covers an environment as an animal moves through the en%re area. (Ha`ing et. al. 2005) Place cells in the hippocampus (CA1 & CA3) fire whenever an animal is in a certain loca%on, this ac%vitydependentloca%on is known as the place field (O’Keefe 1976) How will decreasing the excitability of MECLII grid cells effect CA1 and CA3 place cells? HM4: Experiments with CA1 place cells display rate remapping (increase or decrease) HM4: Experiments with CA3 place cells display rate remapping (decrease) HM4: Experiments with MECLII grid cells display reversible decrease in grid proper.es Our goal is to test how increasing or decreasing the ac%va%on of MECLII neurons will effect CA1 and CA3 place cells. BL1 CNO BL2 Global Remapping (change in firing loca.on) A) C) D) B) Spa%al Correla%on Figure 2: A) Rate maps from CA1 place cells in HM4 mice across experimental sessions (30 min per session). B) Spa%al correla%on scores comparing the BL1 session to CNO and BL2 sessions. C) Mean firing rate (Hz) and D) Peak firing rate (Hz). Green = HM4 +/+ place cells (n = 43), red = place cells of control (n = 16). Figure 3: A) Rate map from a CA3 place cell in HM4 mouse across experimental sessions (30 min per session). B) Spa%al correla%on scores comparing the BL1 session to CNO and BL2 sessions. C) Mean firing rate (Hz) and D) Peak firing rate (Hz). Green = HM4 +/+ place cells (n = 34). Figure 4: A) Rate map for MECLII grid cells in HM4 mouse across experimental sessions (30 min per session). B) Grid scores, C) Mean firing rate (Hz) and D) peak firing rate (Hz) across experimental sessions. Green = HM4 +/+ grid cells (n = 5 unless otherwise indicated in parentheses on graph.); * p = 0.0004, ANOVA. Summary A) A) CNO Causes Global Remapping in CA1 Place Cells 0 0.8 Spa%al Correla%on CNO Does Not Affect Firing Loca.on HM4 Control HM4 +/+ B) 0 3 BL1 CNO1 CNO2 CNO3 CNO4 BL2 Mean Hz CNO Increases Mean Firing Rate HM4 Control HM4 +/+ C) 6 12 BL1 CNO1 CNO2 CNO3 CNO4 BL2 Peak Hz CNO Decreases Peak Firing Rate HM4 Control HM4 +/ + D) References Braak, H., and E. Braak. "Neuropathological stageing of Alzheimer related changes." Acta neuropathologica 82.4 (1991): 239259. O'Keefe, John. "Place units in the hippocampus of the freely moving rat."Experimental neurology 51.1 (1976): 78109. Ha`ing, Torkel, et al. "Microstructure of a spa%al map in the entorhinal cortex."Nature 436.7052 (2005): 801806. Andersen, Per, Richard Morris, David Amarai, Tim Bliss, and John O'Keefe. "Hippocampal Neuroanatomy." The Hippocampus Book. Oxford: Oxford UP, 2007. 38. Print. Armbruster, Blaine N., et al. "Evolving the lock to fit the key to create a family of G proteincoupled receptors potently ac%vated by an inert ligand." Proceedings of the Na9onal Academy of Sciences 104.12 (2007): 51635168. Leutgeb, Stefan, et al. "Independent codes for spa%al and episodic memory in hippocampal neuronal ensembles." Science 309.5734 (2005): 619623. Special Thanks Kentros Lab SPUR Program at the University of Oregon 0 0.8 Spa%al Correla%on CNO Does Not Effect Firing Loca.on HM4 +/ + B) 0 3 BL1 CNO1 CNO2 CNO3 CNO4 BL2 Mean Hz Mean Firing Rate HM4 +/ + C) 4 8 BL1 CNO 1 CNO 2 CNO 3 CNO 4 BL2 Peak Hz Peak Firing Rate HM4 +/ + D) CNO Causes an Increase in Mean Firing Rate CNO Causes an Increase in Field Size Mean Hz Field Size (# of pixels) A) 0 4 BL1 CNO 1 CNO 2 CNO 3 CNO 4 BL2 Mean Hz CNO Decreases Mean Firing Rate HM4 +/+ C) 4 16 BL1 CNO 1 CNO 2 CNO 3 CNO 4 BL2 Peak Hz CNO Decreases Peak Firing Rate HM4 +/+ D) 0 1 BL1 CNO 1 CNO 2 CNO 3 CNO 4 BL2 Grid Score CNO Decreases Grid Score HM4 +/+ B) (4) (4) (3) This work was supported by NICHD Summer Research Program at the University of Oregon (NIH-1R25HD070817) CA1 and CA3 place cells respond to changes in grid cell ac%vity within MECLII as follows: These findings suggest that there is a threshold between rate and global remapping of place fields rela%ve to grid cell input. *

Upload: others

Post on 24-Mar-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

 

           

   

The  effects  of  inhibi.ng  neurons  in  Layer-­‐II  of  the  Medial  Entorhinal  Cortex  on  Hippocampal  Place  Cells  in  CA1  and  CA3  

 

 

 

 

 

 

 

 

 

   

 

Roshan  Chikarmane,  Daniel  Avesar  and  Clifford  G.  Kentros    Ins%tute  of  Neuroscience,  University  of  Oregon.  Eugene,  Oregon  97403  U.S.A  

HM3:  Experiments  with  CA1  place  cells  display  global  remapping  and  rate  increase  

Figure  1:  A)  Rate  maps  from  a  CA1  place  cell  in  HM3  mouse  for  experimental  sessions  (30  min  per  session).  B)  Spa%al  correla%on  scores  comparing  the  CNO  sessions  to  the  Baseline  1  session.  C)  Mean  firing  rate  (Hz)  and  D)  field  size  for  the  baseline  and  CNO  sessions.  Green  =  0.01mg/kg  CNO  injec%on,  blue  =  0.1  mg/kg  CNO,  red  =  0.01  mg/kg  CNO  given  to  non-­‐double-­‐posi%ve  mice  as  control.    

;    

Background  

Methods  

We  used  an  inducible  gene  expression  technique  to  cons%tu%vely  express  HM4  or  HM3  receptors  in  MEC-­‐LII.  These  receptors  are  ac%vated  by  an  otherwise  inert  ligand  clozapine-­‐N-­‐oxide  (CNO),  which  triggers  membrane  hyperpolariza.on  (HM4)  or  depolariza.on  (HM3).  This  animal  model  allows  us  to  decrease  (HM4)  or  increase  (HM3)  MEC-­‐LII  ac%vity.  (Armbruster  et  al  2007)  

1.  Transgene  Expression

inject  10x  CNO  (1.0  mg/kg)  

Baseline  1  (BL1)   CNO  

30  min.  

Baseline  2  (BL2)  30  min.  30  min.   2  hr.  

CNO2  30  min.  

CNO3  30  min.  

CNO1  30  min.  

CNO4  30  min.  

12  hrs.    a`er  start  of  CNO  session  

3.  Experimental  Procedure

2.  ElectrophysiologyWe  implanted  four-­‐channel  adjustable-­‐depth  tetrodes  into  the  hippocampus  or  MEC  to  record  neuronal  ac%vity  while  mice  move  freely  through  a  familiar  environment.  

Problems  with  the  hippocampus,  MEC,  and  other  brain  regions  underlay  neurodegenera%ve  disorders  like  Alzheimer’s  and  Demen.a.  Therefore  it  is  important  to  understand  how  these  brain  regions  work  and  interact.  (Braak  &  Braak  1991)  

Previous  data  from  our  lab  has  shown  that  increasing  the  excitability  of  MEC-­‐LII  neurons  causes  some  CA1  place  cells  to  globally  remap  (see  panel  3)  and/or  increase  in  place  field  firing  rate    

The  hippocampus  and  medial  entorhinal  cortex  (MEC)  are  brain  regions  important  for  the  forma%on  and  retrieval  of  memories.    

The  MEC  receives  inputs  from  many  regions  of  the  cerebral  cortex  and  projects  into  the  hippocampus  directly  from  Layer  II.  (Andersen et. al. 2007)  

Grid  cells  in  the  MEC  Layer  II  (MEC-­‐LII)  fire  in  a  repea%ng  triangular  pacern  that  covers  an  environment  as  an  animal  moves  through  the  en%re  area.  (Ha`ing  et.  al.  2005)  

Place  cells  in  the  hippocampus  (CA1  &  CA3)  fire  whenever  an  animal  is  in  a  certain  loca%on,  this  ac%vity-­‐dependent-­‐loca%on  is  known  as  the  place  field  (O’Keefe  1976)  

How  will  decreasing  the  excitability  of  MEC-­‐LII  grid  cells  effect  CA1  and  CA3  place  cells?  

HM4:  Experiments  with  CA1  place  cells  display  rate  remapping  (increase  or  decrease)  

HM4:  Experiments  with  CA3  place  cells  display  rate  remapping  (decrease)  

HM4:  Experiments  with  MEC-­‐LII  grid  cells  display  reversible  decrease  in  grid  proper.es  

Our  goal  is  to  test  how  increasing  or  decreasing  the  ac%va%on  of  MEC-­‐LII  neurons  will  effect  CA1  and  CA3  place  cells.    

BL1                              CNO                              BL2                        

Global  Remapping  (change  in  firing  loca.on)  

A)  

C)   D)  B)  

Spa%al  Correla%on  

Figure  2:  A)  Rate  maps  from  CA1  place  cells  in  HM4  mice  across  experimental  sessions  (30  min  per  session).  B)  Spa%al  correla%on  scores  comparing  the  BL1  session  to  CNO  and  BL2  sessions.  C)  Mean  firing  rate  (Hz)  and  D)  Peak  firing  rate  (Hz).  Green  =  HM4  +/+  place  cells  (n  =  43),  red  =  place  cells  of  control  (n  =  16).        

Figure  3:  A)  Rate  map  from  a  CA3  place  cell  in  HM4  mouse  across  experimental  sessions  (30  min  per  session).  B)  Spa%al  correla%on  scores  comparing  the  BL1  session  to  CNO  and  BL2  sessions.  C)  Mean  firing  rate  (Hz)  and  D)  Peak  firing  rate  (Hz).  Green  =  HM4  +/+  place  cells  (n  =  34).  

Figure  4:  A)  Rate  map  for  MEC-­‐LII  grid  cells  in  HM4  mouse  across  experimental  sessions  (30  min  per  session).  B)  Grid  scores,  C)  Mean  firing  rate  (Hz)  and  D)  peak  firing  rate  (Hz)  across  experimental  sessions.  Green  =  HM4  +/+  grid  cells  (n  =  5  unless  otherwise  indicated  in  parentheses  on  graph.);  *  p  =  0.0004,  ANOVA.  

 

Summary  

A)  

A)  

CNO  Causes  Global  Remapping  in  CA1  Place  Cells  

0  

0.8  

Spa%al  Correla%on  

CNO  Does  Not  Affect  Firing  Loca.on  

HM4  Control  

HM4  +/+  

B)  

0  

3  

BL1  

CNO

1  

CNO

2  

CNO

3  

CNO

4  

BL2  

Mean  Hz  

CNO  Increases  Mean  Firing  Rate  

HM4  Control  

HM4  +/+  

A)  

C)  

6  

12  

BL1  

CNO

1  

CNO

2  

CNO

3  

CNO

4  

BL2  

Peak  Hz  

CNO  Decreases  Peak  Firing  Rate  

HM4  Control  

HM4  +/+  

D)  

References  Braak,  H.,  and  E.  Braak.  "Neuropathological  stageing  of  Alzheimer-­‐related  changes."  Acta  neuropathologica  82.4  (1991):  239-­‐259.        O'Keefe,  John.  "Place  units  in  the  hippocampus  of  the  freely  moving  rat."Experimental  neurology  51.1  (1976):  78-­‐109.      Ha`ing,  Torkel,  et  al.  "Microstructure  of  a  spa%al  map  in  the  entorhinal  cortex."Nature  436.7052  (2005):  801-­‐806.      Andersen,  Per,  Richard  Morris,  David  Amarai,  Tim  Bliss,  and  John  O'Keefe.  "Hippocampal  Neuroanatomy."  The  Hippocampus  Book.  Oxford:  Oxford  UP,  2007.  38.  Print.      Armbruster,  Blaine  N.,  et  al.  "Evolving  the  lock  to  fit  the  key  to  create  a  family  of  G  protein-­‐coupled  receptors  potently  ac%vated  by  an  inert  ligand."  Proceedings  of  the  Na9onal  Academy  of  Sciences  104.12  (2007):  5163-­‐5168.      Leutgeb,  Stefan,  et  al.  "Independent  codes  for  spa%al  and  episodic  memory  in  hippocampal  neuronal  ensembles."  Science  309.5734  (2005):  619-­‐623.      Special  Thanks  Kentros  Lab  SPUR  Program  at  the  University  of  Oregon    

0  

0.8  

Spa%al  Correla%on  

CNO  Does  Not  Effect  Firing  Loca.on  

HM4  +/+  

B)  

0  

3  

BL1  

CNO

1  

CNO

2  

CNO

3  

CNO

4  

BL2  

Mean  Hz  

Mean  Firing  Rate  

HM4  +/+  

C)  

4  

8  

BL1  

CNO

 1  

CNO

 2  

CNO

 3  

CNO

 4  

BL2  

Peak  Hz  

Peak  Firing  Rate  

HM4  +/+  

D)  CNO  Causes  an  Increase    in  Mean  Firing  Rate  

CNO  Causes  an  Increase    in  Field  Size  

Mean  Hz  

Field  Size  

(#  of  pixels)  

A)  

0  

4  

BL1  

CNO  1  

CNO  2  

CNO  3  

CNO  4  

BL2  

Mean  Hz  

CNO  Decreases  Mean  Firing  Rate  

HM4  +/+  

C)  

4  

16  

BL1  

CNO  1  

CNO  2  

CNO  3  

CNO  4  

BL2  

Peak  Hz  

CNO  Decreases  Peak  Firing  Rate  

HM4+/+  

D)  

0  

1  

BL1  

CNO  1  

CNO  2  

CNO  3  

CNO  4  

BL2  

Grid  Score  

CNO  Decreases  Grid  Score  

HM4  +/+  

B)  

(4)   (4)   (3)  

This work was supported by NICHD Summer Research Program at the University of Oregon (NIH-1R25HD070817)

CA1  and  CA3  place  cells  respond  to  changes  in  grid  cell  ac%vity  within  MEC-­‐LII  as  follows:  

These  findings  suggest  that  there  is  a  threshold  between  rate  and  global  remapping  of  place  fields  rela%ve  to  grid  cell  input.  

*