the journal of...

72
The official publication of the International Society for Plastination The Journal of Plastination ISSN 2311-7761 Volume 26 (1); July 2014 In This Issue: Report of the 17 th International Conference on Plastination – P6 Abstracts from the Scientific Sessions of the 17 th International Conference – P11 Minutes of the ISP Business Meeting – P55 Update to the ISP Bylaws – P58

Upload: others

Post on 02-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The official publication of the International Society for Plastination

The Journal of Plastination

I SSN 2 311 -77 61

Volume 26 (1); July 2014

In This Issue:

Report of the 17th International Conference on Plastination – P6

Abstracts from the Scientific Sessions of the 17th International Conference – P11

Minutes of the ISP Business Meeting – P55

Update to the ISP Bylaws – P58

Page 2: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):1-70 (2014)

i

The Journal of Plastination

ISSN 2311-7761 The official publication of the International Society for Plastination

Editorial Board:

Renu Dhingra New Delhi, India

Geoffrey D. Guttman Fort Worth, TX USA

M.S.A. Kumar North Grafton, MA USA

Rafael Latorre Murcia, Spain

Scott Lozanoff Honolulu, HI USA

Ameed Raoof. Ann Arbor, MI USA

Mircea-Constantin Sora Vienna, Austria

Hong Jin Sui Dalian, China

Carlos Baptista Toledo, OH USA

Philip J. Adds Editor-in-Chief Division of Biomedical Sciences (Anatomy) St. George’s, University of London London, UK

Robert W. Henry Associate Editor Department of Comparative Medicine College of Veterinary Medicine Knoxville, Tennessee, USA

Selcuk Tunali Assistant Editor Department of Anatomy Hacettepe University Faculty of Medicine Ankara, Turkey

Executive: Carlos Baptista, President Rafael Latorre, Vice-President Selcuk Tunali, Secretary Joshua Lopez, Treasurer

Instructions for Authors

Manuscripts and figures intended for publication in The Journal of Plastination should be sent via e-mail attachment to: [email protected]. Manuscript preparation guidelines are on the last two pages of this issue.

Page 3: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):1 (2014)

Journal of Plastination Volume 26 (1); July 2014

Contents

Letter from the President, Carlos. A. C. Baptista 2

Letter from the Editor, Philip J. Adds, MSc, FIBMS 4

The 17th International Conference on Plastination, Dmitry Starchik 6

The 17th International Conference on Plastination, Carlos. A. C. Baptista 7

Photographs from The 17th International Conference on Plastination 9

Abstracts from The 17th International Conference on Plastination 11

Minutes of the 17th Biennial Business Meeting of the International Society for Plastination

55

Bylaws and Constitution of the International Society for Plastination 58

Index of Authors

65

Instructions for Authors 68

Page 4: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):2 (2014)

LETTER FROM THE PRESIDENT

Carlos A. C. Baptista, MD, PhD

Dear Colleagues and Plastinators:

On behalf of the International Society for Plastination I would like to thank Dr. Dmitry Starchik for the superb organization of the 17th International Conference on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. I extend my gratitude also to his staff and colleagues for making our stay in Saint Petersburg memorable. I also would like to thank those who contributed to the Conference by participating with oral and poster presentations. Your participation is crucial to the success of our conferences.

New Editor-in-Chief of the Journal of Plastination

I am delighted to announce the appointment of Philip Adds as the new Editor-in-Chief of the Journal of Plastination. Phil is a Senior Lecturer in Anatomy in the Division of Biomedical Sciences, St George's, University of London, United Kingdom. He brings energy, commitment and innovation to the role. The Society views The Journal of Plastination as a beacon for scientists and plastinators and is committed to its development to maintain its international reputation for excellence.

New ISP Secretary and Treasurer

Please join me in congratulating and welcoming our new Secretary, Selcuk Tunali, and Treasurer Joshua Lopez as they begin their duties as officers of the ISP. My gratitude is extended to the departing Secretary Christoph von Horst and Treasurer Ameed Raoof for their heartfelt service and commitment to the International Society for Plastination.

New Bylaws and Constitution

I encourage ISP members to read the new bylaws and constitution voted on by the membership last June and adopted by the general assembly of the society in July at Saint Petersburg. The bylaws are published in pages 58 to 64 in this issue of the Journal. These bylaws contain several changes including new categories of membership, and also changes to the governance of the Society.

Student Membership

During the ISP Business meeting in Saint Petersburg it was suggested that we create a student membership. This category of membership will be proposed as an amendment to the by-laws in 2016. The general assembly approved the creation of student membership to be in effect immediately. To be a student member, the candidate must be sponsored by an ISP member in good standing. Please refer to pages 55 to 57 for the minutes of the general assembly for more information.

Page 5: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):3 (2014)

The 18th International Conference of Plastination - 2016

It gives me great pleasure to announce that the general assembly unanimously chose the City of Pereira, Colombia, to host the 2016 ICP. The organization will take place under Dr. Ricardo Jimenez. A planning organizing committee for the Conference was created. It will be composed of: Ricardo Jimenez, Ameed Raoof, Constantin Sora, Dmitry Starchik, Robert Henry, Abrahim Albustanji, Nicolas Ernesto Ottone and the President.

New Members

I would like to extend a warm welcome to our new members. Thank you for joining the ISP. Your enthusiasm and interest in plastination will spark a new exchange of ideas among both new and existing members of the ISP. I am grateful for the knowledge and dedication of our existing members as well, and am looking forward to a great year with our increased membership.

Finally, I would like to ask you to become actively involved in our society. Share your knowledge of plastination. Participate by attending the ISP sponsored conferences, joining the standing committees, contributing to the editorial board of the Journal, by submitting articles to the Journal of Plastination, or contributing to our ListServe. You will stimulate growth and help make the ISP a valuable instrument of knowledge, innovation and collaboration for the advancement of plastination.

With my warmest regards from Toledo, Ohio, USA

Yours Sincerely

Carlos A. C. Baptista

President

Page 6: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):4 (2014)

LETTER FROM THE EDITOR

Dear Readers,

I feel hugely honoured to be appointed Editor of the Journal of Plastination. Carlos Baptista has been an inspirational interim editor for the last couple of years, and was responsible for the relaunch (one could almost say rebirth!) of the new-look Journal in 2010. I am sure I speak for the membership as a whole when I say that huge thanks are due to him for the healthy state of the Journal at present. I have had the pleasure working first with Ming Zhang, then with Carlos and Selcuk Tunali, since 2010 when the former ‘Journal of the International Society for Plastination’ morphed (almost!) seamlessly into the Journal of Plastination. It may be worth remembering a comment from Craig Goodmurphy at the 15th Biennial Business Meeting of the International Society for Plastination, held in Honolulu in July 2010. Craig suggested that “the objective of the Journal of Plastination be expanded to provide a medium for the publication of scientific papers dealing with all aspects of preservation of biological specimens including plastination, sectional anatomy and other anatomical techniques”. This was endorsed by many other members at the meeting, and is a sentiment I share as we look forward to the challenges ahead.

The original journal was born in 1987, under the editorship of Harmon Bickley (the cover page of the first issue is shown below). The first article to be published in the new Journal of the International Society for Plastination was by Karine Oostrom from Utrecht in The Netherlands: “Fixation of Tissue for Plastination: general principles”. The article goes on to discuss different methods of fixation, color preservation, color injection, health hazards and employee safety; it lists the PPE worn in Heidelberg – “rubber gloves, plastic aprons and goggles or gas masks” and finishes with this comment: “Those of you who attended the Third International Conference on Plastination in San Antonio will certainly recall the slide in which three young ladies modeled these fashionable accessories, and nothing else. The editor was adamant that we omit this illustration, however it would have served to show that even fixation can be fun.” It is nice to see that high editorial standards were set right from the start!

The first issue also contained a paper co-authored by Gunther von Hagens (Guhr et al., “Complete Examination of Mastectomy Specimens Using Sheet Plastination With Epoxy Resin”). Nearly thirty years later the ISP’s links with the von Hagens dynasty are still strong, and we are pleased to publish in this issue an abstract from his son, Rurik, who gave an excellent presentation at the 17th International Conference on Plastination in St. Petersburg earlier this year.

Other notable authors from 1987 include Bob Henry, whose first paper in a long line

Philip J. Adds, MSc, FIBMS

Page 7: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):5 (2014)

of distinguished contributions came in Volume 1, issue 2: “Plastination of an Integral Heart-Lung Specimen”; two years later, Volume 3 saw two papers from the current President of the ISP, Carlos Baptista: “Plastination of the Heart: Preparation for the study of the cardiac valves”, and “Plastination of the Wrist: Potential Uses in Education And Clinical Medicine”.

Enough of the past – what of the future? We intend to continue the tradition of bringing out two issues each year, and this issue will be swiftly followed by Volume 26 no. 2, which will include as many papers as possible from the presentations given in St. Petersburg, as well as other papers on aspects of plastination and tissue preservation. My goal is for The Journal of Plastination to have its impact factor listed, and for it to be indexed to PubMed. This cannot be achieved without more high-quality submissions from you, the members of the ISP, so please consider publishing your papers here first. For 2015, we are planning to bring out an updated version of the “cookbook”, Volume 22 (2007) – eight years on we will be asking the authors of those papers to revise and update their manuscripts so we can bring out a new, definitive practical guide to plastination in all its forms.

With best wishes,

Phil Adds

Editor, The Journal of Plastination

Page 8: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):6 (2014)

17th International Conference on Plastination

St. Petersburg, Russia

July 14-18, 2014

Dr. Dmitry Starchik

International Morphological Centre

Saint-Petersburg, Russia

In mid-July, 2014, The International Morphological Centre hosted the 17th ISP conference which was held in

St. Petersburg, in the Courtyard Marriott hotel conference hall.

More than 80 participants from 21 countries arrived in the Northern capital of Russia (an informal name of

the city on the banks of the river Neva) to make presentations and present visual displays (posters and wall

charts) of their research results.

The conference organizers offered an extended social program including visits to the Hermitage, housing

famous treasures of art, the Kunstkamera – a cabinet of curiosities – which was the first Russian museum of

anatomy, Catherine Palace in Tsarskoye Selo (King’s village) with its amazing Amber Room, where the guests

could also enjoy a walk in the Peterhof Palace park and admire its magnificent fountains.

The 17th conference combined interesting presentations and discussions with a friendly atmosphere and

traditional Russian hospitality. Sunny weather and unforgettable “white nights” will also remain in the

guests’ memory. When they were saying good-bye to St. Petersburg they could throw a coin into the Neva’s

running waters – it is an old Russian tradition meaning that a person is sure to come back to the place again.

Page 9: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):7 (2014)

Professor Nicolay Fomin

17th International Conference on Plastination Saint Petersburg, Russia

July 14-18, 2014

Carlos A C Baptista Department of Neurosciences,

University of Toledo School of Medicine and Life Sciences Toledo, OH USA

Overview:

The 17th International Conference on Plastination was held in Saint Petersburg, Russia, in the Courtyard Marriott hotel conference hall from July 14-18, 2014. More than 80 participants (representing 21 countries) attended the four-day conference. The meeting brought together a wide range of distinguished experts as well as novices with an interest in plastination. Several distinguished faculty were present. The conference followed the tradition of previous conferences. It targeted the novice learner in plastination with oral presentations on the basic principles of plastination, and more advanced topics for the “mature” plastinator. Attendees were able to view an exhibit of plastinated specimens from the laboratory of The International Morphological Centre and several specimens from Dr. Christoph von Horst’s collection. Several posters were also displayed. The program brought together a wide range of distinguished experts from over 21 countries.

Program

The scientific component of the program extended over four days and included plenary sessions focusing on plastination as applied to anatomical education, as well as poster sessions.

A welcome presentation by Professor Nicolay Fomin, from the Military Medical Academy, representing Professor Lev Kolesnikov, President of the Russian Society of Anatomists, Histologists and Embryologists, opened the conference.

The morning session following the opening remarks was devoted to basic principles of plastination. Dr. Robert Henry presented the silicone cold temperature technique followed by Dr. Dmitry Starchik who presented the pros and cons of room temperature plastination. The last lecture of the morning session was about the necessary equipment and space to set up a modern laboratory of plastination given by Dr. Carlos Baptista. Subsequent presentations followed each day. There were 4 to 5 presentations each morning and afternoon. Many ISP members also presented their posters. Please refer to the abstracts published in this issue to learn more about the presentations given at the conference.

The social program, organized by Dr. Dmitry Starchik and his organizing committee, was outstanding. We had the opportunity to visit many of the touristic attractions that make St Petersburg so famous. The first visit was to the Kunstkamera (Museum of Anthropology and Ethnography) followed by a Night Boat Tour & Gala Dinner on the Neva River. On Thursday we visited the Peterhof, State Museum Reserve. Other tours included a bus sightseeing tour, a visit to the State Hermitage and a visit to the Catherine Palace, the Tzar’s village and Amber Room.

Page 10: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):8 (2014)

Museum of Anthropology and Ethnography:

The Kunstkamera is officially known as the Museum of Anthropology and Ethnography. It was the first museum in Russia and it is one of the oldest in the world. It was found by Peter the Great. The core of the collection is still made up of exhibits collected during Peter’s lifetime, including anatomical specimens and malformed fetuses.

Night Boat Tour and Gala Dinner:

The trip on the Neva River was a fantastic trip along the banks of the river and gave an outstanding view of St. Petersburg’s greatest landmarks. In addition it was an amazing night for fellowship.

Sea Tour of Peterhof and Fountains:

Peterhof was founded in 1705 as the Summer Palace of Peter the Great. Brilliantly designed and executed, the fountains of Peter the Great’s residence was named the Russian Versailles, one of the world’s masterpieces of park and palace design.

The Catherine Palace:

The Catherine Palace was the official imperial summer residence. Construction started in 1710 and it was a present of Peter the Great to his wife Catherine I. During the Second World War, it was occupied by the Nazis for twenty-eight months. Many objects of art including the famous mosaic panels of the Amber Room were stolen or lost forever.

The State Hermitage:

It was founded in 1764 by Catherine the Great and opened to the public in 1852. It is one of the largest and oldest museums in the world, in which only a small part of its collection is on display. It is said that it comprises over three million items, including the largest collection of paintings in the world.

These were some of the impressive places we had the privilege to visit while in St Petersburg. We are grateful to Dmitry Starchik, his staff and colleagues for their hospitality.

Thank you for making this week in July 2014 so memorable.

Page 11: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):9 (2014)

17

th I

nte

rna

tio

nal C

on

fere

nc

e o

n P

las

tin

ati

on

S

ain

t P

ete

rsb

urg

, R

us

sia

J

uly

14

-18

, 2

01

4

Page 12: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):10 (2014)

Page 13: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):11 (2014)

Abstracts from The 17th International Conference on Plastination Saint Petersburg, Russia

July 14-18, 2014

3-D RECONSTRUCTION OF THE ETHMOIDAL ARTERIES OF THE MEDIAL ORBITAL

WALL

ADDS Philip J.

St George’s School of Medicine, University of London, London, UK

Purpose: The medial wall of the orbit is reported to contain anterior and posterior ethmoidal foramina,

through which pass branches of the ophthalmic artery. These arteries are a potential source of bleeding

during surgical procedures involving the medial orbital wall. However, recent research has revealed variable

numbers of accessory ethmoidal foramina, which have also been shown to transmit vascular structures,

making intraorbital surgery unpredictable and potentially hazardous. This study aims to elucidate the

branching pattern of the arterial supply of the medial orbital wall, particularly in cases of multiple ethmoidal

foramina.

Methods: Orbits were retrieved from cadavers donated for anatomical examination. Red silicone was

injected into the ophthalmic artery via the internal carotid. The medial wall was then dissected out and

embedded in Biodur® Epoxy E12 resin. Sections of 0.3 mm thickness were cut with a slow speed diamond

saw, and then photographed with a Nikon D3100 digital camera. Three-dimensional reconstructions were

carried out using WinSURF software.

Results: Using WinSURF, the outlines of the branches of the ethmoidal arteries and the bone lining the

medial wall of the orbit were delineated. A three-dimensional model of the pattern of arterial branching

was created.

Conclusion: Surgeons operating along the medial wall of the orbit need to be aware that multiple branches

of the ethmoidal artery may be encountered. Three-dimensional reconstructions of the branching pattern

of the ethmoidal artery give a clearer understanding of the blood supply to the medial wall.

Page 14: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):12 (2014)

TOPOGRAPHIC ANATOMY STUDY OF UTERINE HORN AND OVARIAN BITCH BURSA

BY MEANS OF ULTRATHIN SLICE PLASTINATION

ALCANTARA1Arache Ivan Sigfrido, GUTIERREZ Trujillo Hugo Andres 1, 2, LATORRE Rafael1, LOPEZ-

ALBORS Octavio 1

1Department of Anatomy and Anatomy Pathology, Faculty of Veterinary Medicine, Regional

Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Spain; 2Department of Animal Health, Faculty of Veterinary Medicine, University National of Colombia

Purpose: The ovarian bursa of the bitch is characterized by complex topographic visualization due to the

abundant infiltration of fatty tissue and by the relationship between the organs and the adjacent peritoneal

dependencies. The objective of this study was the visualization of the topographic details of the ovarian

bursa of a bitch by using ultrathin plastinated cross-sectional slices, which are otherwise too difficult to be

seen in conventional dissection techniques and slices.

Methods: Ultrathin cross-sectional slices (300µm) were obtained from two plastinated blocks containing the

ovarian region of a bitch; these blocks went through the following steps: fixation, dehydration, degreasing,

forced impregnation (Epoxy E12, E6, E600, Biodur®) and curing. The slices obtained from the blocks were

used to make a casting using E12, E1 for 3 days at 45°C. The slices then were scanned at 300 dpi.

Results: Two ovarian fimbriae were recognized with very good detail. The coalescence between the

mesosalpinx, mesovarium and the proper ligament of the ovary were also observed. A hollow structure,

corresponding to the epoophoron was indicated in relation with the mesovarium. The ovarian bursa

surrounds the ovary completely and is closed ventrally. The mesosalpinx showed an abundant amount of

blood vessels and smooth muscle fibers, and its dorsal relationship with the sublumbar muscle, a lateral

relationship with the abdominal wall, and a medial relationship with the ovary and mesovarium. A limitation

for this study was the impossibility of following the trajectory of the uterine tubes completely.

Conclusion: The ultrathin cross-sections allowed observation of topographic details which have usually been

shown as schematic images, like the ovarian fimbriae, the epoophoron and the coalescence between the

tissues that form the ovarian bursa.

Page 15: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):13 (2014)

S10 PLASTINATION OF STAINED SECTIONS OF BRAIN: A NEW STAINING METHOD

ASADI Mohammad Hossein1, BAHADORAN Hossein1, TAMEH Abolfazl Azami2

1Baghiyatallah university of Medical Sciences; 2Kashan medical university

Purpose: In recent years plastination has changed the way in which gross anatomy can be presented to

students. Brain slices plastinated by the S10 technique require macroscopic staining to differentiate

between the fiber tracts (white matter) and cell bodies (gray matter). The purpose of this work was to

compare color fade of brain plastinates stained with Mulligan’s method and with our new modification of

the Mulligan method.

Materials and methods: Staining procedures were performed after fixation according to Mulligan’s method

and our new modification of the Mulligan method. Specimen color was measured and compared before and

after S10 plastination using ImageJ 10440 (National Health Institute, USA).

Results: Plastination of the unstained brain slices as well as stained sections resulted in dry, clear, odorless

and durable specimens. There was a little fade of color in stained slices exposed to light. Since the white

matter areas did not react with the stain in this procedure there was satisfactory contrast between gray

areas and the unstained white matter. Considering the low costs of the new staining method, these stained

brain slices could be used for educational purpose in anatomy courses.

Page 16: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):14 (2014)

POLYMERIC EMBALMING IS AN INNOVATIVE METHOD IN TEACHING OF HUMAN

ANATOMY AT MEDICAL UNIVERSITY "ASTANA"

AUBAKIROV A.B., MAUL Y.A., KHAMIDULIN B.S., DOSMAMBETOVA K.K., SULEIMENOVA F.M.,

MINAIDAROV A.K., SISABEKOV K.E.

JSC “Medical University “Astana”, Kazakhstan

Purpose: The production of anatomical preparations by polymeric embalming produces specimens without

toxic effects, without harmful action for professionals and teaching staff and students’ health; the

specimens are life-like and durable. This method changes all the traditional representations about study of

anatomy which are associated with formalin-fixed cadavers.

Methods: Production of anatomical preparations by polymeric embalming consists of the following stages:

1. Fixing of the biological material. For polymeric embalming both fixed and unfixed material can be used.

However, preliminary fixing of anatomical preparations is preferable, as the fixing solutions compact the

tissues and decrease the shrinkage of anatomical structures during polymeric embalming. The fixative

inactivates the tissues’ enzymes, which prevents the decomposition of the tissues, and does not prevent the

polymerization of silicone.

2. The production of anatomical teaching specimens by dissection. This is the traditional manual production

of preparations by standard techniques with removal of fat, connective tissue and display of the necessary

structures. It is very difficult work but an important stage in the production of polymeric materials.

3. Dehydration and defatting. At these stages there is replacement of water by the intermediate solvent,

and dissolution of fat tissues. In the capacity of dehydrating agent one can use such organic solvents as

acetone or ethanol. As the degreasing agent we also use acetone which dissolves fat tissues very well at

temperatures above 15 C

4. Impregnation by silicone. At this stage there is replacement of the intermediate solvent by liquid silicone

in the organs and tissues. The process is carried out in the vacuum chamber at gradually reduced pressure

and at room temperature.

5. Polymerization. At this stage under the action of temperature and a polymerizing agent, consolidation of

silicone composition occurs in the organs and tissues. Before finishing polymerization the preparations are

placed in the necessary position.

Conclusion: All these above listed facts determine the great future for technology in polymeric embalming

and promote its wider introduction in the educational process.

The silicone preparations are ideal for exhibiting in anatomical museums and for practical lessons of medical

students. At present anatomical silicone preparations are very widely used for the study anatomy not only

in the Medical University “Astana” but in other medical schools and universities of Kazakhstan.

Page 17: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):15 (2014)

HOW TO SET UP A LABORATORY OF PLASTINATION

BAPTISTA Carlos A. C.

University of Toledo, College of Medicine, Department of Neurosciences, Toledo, Ohio, USA

Purpose: The establishment of a plastination lab requires more than just planning for space allocation and

equipment but more importantly special attention to handling hazardous materials, waste generation and

safety issues. The requirements for creating a laboratory of plastination will be discussed with reference to

materials, equipment, waste management, hazardous material, safety issues and today’s other essentials

for a modern plastination lab.

Methods: The first thing to consider when planning for a plastination lab is to think big but start small.

Consider your initial budget. Make sure safety issues are the first to be addressed. You will not be able to

get everything you want so establish priorities. If you are not experienced with plastination, start with the

Silicone technique. It is easier and more reliable for the novice plastinator. Identify your limitations and

confront them from the start so you can plan ahead. Involve the administration (Chair and Dean) in the

process. Motivate them and they will help you. Basic instruments and materials for plastination are

available through many vendors. Biodur® offers a complete set of plastination kits available in different sizes

to beginners. Each kit contains a plastination Kettle (vacuum chamber), vacuum pump, silicone S10/S3/S6

and other materials. Silicone is available through several vendors: Biodur (Germany), VisDocta (Italy),

Corcoran (USA), Silicone Inc. (USA), ShiEtsu Silicones (Japan), Plasmat (China). There are several safety issues

that must be recognized before a plastination lab is constructed and during the operation of the lab.

Documentation of the chemicals used must be at hand at all times. Recognize hazardous materials for safe

keeping and also for disposal. Constantly monitor the exposure of the personnel to the acetone and other

chemicals. Make sure the laboratory has proper ventilation and exhaust. The electrical outlets and light

fixtures should be changed to give protection when levels of acetone are increased. Adequate fire

protection and fire-safe storage should be addressed.

Results: The material, equipment and space allocated for the plastination laboratory should be tied to the

desired size of the laboratory. There are many sources of information available to the novice to help with

technical aspects of building a laboratory. One of the best sources available is the International Society for

Plastination and their experienced plastinators.

Conclusion: Plastination has been available over 30 years. There are hundreds of laboratories of plastination

around the world. A plastination laboratory is unique. It is different than a regular science laboratory

because of the high amount of acetone that is used. Following safety guidelines is key to successfully

establishing a laboratory of plastination.

Page 18: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):16 (2014)

PLASTINATION MUSEUM: ENGAGING THE NEXT GENERATION OF HEALTHCARE

PROFESSIONALS AND THE PUBLIC

BAPTISTA Carlos A. C.

University of Toledo, College of Medicine, Department of Neurosciences, Toledo, Ohio, USA

Purpose: The main purpose of the Plastination Museum is to provide valuable educational resources for the

University of Toledo students in the medical and related anatomical disciplines. The museum is located in

the College of Medicine, Health Science Campus, at the University of Toledo. The museum provides a

dynamic study and teaching space. The museum was named after Dr. Liberato DiDio, former chairman of

the Department of Anatomy, and Dr. Peter Goldblatt, former chairman of the Department of Pathology. The

establishment of the museum and its use will be discussed.

Methods: The “construction” of the Plastination Museum started 20 years ago when several plastinated

specimens were created as a source of the didactic material to advance the teaching mission of the

department of anatomy. Funding for the project was through monies received by the plastination

laboratory’s specimen preparation services to other institutions. The original project budget rationale

involved the following: transfer of the plastination lab to a new location to free space for the museum, new

wall painting, acoustic ceiling, and floor and new wood/glass cabinets installed. The museum was

constructed in three months and now houses approximately 300 specimens comprising the anatomical and

pathological collections of the College of Medicine. Each cabinet was divided according to function

(digestion, breathing, circulation, filtration, control, support, development and comparative). Each cabinet

has an android tablet containing explanations of each specimen providing a self-guided tour.

Results: The space allocated to the museum, even though small, has been used appropriately by medical

students and other healthcare students and professionals. Thousands of high schools students from the

vicinity around Toledo and south of Michigan had tours arranged through the Student-to-Student Program.

The student-to-Student program is an educational outreach program organized by 1st and 2nd year medical

students that gives presentations and tours to more than 1500 undergraduate students from the

community per year. In addition to students the museum is also open to the public upon request.

Conclusion: The Plastination Museum was created with a limited budget but has been proven to be an

excellent method for housing the anatomical and pathological collections of the college of Medicine in a

single residence. The museum has proved to be an enormous asset to educate students and the public on

normal anatomy and diseases.

Page 19: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):17 (2014)

USE OF MOLECULAR SIEVES TO RECOVER HIGHER YIELD OF PURE RECYCLED

ACETONE

BAPTISTA Carlos A. C.1, ZAK Peter W. 1, BITTENCOURT Athelson S.2

1University of Toledo, College of Medicine, Department of Neurosciences, Toledo,

Ohio, USA; 2Federal University of Espirito Santo, Department of Morphology, Health Sciences Center, Vitoria,

Brazil

Purpose: This work introduces molecular sieves as a cost-effective method of transforming conventionally

distilled acetone (95 - 97%) into acetone pure enough (99. 5 to 100%) to complete the dehydration of

specimens for plastination.

Methods: Used acetone (<95%) from freeze substitution and room temperature dehydration was recycled

using conventional recyclers (BR Instruments and Omega Recyclers) yielding 97% purity. In order to remove

the remaining water and increase the purity of recycled acetone to ~100%, molecular sieves were used.

Twenty-two point five Kg (fifty pounds) of 3Å pore molecular sieves (http://www.interraglobal.com/) were

used to distil 189 L (50 gallons) of acetone (1:1 ratio). A cylinder containing the molecular sieves was

immediately transferred to the plastic 189 L (50 gallon) drum of acetone containing the 97% distilled

acetone. Care was taken to ensure that the transfer to the container was made as fast as possible to avoid

the sieve absorbing air humidity.

Results: Acetone distilled using traditional methods with BR Instruments and Omega recyclers yielded

acetone with approximately 97% purity. Both small-scale and large-scale treatments with molecular sieves

yielded acetone purity of 99.5-99.9%. After 48 hours of treatment with molecular sieves, the purity of

acetone remained constant.

Conclusions: The use of molecular sieves to produce pure acetone will complement the dehydration of

acetone using conventional distillation methods and has proved to be very efficient. Waste acetone is

virtually eliminated, saving laboratories hundreds or even thousands of dollars in purchasing new acetone,

recycling and disposal fees, in addition to being an eco-friendly process. The process is safe but when

treating large volumes of acetone good ventilation and safe (spark proof) areas are desirable because of the

acetone vapor that is produced in larger quantities.

Page 20: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):18 (2014)

NEAR FIELD COMMUNICATION (NFC) DEVICES AND PLASTINATION: AN

INTEGRATED TUTORIAL SYSTEM TOOL FOR SELF-DIRECTED LEARNING

BAPTISTA Carlos A. C., TENBRINK Patrick

University of Toledo, College of Medicine, Department of Neurosciences, Toledo, Ohio, USA;

Purpose: The purpose of integrating Near Field Communication (“NFC”) with plastination is to provide

students with a self-directed learning tool that offers intelligible flexibility for the study of anatomy. The

objective of this learning tool is to offer students an interactive learning environment outside of the usual

academic setting. This self-directed learning tool allows students to point at different parts of the

plastinated anatomical specimen, which are tagged with smart chips, directing students to a web-page that

presents a description of the specific anatomical muscle, nerve, or artery to which the wand is directed.

Methods: An application was designed to integrate the NFC reader, NFC tags, Android tablet device and

plastinates. The NFC is a set of standards for radio communication between tablets, smartphones and

similar devices that allows communication with each other by proximity or touch. We used a vWand

(Sistelnetworks) in order to provide NFC connectivity for the Android tablet using Bluetooth connection.

This wand allowed flexibility and uniformity within the system. Twenty-five structures were identified in a

silicone- plastinated lower limb. Each anatomical description was entered in HTML format and stored as a

webpage in the server. An NFC tag was attached to each structure and the URL web address of each

structure was written into the tag using a VWand Pro Android app. When the tag was read by the vWand,

an application launched the web browser containing a link to the webpage with the anatomical description

of the structure.

Results: The prototype consisted of 24 NFC tags implanted in a plastinated lower limb. Each tag when

opened corresponded to a URL containing the description of the structure.

Conclusions: The NFC device is a platform for self-directed learning that integrates plastinates with digital

technology providing flexibility for the study of anatomy and pathology outside the usual academic settings.

In addition, it provides an interactive environment, structure and guidance to the student and a powerful

educational tool to promote meaningful learning through the integration of words, sounds and visuals.

Page 21: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):19 (2014)

EFFECTS OF DIFFERENT FIXATIVES ON PLANTS: OUTCOMES

FOR FURTHER PLASTINATION.

BİLGE Okan , BODUC Erengul

Ege University, Faculty of Medicine, Department of Anatomy, İzmir-Turkey

Purpose: Preserving the natural color and texture are the main issues in plastination, and fixation is the first

step for this purpose. Although there is little information about plastination of plants in the present

literature, it is an important issue for plastination. The purpose of this study is to compare the efficiencies of

different fixative solutions on plants to maintain their natural color and texture.

Methods: We studied five different fixatives: Kaiserling, Klotz, Jore’s, 5% formalin and 5%+30% acetone mix

on red and white miniature rose flowers (Rosaceae spp.) with their stems and leaves, orchid (Orchidaceae

spp.) leaves and onion bulbs. Five sets of these plants were put in jars and filled with the fixatives listed

above. Fixation was carried out at +4°C. Photographs were taken and crosschecked at 16th, 24th and 64th

hours of fixation.

Results: At the end of the fixation process, we found that Kaiserling and Jore’s solutions are better than the

others fixatives. They protect the colors of the plants and their brightness. 5% formalin also protects colors

but it made the plant surface a little dull. Klotz and 5%+30% acetone mix decolorizes the plants. Klotz adds

some yellowish color. Fixed plants with 5%+30% acetone mix were paler and colors had faded.

Conclusion: When it comes to plastination, perfection depends on a perfect fixation. The main function of

tissue fixation is to prevent putrefaction and autolysis. Especially for plastination, it has to preserve the

natural texture and color too. Plastination of plants is still a challenging issue and is not taking place in the

literature sufficiently. We think that these data can be helpful for the development of a plastination process

for plants. For preserving and displaying particularly endemic or endangered plant species for education,

museums or exhibitions, plastination is the one realistic solution.

Page 22: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):20 (2014)

PREPARING BONES FOR PLASTINATION USING DERMESTID BEETLES: EFFECT OF

ENVIRONMENTAL TEMPERATURE IN THE GROWTH OF A DERMESTARIUM.

BITTENCOURT A.P.S.1 ; BAPTISTA C.A.C2, BACELAR A.C.1, OUVERNEY T.N. 1, SANCIO L.B.1,

BITTENCOURT A.S.1.

1Federal University of Espírito Santo, Brazil; 2University of Toledo, USA

Purpose: Plastination of bone structures is challenging. It requires bone preparation prior to plastination.

Many techniques to clear the bone from other debris are commonly used such as dissection and

macerations (chemical and heat). One of the major concerns in preparing bones for plastination is the

remaining fat. Osteological preparations should have holes drilled through their cortex into the medulla to

enhance defatting. If fat is retained it will result in greasy specimens years later. Dermestid beetles are well

known, readily available, and used for forensic investigations and preparation of skeletons, mainly for

zoology museums, and less frequently in human anatomy. In order to investigate a fast, accurate and

effective method of preparation of bones for plastination, Dermestid beetles were evaluated with regard to

the ideal temperature for the optimal functioning of the Dermestid colonies (dermestarium).

Methods: The dermestarium was prepared with plastic boxes containing cotton on the bottom, covered

with fine nylon screen, controlled temperature and low light environment. Prior to being introduced into

the dermestarium, bones were clear of excess soft tissue, immersed in 70% alcohol and dried at 40° C in an

oven for 72 hours. The cleaning of the bones by the Dermestid colony was monitored daily. The process was

interrupted when the Dermestids reached the ligaments. The bones were removed from the colony, and at

this point were ready for plastination. In order to identify the optimal temperature for the operation of the

colony, 35 dermestaria were distributed in 5 groups (7 Dermestid colonies per group) and subjected to

specific temperatures: DM1 (17 °C), DM2 (20 °C), DM3 (25°C), DM4 (30°C) and DM5 (35°C). Each

dermestarium was made of 70 Dermestids (20 adults and 50 larvae). Each colony received 150 g of a

substrate of a decapitated Wistar rat, gutted, skinned and dried. The dermestaria were monitored for 15

days. The weight of the digested material from each dermestarium was recorded and compared.

Results: The digested weight (g) ± standard errors were the following: DM1 (0 g), DM2 (0 g), DM3 (109±11),

DM4 (131±2) and DM5 (120±5). In the DM1 and DM2 colonies the larvae and adult Dermestids died

resulting in inactivity of the colony. The DM3 (25°C), DM4 (30°C) and DM5 (35°C) grew as expected but

there were no statistical differences in the weight of digested carcass (one-way ANOVA p > 0.05).

Conclusion: The study showed that temperatures in the range of 25-35° C have the greatest impact on the

growth rate of the Dermestids. Supported by the grant of CNPq, FAPES.

Page 23: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):21 (2014)

WATERLOGGED ARCHAEOLOGICAL IVORY CONSERVATION: ELEPHANT TUSKS

FROM BAJO DE LA CAMAPANA PHOENICIAN SHIPWRECK SITE, AT MUSEO

NACIONAL DE ARQUEOLOGÍA SUBACUÁTICA

BUENDÍA Milagros1, LATORRE Rafael2, LOPEZ-ALBORS Octavio 2

1National Museum of Underwater Archaeology, Cartagena, Spain; 2Department of Anatomy and Comparative Pathological Anatomy; Regional Campus of

International Excellence “Campus Mare Nostrum”, University of Murcia, Spain

Purpose: The underwater archaeological project at the Bajo de la Campana site (San Javier, Murcia, Spain)

was developed under the agreement signed between the Ministry of Culture of Spain and the Institute of

Nautical Archaeology, Texas A&M University (TAMU), between 2007 and 2011. From this Phoenician

shipwreck were recovered different types of materials, among of them 53 elephant tusk, some of them with

inscriptions. The research goal for the conservation of waterlogged ivory, currently being developed, is to

determine a conservation treatment that allows us to remove the excess water and provide mechanical

strength with dimensional stability. We have started the research work with the analytical study of

waterlogged archaeological ivory to determine its chemical composition, the hierarchical organization of its

structural elements, the physical and mechanical properties and the impact on it of the underwater

environment. The practical stage includes experimentation, characterization and evaluation of the different

conservation methods, among which is plastination. Plastination, and a conservation procedure using

polymers, developed by TAMU, are two of the treatments that stand out for their results.

Methods: Two waterlogged archaeological ivory samples from Bajo de la Campana were used for the

plastination assays. A 3D-CT scan study, control pictures and baseline weight were obtained from the

samples before and after plastination in order determine the degree of change caused by this treatment

process. After 5 days of dehydration with acetone at -25ºC samples were impregnated during 24h at room

temperature, sample 1 with S15+S3 mixture (Biodur®) and sample 2 with PR10+CR20 mixture (Corcoran®).

Curing of sample 1 with cross-linker S6 took one week in the gas-curing chamber, and curing of sample 2

with hardener CT32 was finished in one day.

Results: Both silicone techniques were found to have produced a successful treatment. The procedures

assessments were satisfactory; we have been able to remove water from samples with a remarkable

dimensional stability, only 10% (sample 1) and 12% (sample 2) of weight lost after two months of

plastination. Sample 1 was more natural looking with better color and texture than sample 2. Following

treatment, no discernible changes were observed in the physical dimensions of either of the silicone-

plastinated ivory samples. Both samples have acquired the necessary mechanical strength to make possible

their study or display. The results from before and after plastination 3D-CT scans are under processing.

Conclusion Plastination technique, traditionally linked to medicine or veterinary, could be applied on

archaeological heritage conservation and will allow us to preserve the valuable information that these

goods provide as historical documents.

Page 24: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):22 (2014)

UPPER LIMB PLASTINATED SECTIONS IN TOPOGRAPHY STUDIES

BUSARIN Dmitry1, STARCHIK Dmitry1, USOVICH Alexandr2

1 International Morphological Centre, Saint Petersburg, Russian Federation 2 Vitebsk State Medical University, Vitebsk, Republic of Belarus

Purpose: Further development of surgery requires more detailed study of structure and topography of

upper limb neurovascular fascicles. The classical topographical anatomy method of studying frozen sections

was suggested by Nikolay Pirogov. However, transparent plastinated sections are unchallengeable in terms

of studying details of small anatomical structures.

Methods: After morphometry of the upper limbs of 15 bodies (men and women, aged 48-70) they were

placed in sagittal and frontal planes according to bone landmarks. Shoulder and forearm areas were marked

out into 10 sections, and elbow joint areas into 3 areas. After being kept in a freezer at -25° C for 3 days the

limbs were cut by a high-speed band saw into 10-15 mm sections according to the marks. The sections were

then numbered and plastinated according to the E12 method. The end plastinates were examined by the

naked eye and with a binocular loupe at low magnification using an adapted model of polar coordinates.

Results: It was found that preparatory marking out of the limb helps to get similar series of transparent

dissections for further studying and classification of anatomic structures and connections. The transparency

of the plastinates allows thorough and detailed study of both large and small vessels and nerves in

transmitted as well as backscattered/reflective light. A preparatory injection of a colored silicone into the

arterial vessels makes the end dissections extremely revealing. A polar coordinates model provided exact

data on the location of all the neurovascular structures of the shoulder, forearm and elbow joint.

Conclusion: The study of transparent plastinated sections adds new data to the topography of muscles,

vessels, nerves and fasciae in their natural location and state because they are not shifted as happens when

classical methods of dissection are used. This new technique of using a polar coordinates model also makes

mathematical and statistical analysis and data processing possible. Plastinated sections have an unlimited

storage life and can be used for practical training of traumatologists, microsurgeons and radiologists.

Page 25: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):23 (2014)

COMPUTERIZED 3D ANATOMICAL MODELING USING CONE BEAM COMPUTED

TOMOGRAPHY (CBCT) SCANS OF PLASTINATED HEARTS

CHANG Chih-Wei 1, ATKINSON Gregory 1, GANDHI Niket 1, LOZANOFF Beth K. 1, FARRELL Michael

L. 2, TUNALI Selcuk 1,3, LABRASH Steven 1, NORTON Neil S 4, LOZANOFF Scott 1,2

1Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University

of Hawaii, Honolulu, HI 96813, USA; 2ER3D Group LLC, Honolulu, HI, 96822, USA; 3Department of Anatomy, TOBB University of Economics and Technology Faculty of Medicine,

Ankara, Turkey; 4Department of Oral Biology, Creighton University, Omaha NB 68178 USA

Purpose: Computerized modeling of anatomical structures is an important aspect of computer-aided instruction in

medical and allied medical education. Plastinated anatomical material provides an additional data collection approach

since virtually any anatomical or pathological structure routinely obtained in a gross anatomy laboratory can be

imaged. The purpose of this study was to establish a computer modeling approach utilizing plastinated anatomical

material, specifically human hearts, combined with CBCT imaging.

Methods: Four human hearts were collected following gross anatomical dissection and subjected to routine

plastination procedures including dehydration (-25o C), defatting, forced impregnation, and curing at room

temperature. Specimens were subjected to CBCT and DICOM slice images were subjected to 3D modeling utilizing

ER3D software (espressoray3d.com, Honolulu, HI). A GPU-aided marching cubes algorithm was used to convert VOI

(volume of interest) voxels into triangulated surface geometry complete with smoothed surface normals. Surfaces

were shaded using a standard OpenGL-based Phong lighting model. The ER3D file format was utilized to store the

medical imaging data alongside the surface mesh information in one file configuration. Surface models were exported

for viewing on the iPad utilizing Verto Studio 3D application (vertstudio.com, San Diego, CA). Qualitative comparisons

were conducted between plastinated hearts and their corresponding computer models based on a list of

morphological cardiac features commonly identified in the gross anatomy dissection laboratory. A pair match 2x2

contingency analysis was utilized to test the hypothesis that correspondence does not occur (p<.01) between

plastinations and computer models utilizing 25 external and 17 internal cardiac structures.

Results: Qualitative observations confirmed that the heart displayed the expected surface morphological features

typically observable through routine anatomical dissection. A correspondence of 98% achieved when comparing

external features observable on the plastinated hearts with the corresponding computer models indicated a highly

significant statistical relationship between plastinated and computer models.

Conclusion: Results indicate that computerized models can be successfully generated from plastinated material that

provides accurate representations for use in anatomical education. These models can be ported for visualization on

various personal electronic devices including iPhones and iPads.

Page 26: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):24 (2014)

NEW MULTIDIMENSIONAL STAIN FOR PLASTINATION

CONCHA Ismael 1, ILIFF Stanley 2, HENRY Robert W. 3

1 College of Veterinary Medicine, Universidad Santo Tomas, Santiago, Chile, South America; 2 College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA; 3 College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA

Purpose: A new non-toxic, water-soluble stain was developed from a natural pigment. The reddish stain is

not flammable and no additives are needed. The stain can be diluted with water. It may be applied to the

specimen during any aqueous state pre-dehydration, as well as in any siliconized state post-impregnation.

Methods: The stain is shipped as a concentrated aqueous solution and then diluted with water, 1 part of

stain + 9 parts of water. Fresh, fixed or impregnated tissues may be stained. Depending on the plan for the

specimen, the entire specimen may be covered with the stain or stain applied only to select portions or

areas of the specimen. Stain intensity may be decreased by diluting with more water. Once the stain is

applied, the excess stain should be blotted. More information is available at: http://anato.cl/index.php.

Results: The stained specimen will remain this color whether stored in water or formalin for cadaveric

demonstration or if flushed with water to remove fixative prior to dehydration. If stained specimens are

stored wet for over a year, they may need to have some stain reapplied. The stain intensity during

dehydration is not altered. Neither impregnation, nor curing, changes the staining intensity or

characteristics of the specimen. Stain may be applied at any time during its preparation.

Conclusion: This new stain is useful for staining totally any type of specimen, or any portion thereof. Color

intensity may be reduced prior to application by dilution with water. The stain may be applied during any

step of the plastination process; but works best if applied prior to dehydration. The color of the stained

specimen is not altered by acetone and is stable during impregnation and curing. This stain is a good

alternative to other home-made or commercial stains.

Page 27: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):25 (2014)

USING CASTING AND CONSECUTIVE SHEET PLASTINATION, THE UNIQUE

STRUCTURE OF THE VASCULAR PROCESSES IN THE GIRAFFE KIDNEY WAS

ELUCIDATED.

DALL Annette M, CHEMNITZ John

Department of Neurobiological science, Institute of Molecular Medicine, University of Southern

Denmark, Denmark, Europe

Purpose: The giraffe has an extremely high blood pressure, which makes it anatomically and physiologically

a very interesting animal. In regards of this, the vascularization of the kidneys is of special interest. Through

a co-operation with the local zoo, we got the opportunity to study the structure of the kidneys using a

combination of cast and sheet plastination.

Methods: The fresh kidneys were cast by injection of red epoxy-resin in the renal artery and blue epoxy-

resin in the renal vein. The procedure was done according to the “Heidelberg Plastination Folder” by

Gunther von Hagens using E20 from Biodur®. Afterwards the kidney was fixed in 4% formaldehyde before

being sliced into 3 mm thick sections. The sections were then dehydrated in acetone and impregnated with

P40. Impregnated slices were cured by UV-light.

Results: The anatomical division of the organ into cortical and a medullary parts was very distinct using the

combination of casting and sheet plastination. The branching of the arteries at the medulla-cortex transition

zone and the glomeruli in the cortical part of the organ were conspicuous and were examined at higher

magnification. Furthermore, this combined technique was also suitable to study the encapsulation of the

vascular processes, which we have previously shown, was prominent in S10 plastinated kidneys.

Conclusion: The combination of casting and sheet-plastination enhances the potential to study the relations

between the vascular system and the surrounding parenchyma in the giraffe kidney. Compared to the

combination of casting and S10 plastination, it opens up the possibility to examine the structures at higher

magnification; hence the P40 plastinated slices are suitable for microscopy or scanning.

This study further supports the description of the giraffe renal arterial system by Maluf (Anat Rec 267:94-

111, 2002) but the technique is suitable for studying the kidneys from any species.

Page 28: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):26 (2014)

A NOVEL INSTRUCTIVE TOOL FOR TRAINING OF ELECTROPHYSIOLOGISTS

DIDENKO Maxim1, STARCHIK Dmitry2, MARCHENKO Sergey1, KHUBULAVA Gennady1, KAUTZNER

Josef3

1Military Medical Academy, Saint-Petersburg, Russian Federation; 2International Morphological Centre, Saint Petersburg, Russian Federation; 3Institute for clinical and experimental medicine, Prague, Czech Republic

Purpose: Teaching of anatomy is usually realized using photographs, diagrams or CT and/or MR images.

Spatial relationships could be best assessed employing heart specimens. Unfortunately, the use of fresh

fixed hearts is problematic. Human plastinated hearts provide a unique tool to improve knowledge of

relevant anatomy and topography for the electrophysiologists.

Methods: Standard techniques of plastination (S 10, room temperature process, E12) of the hearts from

cadavers that retain its original shape and yet enable specific preparation according to clinical requirements

were used to prepare special demonstration specimens. The fixed hearts were exposed to impregnation

with silicone or epoxy resin, as well as in combination with corrosion techniques. Demonstration pacing

leads, catheters and lights were implanted either during dissection or after plastination.

Results: The specimens were tested in educational courses and in training of cardiology fellows. Several

modifications of clinical plastinated specimens were used: 1) hearts for demonstration of different

structures in the chambers, as well as the valves and a variety of the heart’s blood vessels; 2) slices of the

heart injected with colored silicone according to the typical fluoroscopic projections during

electrophysiological procedures, to the long and short axes during transesophageal and intracardiac

echocardiography views as well as CT and MRI projections; 3) hearts with pacing leads and ablation

catheters in different positions. All subjects provided high scores for the use of these specimens.

Conclusions: Clinically oriented plastination of human hearts provides a variety of opportunities for the

education of fellows. Is conceivable that better knowledge of anatomy will contribute to an improvement of

quality of care in electrophysiology.

Page 29: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):27 (2014)

NIKOLAY PIROGOV– THE FOUNDER OF FROZEN BODY

DISSECTION METHOD

FOMIN Nicolay1, STARCHIK Dmitry2, NISHT Alexey1, BUSARIN Dmitry2

1Military Medical Academy, Saint-Petersburg, Russian Federation; 2International Morphological Centre, Saint Petersburg, Russian Federation

Purpose: One of the most remarkable works by Nikolay Pirogov, a great Russian surgeon and anatomist,

was his “Topographical Anatomy of Frozen Body Dissections” (Anatomia topographica sectionibus per

corpus humanum congelatum triplici directione ductis illustrata, 1859) which became the basis for

plastination techniques E12 and P40.

Methods: Nikolay Pirogov had the idea to use frozen sections of the human body to study the topography

of different organs, cavities and other anatomical structures when he saw a butcher cutting frozen pig

bodies at the local market, Sennoy (which means “hay”) market, in St. Petersburg in 1849. At his Institute of

Anatomy, Nikolay Pirogov did more than 1000 dissections of frozen human bodies in sagittal, frontal and

horizontal planes 7-15 mm thick, using an ordinary saw. Then the artists used glass to copy the sections

onto the sheets of paper where equal square boxes were drawn.

Results: Pirogov’s method, unlike traditional dissection, does not ruin the organs’ connections and provides

natural 3D anatomical structures. From 1849 to 1859 Nikolay Pirogov was busy writing and editing his atlas,

which was published in 4 volumes: “Topographical Anatomy of Frozen Body Dissections”, with 970

dissection pictures and 224 tables with detailed comments. The atlas also presents a lot of research

information on different pathologies, injuries and other physiological states, as well as aging changes and

sex differences. In fact, besides becoming a breakthrough anatomy course and reference book, the atlas

established new ways for topographical anatomy development.

Conclusions: For more than 150 years, Pirogov’s dissection atlas has been an unsurpassed masterpiece and

it is still a valuable manual for surgeons and anatomists. His brilliant technique started a new age in human

body studies and has been used successfully at the initial stages of plastination processes E12 and P40.

Page 30: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):28 (2014)

S10 PLASTINATION OF OESTRUS OVIS AS A TEACHING TOOL.

RESULTS AND LIMITATIONS

GONZÁLVEZ M1, LATORRE Rafael2, LÓPEZ ALBORS Octavio2, ORTIZ J1.

1Department of Animal Health (Parasitology); 2Department of Anatomy and Compared Pathological Anatomy; Regional Campus of International

Excellence “Campus Mare Nostrum”, University of Murcia, Spain

Purpose: Plastination is a well-known process used nowadays in anatomy and surgery teaching, but to date

it has not been commonly used for parasite preservation. In fact, only two works have been found in this

field, one focused on the human nematode Ascaris lumbricoides and another on 11 species of animal

cestoda, nematoda and arthropoda. The aim of this study was to optimize the silicone technique for

plastination of larvae of the parasitic sheep diptera Oestrus ovis for teaching purposes.

Methods: Ten larvae of O. ovis containing a mixture of second or immature stages, and third or mature

stages were used for the plastination assays. The standard method of S10 silicone technique was used.

Results: After plastination of the larvae was finished several problems appeared. Only one of the parasites

was successfully plastinated, while the others showed serious problems such as breakages of the cuticle and

body collapse. Furthermore, specimens lost much weight. These problems could be due to incomplete

dehydration or impregnation since the cuticle thickness and the powerful muscle fibers of the parasite

might have limited complete acetone or silicone tissue embedding. Histological cross-sections of the larvae

before and after plastination might be a useful tool to determine how the problem occurred, especially in

macroscopic defective areas, by comparing the abnormal structure of the plastinated parasites with other

non-plastinated in both types of larvae (mature and immature larvae).

Conclusion: Although silicone plastinated larvae such as Oestrus ovis might be quite useful for teaching or

research purposes, particular adaptations in the standard methodology, such as small cuts in the belly of the

larvae, could help to standardize the technique for insect parasite species.

Page 31: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):29 (2014)

TOPOGRAPHIC ANATOMY STUDY OF UTERINE TUBE AND OVARIAN CAT BURSA BY

MEANS OF ULTRATHIN SLICE PLASTINATION

GUTIÉRREZ Trujillo Hugo Andrés1, 2, LATORRE Rafael 1 and LÓPEZ ALBORS Octavio 1

1Department of Anatomy and Compared Pathological Anatomy; Regional Campus of International

Excellence “Campus Mare Nostrum”, University of Murcia, Spain; 2Department of Animal Health, Faculty of Veterinary Medicine, University National of Colombia

Objective: In the cat female the topographical anatomy of the uterine tube with respect to the ovary is

difficult to understand because the ovarian bursa is closed; the oviduct follows a coiled trajectory and

traditional dissection is not very effective at this site. In this study epoxy ultrathin transverse slices were

used to gain a deeper knowledge of the topographical relationship between the uterine tube, the ovary and

ovarian bursa.

Methods: Two cat body blocks of the ovarian region were prepared to obtain transverse ultrathin

plastinated sections (300 µm). The blocks were prepared following these steps: fixation, dehydration,

clearing, forced impregnation (Epoxy E12, E6, E600, Biodur®) and curing. Ultrathin slides were then obtained

using a diamond saw and cast using the E12-E1 sandwich method (Biodur®) before polymerization for 3

days at 45° C. Each slide was scanned (Epson V 700) both sides at a 2500 dpi resolution. Some details of

greater interest were photographed with a magnifying lens (Carl Zeiss Stemi 2000-C).

Results: In the most cranial slices, the ovarian topography was identified in relation to the abdominal wall

and the ovarian suspensory ligament. In a caudal sequence a detailed spatial relationship was established

between the oviduct and the ovary, highlighting the location of the infundibulum and fimbria in relation

with to medial ovarian aspect. The ovarian bursa, the sinuous oviduct trajectory both in the ampulla and

isthmus, and the mesosalpinx were analyzed in all the sections.

Conclusions: Plastinated ultrathin serial sections of the cat ovarian region contributed to substantially

improving the comprehension of the topographical relationships between the uterine tube and the ovary,

as well as giving essential information about the ovarian bursa peritoneal attachments.

Page 32: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):30 (2014)

PLASTINATION OF THE CRANIOCERVICAL JUNCTION BY DIFFERENT PROCESSES AND

METHODS

HAFFAJEE MR, MATHURA G.

University of KwaZulu Natal

Purpose: To obtain the best plastination preservation method(s) of the transverse and alar ligaments at the

craniocervical junction (CVJ) in order to enable the characteristics of the ligaments to be studied, nine

dissected specimens were plastinated using different methods.

Methods: Specimens of the CVJ were obtained by en bloc removal of part of the base of the skull

surrounding the foramen magnum together with the C1 (atlas) to C3 cervical vertebrae and their soft

tissues. The surrounding muscular tissue was excised. Where possible the spinal cord was left in situ for

orientation.

Two specimens were prepared using the S10 technique on 3mm horizontally sectioned specimens. Three

specimens were prepared using the E12 technique after cutting them in 3mm sections in the three

anatomical planes. Two further specimens were decalcified first in 5% nitric acid in 10% formalin, and tested

after 3-5 days for hardness or complete decalcification. Two specimens were cleared using KOH before

plastination by the E12 technique. Sectioning of the specimens was done with the specimens at -20°C.

Results: Sectioning of the specimens with the band saw was difficult because the specimens came apart in

some cases. The S10 specimens became dark and the different tissues were not easily discernible. The E12

specimens were clear and the ligaments were identifiable, even under high power dissection microscopy.

The remaining specimens were still being cleared before being plastinated and the efficacy of this process

will be elaborated on at the presentation.

Conclusion: The E12 method of preservation is able to differentiate tissues of the CVJ the best, so far. The

method of clearing before plastination was incomplete at the time of submission and its results will be

presented at the Conference. Sectioning of tissues should be done with the specimen embedded in a block

of frozen formalin solution at -20°C to obtain whole specimens which do not become fragmented.

Page 33: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):31 (2014)

POLYESTER PLASTINATION: P40 TECHNIQUE

HENRY Robert W.

College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA

Purpose: Polyester (P35) is the classic technique for plastination of brain slices and has routinely been used for

three decades. Its differentiation of white and gray matter is un-paralleled. Modifications to the polyester process

were made 20 years ago (P40) and 5 years ago (P50), but neither of these improved slice quality. However, ease of

production of slices improved with P40 & P50 (Biodur™). Also, any region of the body may be sliced and the new

resins used for slice production.

Methods: P40-Specimen preparation: the brain is fixed with formalin only; addition of common additives will cause

inferior results. The well-fixed brain is sliced on a “deli slicer” at your desired thickness (2-4 cm) and placed between

grids (metal or plastic) and tied as a package with twine to allow ease of transfer from one solution bath to the next.

Before dehydration, formalin is rinsed from slices in flowing tap water overnight. For body slices, the body is frozen

(ultra cold) fresh and sliced on a band saw (2-3mm). As the slices are produced, sawdust must be scraped off and

the clean slice placed between grids (metal or plastic) and tied as a package with twine and submerged in acetone.

Dehydration is carried out in cold acetone. Depending on slice thickness, two or three changes of pure acetone

every two to three days is usually sufficient. To enhance body slice clarity, defatting in room temperature acetone

or methylene chloride after dehydration is recommended. Impregnation - the exchange of the dehydrant for the

resin, is carried out in a vacuum kettle by decreasing pressure (increasing vacuum) at a rather fast pace (one or two

days). By lowering the pressure, acetone vaporizes and leaves the tissue, assuring a tissue void which will allow the

resin to enter the cells. Impregnation may be done at room temperature of in the refrigerator. Understanding

vapor pressure (vp) principles will assure complete impregnation of the slices with polyester. At 5°C acetone’s vp=

85mm Hg (110 Torr) while at +25°C vp= 210mm Hg (300 Torr). Therefore, at room temperature impregnation

(acetone removal) will commence at a higher pressure (210mm) than in the refrigerator. Impregnation may be

done with only the P40 resin, or a hardener (A4) may be added to aid curing. Finally, once the acetone has been

removed from the specimen, impregnation is complete and the impregnated slices are ready for casting (placing

between two glass plates) and curing. The impregnated slices are placed between two glass plates (2-3 mm) with a

gasket around the perimeter to seal the flat chamber and contain the resin and slice. The constructed flat chamber

containing the impregnated slice is filled with P40, sealed and exposed to UVA light to harden the polyester filled

slices. Curing P40 is an exothermic reaction and the heat must be controlled using a fan/ventilator to prevent

damage to the slice. After curing, the flat chamber is dismantled and the sticky edges of the slice are trimmed with a

saw. To enhance body slice clarity, defatting with methylene chloride or room temperature acetone is

recommended.

Results: Slices produced by the polyester (P40) technique are great teaching aids which show neuroanatomical

detail, are student friendly and are useful for study with MR and CT images.

Conclusion: Plastination has proven to be an excellent method for preservation of biological specimens for 35 years.

The P35 Biodur™ polyester plastination process remains the gold standard for plastination of brain slices. The P40

modification is a user friendly process for brain slices as well as other thin sliced specimens of the body.

Page 34: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):32 (2014)

SILICONE PLASTINATION: COLD TEMPERATURE TECHNIQUE

HENRY Robert W.

College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA

Purpose: The classic technique for silicone plastination has stood the test of time. A few modifications have

been made in the past 25 years but these have not made a huge impact on plastination. The Biodur™/cold

temperature process remains the gold standard. This process will be discussed with reference to today’s

needs.

Methods: Specimen preparation - remains the initial and very important step in silicone plastination and

any other plastination or preservation technique. A specimen needs to be designed with an intended

purpose with thoughts as to: why am I preparing this specimen? How will it be used? And what needs to be

highlighted for this use? Hollow organs must be dilated to some degree and care taken not to over-dilate

the organ. Dehydration - must be complete and carried out in cold acetone over a period of four to six

weeks. It is beneficial to position specimens anatomically correct when dehydration is begun. Impregnation

– the exchange of the dehydrant/intermediary solvent for the polymer-mix, must be done under decreasing

pressure (increasing vacuum) at a slow pace (three to six weeks). By lowering the pressure, acetone leaves

the tissue assuring a tissue void for the silicone-mix to enter and occupy. Since impregnation is dependent

on vaporizing the solvent/acetone and the removal of such, it is important to know the vapor pressure (vp)

of the solvent/acetone at the temperature at which the process is carried out. For instance at -20°C vp =

21mm Hg, at -15°C vp =28mm Hg, at 0°C vp =65mm Hg and at +25°C vp= 210mm Hg. Knowing the vp of

acetone for your selected temperature during impregnation will help assure that you extract the solvent

from the specimen by lowering the pressure enough. Finally, once the acetone/solvent has been removed

from the specimen, impregnation is finished, and the silicone-filled specimens are brought to ambient

pressure and temperature and excess polymer is allowed to drain from the specimens. After the excess

polymer-mix is removed from the specimen, the specimen filled with silicone-mix is treated to a gaseous

cross-linker/hardener. Once the silicone has cured/hardened, the specimen is ready to be used.

Results: Specimens produced by the cold temperature silicone technique are superior, unique, durable,

student-friendly and form an archive of normal or abnormal anatomy.

Conclusion: Plastination has proven to be an excellent method for preservation of biological specimens for

35 years. The Biodur™/cold temperature plastination process remains the gold standard for plastination of

biological tissue.

Page 35: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):33 (2014)

WOODPECKER (PICOIDES NUTTALLII) AND MAPANA (BOTHROPS ATROX)

PLASTINATION USING SILICONE S10

JIMENEZ, Ricardo

Fundacion Universitaria Autonoma de las Americas, Colombia

Purpose: The woodpecker and mapana are animal species endemic of the tropics. The former belongs to a

population of native birds originally from the tropical and subtropical forests, sometimes with migratory

characteristics; and the latter is widely distributed in regions of Central and South America where it is

considered a public health problem for the high number of deaths related to its bite. The purpose of this

work is the preservation of these two species using the technique of silicone S10 plastination according to

von Hagens’ protocols, while presenting particular morphological characteristics (feathers and scales

respectively) that determine important elements in the stages of dehydration and impregnation.

Methods: The woodpecker specimen was found abandoned in a garden with evisceration of intestinal

contents and signs of hemorrhage; the mapana was donated by a snake tamer, delivered in a container with

30 % ethyl alcohol. In both cases the specimens were washed with tap water and then immersed in baths

of 100%isopropyl alcohol at room temperature. The alcohol concentration was determined with a calibrated

alcoholmeter every two weeks; isopropyl alcohol was changed when its concentration was beneath 100%

and until we did not find variation of the concentration in two consecutive measurements. The specimens

were then immersed in methylene chloride for three days and then immersed in a mixture of curable

polymer (silicone S10) with catalyst polymer (catalyst S3) in a ratio of 1 part of S3 per 100 parts of S10 for 24

hours. The next day the process of forced impregnation began, bubbles were observed and according to the

protocol of von Hagens, we began gradually to decrease the vacuum pressure down to 3 mm Hg at which no

bubbles were observed. The specimens were removed, the remnants of the mixture were drained, and they

were then placed in a closed chamber with vaporizing gas curing polymer (S6). In the first week the

specimens were dried with absorbent paper, they were then left in a closed gas curing chamber for six

weeks. In both cases a natural position of the animal was preserved in their natural environment.

Results: The plastination technique was applied to the woodpecker and mapana according to the protocol

of von Hagens; this was conducted smoothly, and the specimens that were obtained retained their external

morphological characteristics and are displayed in the Permanent Exhibition Area of the Morphology

Department of the Fundacion Universitaria Autonoma de las Americas in the city of Pereira, Colombia.

Furthermore, the snake is now also useful as instructional material for medical students in the field of

Clinical Toxicology.

Page 36: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):34 (2014)

RECOVERY WITH PLASTINATION TECHNIQUE OF FORMALIN FIXED ANATOMICAL

SPECIMENS FOR TEACHING IN HIGHER EDUCATION MORPHOLOGY OR MUSEUM

EXHIBITION

JIMENEZ Ricardo, FERNANDEZ Andrés, ORBES Jairo

Fundacion Universitaria Autonoma de las Americas, Colombia

Purpose: The morphology courses taught in Colombia frequently use specimens and bodies that have been

conserved for more than 10 years (this due to the lack of availability of cadavers and human organs and the

traditional preserving techniques using formalin). The high cost of simulators and alternative techniques for

fixing and preserving bodies impedes their implementation in higher academic education. Our main purpose

was to recover old human specimens, fixed with traditional techniques, with silicone plastination for use in

teaching in the anatomy lab.

Methods: In the pursuit of resolving this problem, 24 specimens (due for incineration) were fixed with

formaldehyde, immersed in regular water for a week and, a week later, in saline solution 0.9 %; afterwards

the plastination technique was performed as follows: specimens were dehydrated with isopropyl alcohol for

12 weeks, cleared with methylene chloride, impregnated with silicone Biodur S10® (surplus silicone was

removed with absorbent paper) and curing gas Biodur S3®- all using the protocol from the University of

Murcia.

Results: All specimens were recovered demonstrating a significant improvement in coloration, appearance

and maintenance of morphological characteristics. Nowadays, the specimens are being used in the

academic practices of Medical and Dentistry students.

Conclusion: Plastination is very useful for recovering specimens fixed for long periods of time with formalin,

obtaining optimums results. Specimens obtained are similar in color and appearance to other specimens

with less fixation time using traditional techniques, and they are suitable for use in the teaching lab or

exhibition.

Page 37: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):35 (2014)

THE KLINGLER PREPARATION TECHNIQUE AND PLASTINATION: ORIENTING

STUDENTS TO THREE-DIMENSIONAL NEUROANATOMY

JILWAN Andrew 1, SHUKLA Vipul 1, MASUKO Thelma 2, BAPTISTA Carlos A.C. 1

1The University of Toledo College of Medicine: Department of Neurosciences, Toledo,

Ohio, USA; 2Federal University of Bahia, Department of Morphology, Health Science Institute, Salvador, Bahia,

Brazil

Purpose: This project will discuss the Klingler preparation technique applied to plastination, as well as

assess its potential benefits for orienting students to three-dimensional neuroanatomy.

Methods: Four brains were fixed, dissected using the Klingler method, then subsequently plastinated.

Results: The Klingler method was utilized to display the fiber tracts of the corpus callosum, brain stem and

cerebellum. This technique revealed the numerous bilateral white matter tracts as well the inferior and

middle cerebellar peduncles.

Conclusions: Since its inception, plastination has served as an adjunct in teaching anatomy. If used

properly, plastinated specimens can augment students' understanding of neural architecture. Brains

dissected following the preparation method by Klingler can be plastinated and utilized for visualization of

fiber paths. This technique can be used to highlight complex structures and isolate neuroanatomical

structures that students often have trouble visualizing in three dimensions, such as the corpus callosum.

Page 38: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):36 (2014)

USING PLASTINATION TO PRESERVE KOREAN MARTYRS’ CORPSES

KWAK Dai-Soon, KIM Sang-Hyun, CHUNG In-Hyuk, KIM In-Beom

Catholic Institute for Applied Anatomy / Department of Anatomy

College of medicine, The Catholic University of Korea. Seoul, Korea

Purpose: Most Catholic martyrs’ corpses in Korean shrines are kept without preservative treatments, thus

bodies are being damaged, oxidized, and becoming moldy and decomposed as time passes. It is also not

feasible to store them in an airtight system because the installation and maintenance of such systems is too

costly. Our goal is to preserve Korean martyrs’ whole corpses, not as muscular or organ specimens, using

plastination, which doesn’t cause damage to the tissue, and makes it possible to preserve as semi-

permanent, odorless, and tangible specimens.

Methods: Forty corpses referred to the institution from 2008 to 2010 were studied. They were fixed with

10% formaldehyde for 2 months, and washed for 2 days. Then, they were dehydrated with acetone for 20

days in order to remove residual moisture and fat tissue. They were then vacuum impregnated using

silicone in room temperature and at 4oC, for 15 days each. In room temperature, excess silicone was

eliminated for 7 days, and then the plastination was cured.

Results: About 3 months were required to complete the plastinated specimen of the martyr’s corpses. Till

now, the specimens are safely preserved and no traces of oxidization, mold, or discharge of silicone have

been found. Bone surfaces are more hardened because of the silicone.

Conclusion: Our results support that plastination can be an outstanding way of preservation, reducing

expenditure for airtight systems.

Page 39: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):37 (2014)

CLINICAL PLASTINATION: INSIGHT INTO EMBRYOLOGICAL DEVELOPMENT,

SURGICAL AND SPATIAL ANATOMY OF THE AORTIC ROOT AND RELATED

STRUCTURES

MARCHENKO Sergey1, STARCHIK Dmitry2 , AVERKIN Igor1, DIDENKO Maxim1, SHIKHVERDIEV

Nazim1, KHUBULAVA Gennady1

1Military Medical Academy, Saint-Petersburg, Russian Federation; 2International Morphological Centre, Saint Petersburg, Russian Federation;

Purpose: Clinical plastination is of particular interest in the field of cardiac surgery as it provides a variety of

opportunities for widening of a clinical manner of thinking using plastinated heart specimens.

Methods: For creating demonstration specimens of aortic root and related structures we used standard

plastination techniques of hearts from cadavers while retaining their original shape. Different types of

modern procedures (aortic root remodeling, re-implantation and its modifications) were performed.

Innovative approaches have been implemented to enhance the quality of surgical anatomy for educational

process.

Results: Several modifications of anatomical dissections were developed: 1) modified types of surgical

dissections to expose the aortic root and valve, coronary arteries and conduction system; 2) hearts with

pathological changes of the aortic root and congenital malformations were plastinated; 3) slices of the heart

were injected with colored silicone according to the long and short axis ultrasound views as well as MRI

projections; 4) mechanical and biological valves were implanted. The distinctive feature is that the hearts

are very pictorial and can be easily demonstrated. The cross-sectional and plastinated specimens of the

natural hearts allow us to demonstrate all the details of spatial anatomy of the aortic root and related

structures.

Conclusions: In addition to the traditional anatomical methods, the clinical plastination technique should be

available in clinical centers as it improves the effectiveness of education in ultrasound, radiographic and

surgical anatomy, procedures and techniques. It is necessary to combine routinely-used diagnostic and

surgical projections with heart slices and plastinated specimens as it gives a better understanding even to

the specialists in terms of clinical necessities.

Page 40: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):38 (2014)

SILICONE-BASED COLORATION TECHNIQUE DEVELOPED TO HIGHLIGHT

PLASTINATED SPECIMENS

MCCREARY J., MCCREARY K., ILIFF S., HERMEY D., HENRY R.W.

Lincoln Memorial University – DeBusk College of Osteopathic Medicine, Harrogate, TN, USA

Purpose: To develop a coloration technique that allows the application of pigment to a fully plastinated

specimen that can withstand the rigors of handling through transportation and teaching.

Methods: Once fully plastinated using the Biodur® S10/S15 technique, a silicone-based mixture of methyl

ethyl ketone (MEK), silicone and various Biodur® dye pastes were applied. Once the solutions of silicone

were made, ranging from 0 to 1.0g, aesthetic and durability tests were performed to discover the most

desirable mixture. Durability testing was developed to mimic the usual handling of plastinated specimens

through transportation as well as hands-on teaching of anatomy. These tests include frictional forces made

with a gloved hand, scratching areas with a blunt pointer and scratching various areas with the back end of

a scalpel blade. The final and possibly the most critical testing included discovering the most aesthetically

pleasing amount of dye paste by holding both the MEK and silicone constant and adding incremental

additions of the dye paste.

Results: Throughout the initial testing of varying silicone levels various conclusions were made of both the

aesthetics of the silicone composition as well as the durability. The silicone aesthetics testing, as well as the

durability tests, resulted in choosing a solution under 0.4g. The last experiment, although a more subjective

conclusion, revealed the best visuals results when adding 40μl of Biodur®AC51 for muscles, 80μl of

Biodur®AC50 for arteries and 120μl of Biodur® AC40 for veins.

Conclusion: This silicone-based coloration technique allows a plastinated specimen to don further life-like

visual characteristics to better serve the duty for anatomy and medical education.

Page 41: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):39 (2014)

DEVELOPMENT AND INSTALLATION OF A PLASTINATION LABORATORY USING LOW

COST EQUIPMENT AND MATERIALS

OTTONE Nicolás Ernesto1,2; BIANCHI Homero F.2; FUENTES FERNANDEZ Ramón1; AJA GUARDIOLA

Santiago3; CIRIGLIANO Vanina2; OLORIZ Lucero2; BORGES BRUM Gonzalo2; BLASI Esteban2;

ALGIERI Rubén Daniel2 & BERTONE Vicente Hugo2

1Centro de Plastinación, Facultad de Odontología, Universidad de la Frontera, Temuco, Chile; 2Laboratorio de Plastinación y Técnicas de Conservación Cadavérica, Instituto de Morfología J.J.

Naón, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; 3Laboratorio de Plastinación. Facultad Veterinaria y Zootecnia. Universidad Nacional Autónoma de

México, Distrito Federal, México

Purpose: The aim of this work is to report our experience at creating and assembling low cost plastination

laboratories, seeking to improve the use of economic resources, that may be scarce in some institutions,

and proving that it is possible to get high quality specimens with local materials.

Methods: First, vacuum chambers for small, medium and large specimens were developed following the

guidelines established by Gunther von Hagens in his early work on plastination. We also researched local

procurement of polymers such as polydimethylsiloxane (silicone), dibutylin dilaurate (catalyst) and

tetraethyl orthosilicate (hardener). Vacuum pumps from refrigeration systems were adapted for =utilization

in the forced impregnation step.

Results: Mounting a fully functional room-temperature plastination laboratory was achieved; it allows

developing the technique and obtaining high durability specimens that are widely accepted by students and

professionals.

Conclusion: Plastination laboratories can be mounted for small, medium and large specimens, with local

materials, at low cost and with perfect correlation with the elements used in the original techniques,

ensuring the development of a plastination technique available to any institution.

Page 42: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):40 (2014)

CONTRIBUTIONS TO THE DEVELOPMENT OF PLASTINATION TECHNIQUE

AT ROOM TEMPERATURE WITH SILICONE

OTTONE Nicolás Ernesto1,2; BIANCHI Homero F.2; FUENTES FERNANDEZ Ramón1; CIRIGLIANO

Vanina2; OLORIZ Lucero2; CAAMAÑO Daniela2; LO TARTARO Maximiliano2 & MEDAN Carlos2

1Centro de Plastinación, Facultad de Odontología, Universidad de la Frontera, Temuco, Chile; 2Laboratorio de Plastinación y Técnicas de Conservación Cadavérica, Instituto de Morfología J.J.

Naón, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina

Purpose: The aim of this work is to present a room-temperature plastination technique developed in our

laboratories and the results obtained there from. In this technique, we highlight the use of silicones,

catalysts and generic hardeners, and some variations of the traditional technique, which resulted in a low-

cost technique and also a high speed of implementation.

Methods: Room-temperature plastination was carried out. Dehydration was performed in 1 month, first

three weeks at cold temperature (-20°C) and the fourth week at room temperature, for defatting. After

that, forced impregnation took place, where different specimens were exposed to Biodur silicone, North

Carolina silicone and generic silicone (polydimethylsiloxane) obtained in our countries, with the generic

catalyst, dibutylin dilaurate. The average process for each specimen lasted 3 or 4 days, 8 hours of daily work

(active forced impregnation), stopping the forced impregnation overnight (passive forced impregnation).

After reaching 5 mmHg without bubbling and ending the vacuum process, specimens were drained and

positioned. Finally, curing was performed by exposing the specimens to tetraethyl orthosilicate vapor, also

obtained in our countries. The different morphological characteristics of the specimens determined forced

impregnation time variations, as well as curing. After polymerization was complete, specimens were stored

in plastic bags, facilitating internal curing.

Results: Several plastinated specimens were obtained (human and animals). Three kinds of resin were used:

Biodur, North Carolina and a local production resin. Completely dry, rigid specimens were obtained, which

retained the original color and anatomical shape. Some specimens had also been previously injected with

natural latex, and it remained intact in the final pieces.

Conclusion: Based on our technique, demonstrated in this work, we believe specimens of excellent quality

and durability can be obtained, reducing costs and increasing the speed of production of plastinated

specimens.

Page 43: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):41 (2014)

USE OF PLASTINATED MATERIAL IN DETRIMENT OF TRADITIONAL MODELS:

VERIFICATION OF PREDILECTION OF HUMAN ANATOMY STUDENTS

PEREIRA Kleber Fernando, BARROS Henrique Pereira, DA SILVA Ivan Nascimento, LIMA Fabiano

Campos, SANT´ANA Hugo Gustavo Franco; FILHO Albérico José De Moura

Federal University of Goias

Purpose: The use of anatomical specimens is of fundamental importance for the study and learning of

anatomy. Various types of anatomical parts are employed for this purpose, each with advantages and

disadvantages. The objective of this field study was observational and cross-checked the preferences of

undergraduate students in dentistry, nursing and physiotherapy, who attended the course of human

anatomy that semester, totaling 338 students, in relation to the type of part to be studied.

Methods: We used the heart laboratory study at the Anatomy Faculty of the Integrated Faculty Tiradentes -

FITS, Brazil, with each group comprising synthetic specimens (group 1), glycerin (group 2), preserved in

formaldehyde (group 3), plastinated (group 4) and plastinated stained (group 5). The specimens were

prepared in the stands at random and each student chose at their discretion, the part that they found more

attractive and would rather study, stating the order of preference and the reason for the choice.

Results: We observed that most preferred group 5 (64.2 %), followed by group 4 (21.6%), group 1 (10.9%),

group 2 (2.4 %) and group 3 (0.9%). The positive and negative reasons for their choice were listed and

assigned 1 point for each positive item and -1 to negative: they are natural, anatomical accuracy, no

unpleasant odor, similar to living organ staining, non-irritating to the nose and eyes, able to manipulate

without gloves, leaving no residue on the hands and benches, availability of specimens in the institution.

The results were: Group 5 received 6 points, followed by 1 to 4 groups each with 4 points; group 2 received

note -2 three points.

Conclusion: We conclude that plastinated specimens, mostly colored, represent major anatomic fidelity by

being natural specimens and are very attractive to students, encouraging them and improving their

learning, requiring however, that they should be more common in colleges of Brazil where the number is

very limited or non-existent, and should replace the formalin and glycerin specimens that are unhealthy and

unattractive for anatomical study.

Page 44: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):42 (2014)

THE FIRST DALIAN PLASTINATION WORKSHOP: A NEW APPROACH

TO UNDERSTANDING THE ART OF PLASTINATION

RAOOF Ameed1, SUI Hongjin2

1The University of Michigan Medical School, Ann Arbor, Michigan, USA; 2Dalian Medical University, Dalian, China

Purpose: The workshop aimed at introducing participants to the basic concepts of plastination and its

applications.

Methods: The first Dalian plastination workshop was held at the Dalian Hoffen Plastination labs, China,

August 12th-17th, 2013. There were 7 participants in the workshop, representing South Korea, China and

Egypt in addition to the USA. The first couple of days were dedicated to low temperature silicone

plastination, and the last couple of days were for sheet plastination using the P45 method, a modification of

the P40 technique using a warm water bath to cure sections instead of UV light. Participants had several

opportunities for hands-on experience starting from dissection, sectioning, positioning, and even doing the

final trimming of the polyester sections.

The most interesting part for me was a critique of several faulty preparations aimed to alert participants to

avoid common mistakes during the plastination process.

The workshop included an evaluation and feedback questionnaire to improve future Workshops (a

workshop will be held again in August 2014), and was concluded by a visit to the ‘Mysteries of Life Museum’

in Dalian where a wide range of human and animal plastinated specimens are exhibited.

Results: Participants had ample opportunities for dissecting and preparing specimens for plastination.

Participants expressed obvious satisfaction with the workshop approach especially with the demonstration

of faulty specimens.

Conclusion: The workshop was a great success. The section on the critique of faulty specimens was very

useful, informative, and represented an innovative approach to understanding plastination. Thanks to Dr.

Sui and to his staff for their thorough and meticulous preparation and for their remarkable hospitality.

Page 45: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):43 (2014)

RESTORING AND REPAIRING PLASTINATED SPECIMENS TO PROLONG USEFULNESS

AND ENHANCE EDUCATIONAL VALUE

RAOOF Ameed

The University of Michigan Medical School, Ann Arbor, Michigan, USA

Purpose: The extensive and regular use of plastinated specimens in anatomy classes exposes these

specimens to a significant degree of deterioration rendering them almost useless. At this stage they no

longer serve the purpose they have been prepared for. We employed a basic technique to restore

plastinated specimens where muscles and neurovascular structures are reconnected and re-painted to

restore the original appearance and promote usability and significance in anatomy education.

Methods: Human plastinated specimens, including whole bodies (male and female), torsos, upper and

lower limbs and pelves have been extensively used in anatomy teaching for almost a decade in the

Department of Physical Therapy at Mt. Saint Mary College, Los Angeles, California. The specimens were

prepared at the University of Michigan Plastination laboratory. A large number of muscles had suffered

detachment. Multiple nerves and vessels were disconnected, and several segments were discolored. A

simple silicone glue was used to re-attach structures and water-based paint was used to re-color vessels and

nerves. The restoration process took around 48 hours to complete.

Results: The specimens’ appearance improved remarkably following the restoration process. Muscles and

neurovascular structures were reconnected to recompose their normal anatomical shape.

Conclusion: The restoration and repair process is essential in maintaining the usefulness and sustainability

of plastinated specimens. Periodic restoration will prolong the lifespan of plastinated specimens for a much

longer time and therefore fully serve the educational purpose for which they were initially prepared.

Page 46: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):44 (2014)

THE GROSS ANATOMY LAB IN USAGE OF DICOM DATA AND CORRELATION

OF SHEET PLASTINATION

SCHINDLER Nadine; IHLE Brit; DOLL Sara; KIRSCH Joachim

Ruprecht-Karls-Universität Heidelberg Institute of Anatomy and Cell Biology, Heidelberg, Germany

Purpose: The use of datasets from computerized tomography (CT) and their application in Anatomy classes

is of special relevance at the Institute for Anatomy and Cell Biology of the University of Heidelberg. Since

winter term 2012/13 datasets from a multi-line CT are used to support a classical dissection course.

Historically the dissection course was complemented by optional classes of “Virtual Anatomy” in which

students study topographical Anatomy, using standardized CT-datasets. These datasets illuminate the

regular Anatomy and selected pathological conditions. The additional usage of plastinated body sheets

allows a direct comparison between imaging and Anatomy.

Methods: Now the Institute of Anatomy and Cell Biology can generate a complete CT dataset from each

body donor. This procedure not only enables detection of important anatomical changes or variations

before embalming and dissection, it also enables the students to directly correlate imaging data with the

conditions found during the dissecting classes. In this context it proved to be helpful to enhance the

visualization of blood vessels by injection of contrast agents prior to embalming. Moreover, plastinated

body sheets were also used to improve topographical knowledge and interpretation of CT data.

Results: Thus, the students can toggle between different visualization methods and thereby improve their

knowledge of topographical Anatomy as well as their skills in interpreting CT data. As an additional way to

visualize anatomical data in a different modality, the Institute uses an “Anatomage Table” (Anatomage Inc.,

San Jose, Ca, USA) which allows the visualization of CT scans, as well as other anatomical images, with a

body donor virtually lying on a table.

Conclusion: Thus Heidelberg University applies a multi-modal and comprehensive method to guarantee that

medical students receive a profound anatomical training, which by its own rights already points to

forthcoming routine clinical procedures.

Page 47: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):45 (2014)

NEW DEHYDRATION METHOD IN PLASTINATION PROCESS

SETAYESH MEHR Mohsen1, ESFANDIARI Ebrahim2, RABIEI Abbas Ali3

1Instructor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical

Sciences, Isfahan, Iran; 2Professor, Department of Anatomic Sciences, School of Medicine, Isfahan University of Medical

Sciences, Isfahan, Iran; 3Assistant Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of

Medical Sciences, Isfahan, Iran

Purpose: Dehydration of specimens is an important step of plastination, a process of which exchanges the

specimen fluid (water and fat) with an organic solvent. The dehydrating agent must be miscible with water.

Cold acetone usually is the best solvent for dehydration. This process leads to huge amounts of waste

acetone contaminated by water and fat, which produces the old acetone as a hazardous waste. Acetone is a

colorless and highly flammable manufactured liquid. It is used as a solvent, in the plastics industry, and as a

cleaning agent etc. Breathing acetone fumes can cause nose, throat, lung, and eye irritation. Also exposure

to high levels of acetone can cause death, coma, unconsciousness, seizures, and respiratory distress. The

purpose of this study is to establish a new method for the dehydration step in plastination to decrease the

disadvantages associated with acetone.

Methods: Each group of specimens was transferred to 99% acetone baths at -25˚C. 10 % (W) solid calcium

chloride as the water absorbent was added to experimental container (E). Acetone purity was measured

using acetonometer every two days. After a week, the acetone inside the control container (C) was replaced

with pure acetone and the aqueous phase in the bottom of container E was removed and 10 % (W) solid

calcium chloride was added to the container. This process was repeated until complete dehydration was

achieved, i.e., when the acetone percentage remained constant for 2 containers.

Results: The acetone used for group E was one third of group C. There was no significant difference

between the E and C groups of plastinated specimens with regard to points of strength, flexibility and color.

Conclusions: Our new method was found to be much more economical and safer than the conventional

dehydration method. Properties of the specimens dehydrated by the new method were the same as the

conventional method.

Page 48: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):46 (2014)

PRINCIPLES OF EPOXY PLASTINATION TECHNIQUE (E12)

SORA Mircea-Constantin

Center for Anatomy and Cell Biology, Medical University of Vienna, Austria

Purpose: The E12 plastination process is a well-established preservation technique used for demonstration

in teaching and also in research.

Methods: Material and slicing: for E12 plastination we usually use fresh tissue which is frozen at –80°C for

one week. In the next step slices with an average thickness between 3 and 5mm were cut. The slices were

stored at -25°C overnight. Dehydration and degreasing: the acetone used for dehydration is cooled at –25°C.

Each slice will be placed between soft plastic grids in order to allow better circulation of the dehydration

fluid. The acetone was changed once after 3 days at a concentration of 96%, by using technical quality

acetone. The final concentration of the dehydration bath was 99%. When dehydration was finished the

freezer was disconnected. Next day, the acetone was changed with room temperature methylene-chloride

(DCM) for degreasing. Degreasing was finished after 7 days. Impregnation: impregnation was performed at

+5°C using the following epoxy (E12) mixture: E12/E1/AE10 (95:26:10 pbw). The slices were submerged in

the E12 mixture and placed in a vacuum chamber. Pressure was continuously reduced over the next two

days down to 2 mm Hg.

The slices are cast between two sheets of tempered glass with a 4 mm flexible gasket used as a spacer. The

slices are placed between glass plates, sealed, and the flat chambers were filled with casting mixture. They

were then placed for one hour in a vacuum chamber at 3 mmHg to remove small air bubbles present in the

resin. Large bubbles were removed afterwards manually. After bubble removal, the flat chambers were

placed horizontally, inclined at 15°, and left for one day. The polymer became more viscous and sticky and

after one more day the flat chambers containing the slices were placed in an oven at 45°C for 4 days.

Results: The transparency and color of the slices were perfect and shrinkage was not evident. The finished

E12 slices were semi-transparent, easy to orientate and offered a lot of anatomical details down to the

submacroscopic level.

Conclusion: The E12 technique was and still is the method of choice for producing transparent body slices.

Transparent body or organ slices are used for teaching and research purposes, because they allow the study

of the topography of all body structures in a non-collapsed and non-dislocated state. In addition, the

specimens are useful in advanced training programs (CT and MRI).

Page 49: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):47 (2014)

THREE-DIMENSIONAL RECONSTRUCTION OF ANATOMICAL STRUCTURES

BY USING PLASTINATED CROSS-SECTIONS

SORA Mircea-Constantin

Center for Anatomy and Cell Biology, Medical University of Vienna, Austria

Purpose: Computerized reconstruction of anatomical structures is becoming very useful for developing

anatomical teaching modules and animations. Although databases exist consisting of serial sections derived

from frozen cadaveric material, plastination represents an alternative method for developing anatomical

data useful for computerized reconstruction. The purpose of this study was to describe a method for

developing a computerized model of different anatomical specimens by using plastinated slices.

Methods: Different anatomical specimens (ankle, lumbar spine, skull, and shoulder joint) were used for this

study. A tissue block containing the desired region was removed from the cadaver, then dehydrated,

degreased and finally impregnated with a resin mixture E12/ E6/ E600. Using a band saw the E12 block was

cut into 1 mm slices. Once scanned, these images of the plastinated slices are loaded into WinSURF and

traced from the monitor. After all contours are traced, the reconstruction is rendered and visualized.

Results: The generated 3D models display a morphology corresponding qualitatively to the actual cadaver

specimen. The quality of the reconstructed images appeared distinct, especially the spatial positions and

complicated relationships of contiguous structures. Soft tissue features were easily seen when displayed

with the bones positioned in the background. All reconstructed structures can be displayed in groups or as a

whole and interactively rotated in 3D space.

Conclusion: Plastination provides a useful alternative for generating anatomical databases. The

reconstructed model can be used for residency education, testing an unusual surgery, and for the

development of new surgical approaches.

Page 50: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):48 (2014)

ADVANTAGES OF PLASTINATED SPECIMENS FOR TEACHING PATHOLOGY

STARCHIK Dmitry

International Morphological Centre, Saint-Petersburg, Russian Federation

Purpose: Plastinated specimens have been an integral part of general anatomy courses at medical schools

in Russia for more than a decade. However, we are still to see extensive use of plastinates in teaching

pathological anatomy.

Methods: The International Morphological Centre in Saint Petersburg, Russia, has produced more than 300

plastinated specimens to be used in pathological anatomy courses. Pathological material sampling was

carried out in morbid anatomy departments of St. Petersburg hospitals in compliance with the requirements

of a pathological department’s curriculum, covering all essential pathological bulk specimens. The specimen

selection process included taking photographs of the specimen and tissue and organ fragment sampling for

histological study. The selected specimen was dissected again and marked, then it was fixed in

formaldehyde solutions with increasing concentration for 2 to 8 weeks. When fixation was completed and

histological study results had been obtained, each specimen was used for producing both a three-

dimensional silicone plastinate and transparent plastinated slices. The room temperature silicone

impregnation technique was applied to produce three-dimensional plastinates, and the conventional flat

chamber E12 method was used to make transparent plastinated slices.

Results: It has been found that the most efficient way to demonstrate pathological changes in organs is to

present three-dimensional plastinates along with transparent plastinated slices. Some pathological states,

e.g. recent myocardial infarction or chronic venous congestion, cannot be clearly seen in silicon plastinates

after formaldehyde fixation, and thus transparent plastinated slices are the only way to demonstrate such

phenomena. Silicone plastination should be applied to produce this type of specimen only after Kaiserling

fixation, which preserves the natural color of organs and tissues. Transparent plastinated slices can

efficiently be used when studied in transmitted light of a binocular loupe with low magnifying power.

Conclusion: Plastinated specimens have proved to be a highly efficient teaching resource in pathological

anatomy courses, and they undoubtedly have a number of advantages when compared to conventional

specimens, since the students demonstrated better understanding of pathological processes. Integrating

plastinated specimens in a pathological anatomy curriculum gives more variety to teaching and empowers

research techniques.

Page 51: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):49 (2014)

PROS AND CONS OF ROOM TEMPERATURE PLASTINATION TECHNIQUE

STARCHIK Dmitry

International Morphological Centre, Saint-Petersburg, Russian Federation

Purpose: The last decade has seen new room temperature plastination which is different from the classical

cold method developed by Gunther von Hagens. Along with general plastination techniques the new

method uses a different impregnation polymer compound and a different procedure during specimen

hardening.

Methods: A series of experiments was undertaken to plastinate anatomical specimens using Biodur-S10®

and room temperature technique, IMC modification. At the same time, fixation, dehydration and degreasing

were done according to the classical technique. Comparative criteria included polymer price, electricity

costs, extra equipment, duration of impregnation and hardening, end-plastinates physical properties and

external appearance, as well as workability and personnel safety.

Results: One of the advantages of room temperature plastination is low viscosity of the polymer compound

which facilitates impregnation and reduces its duration and also simplifies monitoring. Another advantage

is that the polymer compound is nonreactive, which makes extra refrigerators and hardening chambers

unnecessary, and, besides, results in lower electricity bills. On the other hand, there are some drawbacks

too, namely – high cost of low-molecular silicone, complications when trying to get high elasticity

specimens, a limited time frame for the hardening stage and lower transparency of the hardened

specimens.

Conclusion: The choice between cold and room temperature plastination depends on laboratory equipment

and accessories as well as the objectives. We maintain that room temperature plastination can be

recommended for medium-size laboratories that want to save on equipment cost and electricity, and for

plastination of parenchymatous organs and brain. The major goal of this technique is to obtain results

quickly. However, the classical method has more advantages at the hardening stage, uses more common

polymers and is better to produce whole plastinated bodies and high elasticity hollow organs.

Page 52: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):50 (2014)

ANATOMIC, ULTRASONOGRAPHIC, COMPUTED TOMOGRAPHY AND MAGNETIC

RESONANCE STUDY OF THE MEDIAL ASPECT OF THE CANINE ELBOW JOINT

VILLAMONTE A. CH1, LATORRE R.2, SOLER M.1, Gil F.2, SARRIA R. 2, AGUT A. 1

1Department of Medicine and Surgery; 2Department of Anatomy and Compared Pathological Anatomy University of Murcia Spain

Purpose: Anatomical, ultrasonographic (US), computed tomographic (CT) and magnetic resonance imaging (MRI)

studies of the canine elbow joint have been reported separately. The purpose of this study was to assess the canine

elbow joint by means of US (high frequency transducer of 18 MHz), CT and MRI and correlate the images with

plastinated anatomical sections obtained on the same planes used in the imaging protocols.

Methods: Anatomical study: 10 forelimbs obtained from 5 adult German Shepherd cross-breed dog cadavers were

frozen at -70° C to obtain transparent sections (2mm thick) on the same planes as the imaging studies; anatomical

sections were preserved using the E12 plastination technique. Ultrasonographic study: 10 elbow joints from 5 adult

German Shepherd cross-breed dogs were evaluated using an 18 MHz linear array transducer. CT study: 6 elbow

joints from 3 adult German Shepherd cross-breed dogs were evaluated, and reformatted images were obtained on

the same planes as the ultrasonographic study. Magnetic resonance study: 6 elbows joints from 3 adult German

Shepherd cross-breed dogs were evaluated using T1 and T2 weighted protocols. Correlations between imaging

techniques results and anatomical sections were made.

Results: The US study assessed, on the medial aspect of the joint, the insertion of the tendons of brachialis and

biceps brachii muscles, the medial collateral ligament and the medial coronoid process. CT evaluated the cortical

and subchondral bone of the medial coronoid process, the trochlear notch of the ulna, the radial incisures, the

anconeal process and the humeral condyles. MRI assessed soft tissue structures such as cartilage, the flexor

muscles and their tendons of origin, collateral ligaments, and the insertion of the tendons of brachialis and biceps

brachii muscles. There was a good correlation between the images from diagnostic imaging techniques and the

transparent anatomical sections.

Conclusion: Our results agree with those obtained in previous studies where the canine elbow joint was evaluated

by one imaging technique at a time. This work, however, combines anatomical plastination and three diagnostic

imaging techniques at once. By means of a high frequency transducer a better ultrasonographic resolution of soft

tissue structures was observed, especially the insertion of the tendons of biceps brachii and brachialis muscles on

the ulna. US and MRI techniques were found to be suitable for soft tissue structures, whilst CT was more

appropriate for assessing bone structures. Correlation of plastinated anatomical sections and images of three

different diagnostic imaging techniques leads to a comprehensive understanding of the canine elbow joint.

Page 53: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):51 (2014)

SYNERGISTIC EFFECTS OF SHEET PLASTINATES AND ANATOMICAL PHOTOGRAPHY

VON HORST Christoph

HC Biovision – Institute for anatomical demonstration, Germany

Purpose: Sheet plastinates provide specific insights into anatomy. In addition the details and functional

aspects recognizable in a real anatomical plastinate are far more authentic and fascinating than pictures in

books or on the screen. This is particularly important if the anatomy is also to be presented in nature

museums, secondary schools, etc. On the other hand the use of pictures has obvious advantages. The goal

of this study was to find ways in which real sheet plastinates and pictures thereof can be combined with

synergistic effects.

Methods: Sheet plastinates of various animal species were prepared using the patented Tissue Tracing

Technique (TTT), Selective Impregnation (SI) and regular flat chamber sheet plastination. Overview and

high-resolution detail pictures were taken from finished sheet plastinates. The pictures were edited and

labelled if necessary. Prints were produced in various sizes, on different materials and presented in

combination with real sheet plastinates, acrylic-embedded prints and screen presentations.

Results: Enlarged overview prints and labelled detail views of plastinates can highlight specific aspects and

provide a better understanding of the anatomy than plastinates alone. A combination of a real sheet

plastinate with high resolution detail images of the same specimen allows the user to track back any visible

detail and given information to the real specimen. In an exhibition setting, the use of acrylic embedded

prints or high quality picture prints seems most convenient. Interactive screen presentations that allow the

user to highlight different fields of interest can be used in e.g. biology classes, but also in nature museums

and other exhibitions.

Conclusions: Combining the authenticity and fascination of a real sheet plastinate with labelled detail views

and enlarged pictures produces a synergistic effect in two ways:

Obviously structures in a real specimen can be identified more easily and functional aspects better

understood with the help of a labelled photograph besides the real specimen.

The other ways round people tend to verify the information provided in the pictures immediately by looking

at the real specimen. When they succeed in tracking back the given information to what they can find and

learn with their own eyes directly from nature, this can create a lot of trust and spark interest in science.

Real specimens that are not exactly the same as the one in the picture can be used as long as structures can

be clearly correlated, but the synergistic effect is much higher if the specimen shown in the pictures and

presented in reality is identical.

Page 54: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):52 (2014)

DEFINITION OF THE “TO-BE-NAMED LIGAMENT” AND VERTEBRODURAL LIGAMENT

AND THEIR POSSIBLE EFFECTS ON THE CIRCULATION OF CSF

YU Sheng-Bo, SUI Hong-Jin, ZHENG Nan, YUAN Xiao-Ying, LI Yun-Fei, CHI Yan-Yan, GAO Hai-Bin,

ZHAO Xin, SHARKEY John

Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, China;

Dalian Hoffen Bio-Technique Co. Ltd., Dalian, China

Purpose: The purpose of this study was to examine the presence of a connection between the dura mater

and the posterior wall of the spinal canal at the level of C1-C2 and to examine its course and composition.

Methods: Gross dissection was performed on the suboccipital region in 10 cadavers. Ten head-neck

specimens were sliced, having been treated with the P45 plastination method. The P45 sheet plastination is

a relatively new-patented technology in china. It is a special polyester resin corrosion method designed to

preserve biological sectional specimens in situ and the P45 plastination sheet provides good light

transmission, allowing the internal structure of the sheet to be shown clearly and intact.

Results: Within all 10 specimens a dense fibrous band was clearly identified in the nuchal ligament. It arose

from the tissue of the posterior border of the nuchal ligament and then projected anterosuperiorly to enter

the atlantoaxial interspace. It was termed as the “to-be-named ligament” (TBNL). In all specimens the

existence of a fibrous connection was confirmed between the dura mater and the posterior wall of the

spinal canal at the level of C1-C2. It was identified as vertebrodural ligament (VDL). The VDL was subdivided

into three parts. Five variations of the VDL were identified according to the anatomical differences of each

part of the VDL. The TBNL and VDL firmly link the posterior aspect of cervical dura mater to the rear of C1-

C2 and the nuchal region.

Conclusion: According to these findings, the authors speculate that the movements of the head and neck

are likely to affect the shape of the cervical dural sleeve via the TBNL and VDL in some manner. Based on

the continuity of the connective tissues concerned this speculation seems to be reasonable. It is

hypothesized that the muscle-VDL-dural sleeve complex, in the suboccipital region, may work as a pump to

provide an important force required to actively move the CSF in the spinal canal.

Page 55: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):53 (2014)

SHEET PLASTINATION WITH BRAZILIAN COMMERCIAL CLEAR POLYESTER CASTING

RESIN AND PROPANOL AS INTERMEDIARY SOLVENT

ZIDDE Daniel H. 1, DE PAULA Rafael C. 2, SAMPAIO Francisco J.B. 3, HENRY Robert W. 4, PEREIRA-

SAMPAIO Marco A. 2,3

1College of Physiotherapy, Serra dos Orgaos University, Teresopolis, RJ, Brazil; 2Department of Morphology, Fluminense Federal University, Niteroi, RJ, Brazil; 3Urogenital Research Unit, State University of Rio de Janeiro, RJ, Brazil; 4College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA

Purpose: In South America, local polymers are not available for plastination and must be imported, making

plastination costly. A local source for inexpensive polymer would help make this technique financially viable.

In Brazil, acetone – the recommended intermediary solvent, may only be purchased and used by a licensed

organization. This license is difficult to obtain. Hence, to use acetone for an intermediary solvent is nearly

impossible. This study evaluated a Brazilian commercial clear polyester casting resin for sheet plastination

and propanol as an intermediary solvent.

Methods: Two canine heads (fixed and frozen) were sliced @3 mm on a band saw. Slices were divided into

two groups and dehydrated in cold acetone or in propanol at room temperature. Acetone was changed 4

times every 3 days. Propanol baths started at 50% and changed weekly into 60%, 70%, 80%, 90% and 100%

propanol. After dehydration, the slices were impregnated under vacuum, at room temperature. The

Brazilian polyester casting resin was diluted with 1% styrene monomer to make the resin less viscous. Rapid

bubbling was maintained for two to three hours. After impregnation was complete, the slices were placed

between two acetate sheets with enough resin to cover both surfaces of the specimen. For hardening, the

specimens were exposed to the sunlight (UV light) for 12 hours. After hardening the resin, the acetate

sheets were removed and the resin sheets containing the specimen had their edges trimmed with a band

saw. The slices were evaluated with respect to their overall appearance, transparency and usefulness.

Results: Both solvents dehydrated the slices. During impregnation, solvent extraction (bubble formation) in

both groups was similar. Bubble production corresponded to intermediate solvent evaporation and

extraction; and hence, the penetration of the resin into the tissue. Bubble production occurred at different

pressures. Bubbles formation in acetone-dehydrated specimens started at 200 mm Hg (due to acetone’s

high vapor pressure), while propanol-dehydrated specimens (due to propanol’s low vapor pressure) started

at 27 mm Hg. However, this difference did not affect impregnation rate, which was completed in 2-3 hours.

The general appearance of the slices was similar and all were useful for anatomical study, but the propanol-

dehydrated slices were more transparent, providing better viewing through the resin.

Conclusion: Brazilian polyester casting resin was effective for sheet plastination. Propanol was an adequate

intermediary solvent. It is concluded that propanol and Brazilian resin are a means to expand sheet

plastination in South America, since it is 5 times less expensive than imported sheet plastination resins and

propanol is much easier to purchase than acetone.

Page 56: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):54 (2014)

BODY DONATION FOR BODYWORLDS AND ANATOMICAL SCIENCES

VON HAGENS Rurik

The Institute for Plastination, Heidelberg, Germany

Purpose: The program was started in 1983 at the University of Heidelberg, and transferred to the newly-

established Institute for Plastination in 1993. A total of 14,499 donors have registered, of whom 13,067 are

living. So far 1,432 bodies have been received.

Methods: Potential donors are provided with a brochure and questionnaire giving full details of the

program. There is no financial incentive; within Germany the IfP covers the costs of transport of the

deceased. Donors sign a ‘Declaration of Intent’ to donate: this is not a binding contract and can be revoked

at any time. Regular meetings of body donors are held, and there is an ‘Independent Federal Association of

Body Donors’ in Germany.

Results: Breakdown of donors according to age and sex: of the living donors, 7357 (56%) are female and

5710 (43%) are male; 604 (42%) of the deceased were female and 828 (57%) were male. The majority of the

donors (69%) are over 51 years of age, 18% are between 41-50 years, 13% are aged 40 years or below. Just

under a third of donors (31%) are also organ donors, and 35% have also agreed to tissue donation. Attitudes

to anonymity were fairly evenly split, with 56% requesting that their body or body parts remain anonymous,

and 44% not.

Conclusion: Motivation for donation is varied, with the most common reasons being altruistic. 88% of

donors agreed with the statement “I would like to donate my body to a good cause”; an almost equal

number (81%) agreed that “I would like to contribute to medical research”.

Page 57: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):55 (2014)

Minutes

17th Biennial Business Meeting of the International Society for Plastination

held in Saint Petersburg, Russia, July 17th, 2014

1. Call to Order

The 17th Biennial Meeting of the society was called to order at 10:00 a.m. by the President Carlos A.C. Baptista. There were 21 members present at the ISP meeting. The quorum was established.

2. Approval of the minutes of the 2012 business meeting

The minutes were approved as printed / put online in the Journal of Plastination volume 25 (2013)

3. Reports of the Officers:

President´s Report

Report of the Meeting in Beijing 2012: the President referred to the meeting report published in the Journal of Plastination. He briefly presented some highlights concerning the speakers and the Dalian visit.

Treasurer´s Report

Revenue and Expenses:

Balance as of July 31st, 2012 $22,866.72

Deposits from members (67) $4,826.23

Expenses $4,396.72

ISP account balance July 10th, 2014 $23,326.23

Membership

Number of members: 206, but a significant number have not paid the membership fee for the last biennial period.

In the future there shall be two centers of payment: one will be located in the US and one in the EU (Spain) to avoid fees that are subtracted from the transferred sum and to make the payment easier in general.

Question from member: How can the member verify that the PayPal payment went through and was

received by the ISP? Answer: PayPal issues a receipt / invoice which clearly states that the amount was paid.

Apart from that the ISP treasurer can send a certificate of payment and membership if explicitly requested.

Question from member: Are all members paying the same membership fee? Are there different fees for

different membership categories? Answer: All members pay the same membership fee except emeritus

members. It was clarified who should be considered an emeritus member: All present members approved

that only members who have completely retired from working shall be emeritus members and not pay

membership fees.

Page 58: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):56 (2014)

4. Journal of Plastination Interim Editor Report (Dr. Baptista)

Since the special issue Volume 24 of the Journal of Plastination was brought out for the years 2009 to 2012, two more Volumes 25-1 and 25-2 were published in paper and online formats. The Interim Editor, Carlos Baptista, reported that new ISSN numbers were issued for the online and paper copies of the Journal. Because the Journal of Plastination is a new name, the Journal had to be issued with a new number. The online version had never been given an ISSN number. Volume 26-1 shall be about the International Conference of Plastination 2014, including the abstracts of all poster and oral presentations and minutes of the ICP 2014 Business Meeting. For Volume 26-2 there are a number of articles in the process of being reviewed. It is intended that this issue shall be published by December 2014.

Since Ming Zhang resigned as editor of the Journal of Plastination, Carlos Baptista has served as Interim Editor. The President suggested the name of Philip J. Adds to serve as the next Editor-in-Chief of the Journal of Plastination. Membership enthusiastically embraced and approved Philip J. Adds as the new Editor-in-Chief of the Journal of Plastination.

Question and suggestion from Robert Henry: Members should be able to receive hard copies of the journal if they like. An option would be a print-on-demand solution. It was agreed that there shall be a finalised complete hard copy version of the issues of the complete year available to members. Members will only get a hard copy if they explicitly request one and pay their dues.

5. Announcements

Anyone who would like to host an interim meeting should please let the ISP governance know. The main goal of the interim meetings used to be workshops and practical training. As this is now achieved by the workshops in Murcia, Toledo and Dalian, Interim Meetings are not considered obligatory anymore. Nevertheless any suggestions for hosting an Interim Meeting are appreciated.

6. Old business

No old business

7. New business

18th International Conference on Plastination (2016) Two candidates were presented: Durban, South Africa and Pereira, Colombia

The President Carlos Baptista presented on behalf of Dr. Amaechi Okpara who could not be present at the meeting. Dr. Carlos Baptista presented the PowerPoint slides provided by Dr. Okpara as a candidate for the 18th ICP 2016. The conference would take place in July 2016 and would be hosted by the University of KwaZulu-Natal in Durban, South Africa. The presentation focussed on the good infrastructure of Durban and the conference location there. The idea of a conference in South Africa would stimulate and engage African Universities to diffuse plastination in the continent.

Dr. Ricardo Jimenez presented his concept of hosting the next International Conference on Plastination at the Fundation Universitaria Autonomia de las Americas in Pereira, Colombia. The presentation included a video about the University and the Risaralda region and a PowerPoint presentation about all relevant details of the concept. Ricardo Jimenez answered several additional questions from members.

A decision on which location should host the next conference was put to a vote. Unanimously the membership present voted for Colombia so the 18th International Conference on Plastination will take place in Colombia in July 2016.

Page 59: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):57 (2014) A planning Organizing Committee for the Conference was created. It will be composed of: Ricardo Jimenez, Ameed Raoof, Constantin Sora, Dmitry Starchik, Robert Henry, Abrahim Albustanji, Nicolas Ernesto Ottone and the President.

The exact time and the preliminary program of the conference shall be announced by July 2015.

New membership procedure

Workshop participants automatically get ISP membership for two years.

Different alternatives for establishing a student membership were discussed. A decision was taken unanimously that student members shall pay no membership fees and have full access to the online journal. Student members have no right to vote. To join as student member, it will be required to obtain sponsorship of an ISP member in good standing.

The creation of a student membership will be proposed as an amendment to the by-laws in 2016. Approved by the assembly the student membership is in effect immediately.

Conference planning for the 19th International Conference

The decision for the 19th International Conference on Plastination in 2018 shall be taken in 2016.

For Interim Meetings please see (5) Announcements.

Update of by-laws

President Carlos Baptista presented the new By-laws approved in a previous vote. ISP Secretary Christoph von Horst presented the results of the online voting for the adoption of the by-laws: 80.88% voted for the adoption of the by-laws, 17.65 made no selection, 1.47% rejected the new by-laws.

8. Nomination Committee Report: Elections of Officers

As the head of the Nomination Committee Anthony Weinhaus could not attend the conference, ISP Secretary Christoph von Horst presented the results of the elections of officers:

- Carlos A C Baptista was elected as president of ISP - Rafael Latorre was elected as vice-president of ISP - Selcuk Tunali was elected as secretary of ISP - Joshua Lopez was elected as Treasurer of ISP

Certificates of appreciation were presented by the President to the departing Treasurer Ameed Raoof and Secretary Christoph von Horst. The President welcomed the new Treasurer Joshua Lopez and new Secretary Selcuk Tunali.

The President thanked Dmitry Starchik for the superb organization of the Saint Petersburg conference and hospitality. The membership present enthusiastically thanked Dmitry for organizing an excellent meeting.

Bob Henry expressed his appreciation to President Carlos Baptista for serving as Interim Editor and reviving the Journal of Plastination. It was mainly due to his personal effort and initiative that the Journal got back to life.

The Business Meeting closed at 11:24 a.m.

Page 60: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):58 (2014)

Bylaws and Constitution

of the

International Society for Plastination

Article I. NAME

The name of the organization shall be: International Society for Plastination, hereafter referred to as the

Society.

Article II. NATURE

The Society is a multidisciplinary organization, including persons within all fields of Science interested in the

technique of Plastination. Plastination refers to the use of polymers to infiltrate and preserve any material

for teaching, research or diagnostic purposes.

Article III. PURPOSE

The purpose of the Society, as contained in the Letters Patent shall be:

a) To provide for and maintain an International Association for individuals and Institutions who perform

plastination techniques, or are interested in plastination preservation methods;

b) To serve as a forum for the exchange of information about plastination;

c) To define plastination as a specialty area of professional activity, to encourage other institutions to adopt

plastination preservation methods, and to invite individuals to learn and practice plastination as a career in

the sciences;

d) To publish the Journal of the International Society for Plastination on a regular basis;

e) To hold regular meetings, workshops and conferences to promote and teach the techniques of

plastination;

f) To maintain a record of member institutions and individuals performing plastination, their particular

specialty, and others interested in plastination. No part of any earnings of the Society shall inure to the

benefit of, or be distributable to its members, officers or other private persons, except that the Society shall

be authorized and empowered to pay reasonable compensation for services rendered and to make

payments and distributions in furtherance of the purposes set out above.

Article IV. MEMBERSHIP

Section 1 – Class of members

The Society shall consist of four classes of membership: regular members, associate members, distinguished

members and emeritus members. Unless otherwise stated, membership is by way of application to the

Membership Committee.

Page 61: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):59 (2014) Section 2 – Regular members

Any individual interested in plastination is eligible to apply for Regular membership. Regular Members shall

be eligible to vote at General Meetings, hold any office in the Society and receive its publications.

Section 3 – Associate members

Government departments, University depart­ments, Libraries, Private Institutions and others shall be

eligible to join as associate members. Associate members shall receive the publications of the Society, may

appoint a delegate to attend General meetings and vote at General Meetings. Delegates may not hold office

in the Society.

Section 4 – Distinguished members

At the Biennial General Meeting members may elect to the position of Distinguished Member, any Regular

Member who, in the opinion of those present has made outstanding contributions to the field of

Plastination. This is usually, but not exclusively, related to the organization of major Conferences, or other

similar contributions. Such designation is purely honorary, and shall have no financial or other benefits.

Section 5 – Emeritus members

A Regular Member may become an Emeritus Member upon retirement and by submitting written

notification to the Vice-president. Emeritus Members shall have all the rights of Regular Members.

Section 6 – Dues

The president, at the Biennial General Meeting, and with the majority vote of members present, shall set

the biennial dues according to the needs of the Society. Membership dues shall be paid by January 1 in the

year of the biennial general meeting. New members’ dues received, in the year after the biennial general

meeting, shall have their dues credited as payment to the next renewal period. Emeritus members shall not

be billed for membership.

Section 7 – Membership Status

Active or Member in Good Standing. Unless otherwise specified in the Bylaws, all members in good

standing are considered to be Active and shall have the right to vote, hold office, serve on committees, and

receive all member privileges. To be in good standing and Active, a member must pay his/her dues for the

current year prior to the start of the Annual Scientific Meeting and have no other outstanding financial

obligations to the Association.

Inactive. Active Members in all dues paying categories and classes who do not pay their dues by the

conclusion of the Annual Scientific Meeting will have their status re-classified to Inactive. Inactive Members

do not receive the official journal and are not eligible to vote, hold office, and serve on committees. Inactive

members can reinstate their Active status by making a dues payment and becoming a paid-up member prior

to the end of the fiscal year in which they became Inactive.

Discontinued. On January 1st, following the Biennial General Meeting all Inactive members who are in

arrears will have their membership status changed indefinitely to Discontinued. Discontinued members will

Page 62: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):60 (2014)

be listed in the Association's website Directory but have no other privileges of membership. Members in

discontinued status for less than two years will have their standing, privileges and Active membership status

reinstated upon receipt of a dues payment for the current fiscal year. Those in discontinued status for

longer than two years will reapply as new members

Section 8 – Expulsions

Membership of any member of the Society may be terminated for just cause by a two-thirds affirmative

vote of the eligible voting members at the General Meeting.

Article V. MEETINGS

Section 1 – Biennial meetings

The Society membership shall regularly meet at the Biennial International Conference, or at such other time

and place as designated by the president. A meeting of officers and a Biennial General Meeting shall be

held to conduct the business of the Society.

Section 2 – Other meetings

Special meetings of the membership may be called by the Executive or on written request of 20% of the

membership.

Section 3 – Conduct of Business

Business of the Society shall be transacted at the Biennial General Meeting. Conduct of the meeting shall

adhere to "Robert's Rules of Order" (revised) in all cases to which they are applicable, and in which they are

not inconsistent with the bylaws or other rules adopted by the Society. Every resolution shall be

determined by a majority of votes unless specifically provided by statute or these bylaws. The executive

committee may carry out necessary official business by Online voting software *(see footnote).

Section 4 – Notice of meetings

The President shall give written notice of Biennial General Meetings and Special Meetings of the

membership as a whole by emailing to each member a notice stating the place, date and hour of the

meeting and, in case of a Special Meeting, the purpose of which the meeting is being called, and give

sufficient information to members about such purpose to allow them to form a reasoned judgment on any

decision to be taken. Written notice *(see footnote) of Special Meetings and Biennial General Meetings

shall be given not less than sixty days before the date of the meeting.

Section 5 – Quorum

A quorum for transaction of business shall be not less than 20% of Regular Members in good standing,

delegates for Associate Members in good standing, Distinguished Members in good standing, Emeritus

members and assigned proxies attending the Business Meeting.

Page 63: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):61 (2014) Section 6 – Voting and Representation

Each Regular Member, each delegate who is appointed by an Associate Member, each Distinguished

Member and each Emeritus Member who is present, shall be entitled to one vote on each issue at any duly

convened Business Meeting of the Society or mail ballot* (see footnote). Regular Members, delegates of

Associate Members, Distinguished Members and Emeritus Members who cannot be present at a Business

Meeting may designate another Member in good standing to vote on his/her behalf with an assigned proxy.

Proxies are to be in writing.

Article VI. OFFICERS

Section 1 – Executive Officers

The Executive Officers of the Society shall be the President, the Vice-president, the Secretary, and the

Treasurer. All officers shall be elected by the membership in accordance with Article VII. The term of office

for all officers shall be for two years. Any officer shall be eligible for re-election. The term of office shall

conclude with the online election and at the end of the Biennial General Business Meeting.

Section 2 – President

The President shall be the chief executive officer of the Society, shall preside at business meetings of the

Society, shall be responsible for executing policies determined at the business meetings, shall act as

spokesperson for the Society, be its legal representative and be an ex-officio member of all committees.

Section 3 – Vice-President

The Vice-president shall assist the President in the performance of his/her duties and assume these duties

in his/her absence. The Vice-president shall also chair the Membership Committee.

Section 4 – Past-President

When a new President is elected, the current President assumes the office of Past President at the close of

the Annual Business Meeting. The Past President serves on the Membership Committee, and is available to

assume the duties of President if the vice-president is not available. A vacancy in the office of Past President

shall be filled by a former Past President approved by a majority of the Council. After receiving a nomination

from the President, other Officers and Councilors may nominate additional Past Presidents. The ballot will

consist of all seconded nominations.

Section 5 – Secretary

The Secretary shall be responsible for the minutes of all business meetings of the society and answer all

general correspondence directed to the Society.

Section 6 – Treasurer

The Treasurer shall be responsible for all moneys and valuable effects in the name and to the credit of the

Society, and for full and accurate accounting of receipts and disbursements in books belonging to the

Society. The Treasurer shall have signatory powers and shall disburse the funds of the Society as may

Page 64: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):62 (2014)

be ordered by the Executive. He or she presents periodic reports on the financial status of the Association to

the Council and a full report to the membership at the Annual Business Meeting. The full report presented

to the Annual Business meeting should have the audit approval or endorsement of the council. The

treasurer should also present a report when requested by the Executive.

Section 7 – Resignations.

Any officer may resign at any time by giving written notice to the President.

Section 8 – Replacement of Officers.

In the event of death, incapacity or resignation of officers other than the president, the President will

appoint a replacement to serve until an election is held.

Article VII. COUNCIL

Section 1

The Council shall be the principal governing body of the Association. The Council shall consist of the Officers

and four Councilors.

Section 2 – Quorum.

A quorum shall consist of one more than half the current number of voting Council members and must

include at least two (2) Officers. Neither the presence nor absence of an ex officio non-voting member of

the Council is counted when calculating a quorum.

Section 3 – The term of office

Councilors may serve two (2) years and are ineligible to serve as a Counselor for one (1) term. Members

may serve as a Counselor for an unlimited number of non-consecutive terms. The nomination and election

process for Councilors is described in Article VIII.

Article VIII. ELECTIONS

Section 1 – Time and Place.

Election of all officers and council shall take place biennially at the General Business Meeting, and shall be

the last order of business at this meeting.

Section 2 – Nominations.

The months prior to the Biennial General Meeting, the nominating committee shall mail *(see footnote) out

to each member, a call for nominations, and call for venue of the next biennial meeting. Each member may

nominate one person for each Executive Office and council and shall mail such nomination(s) back to the

Nominating Committee to be received not later than three months prior to the biennial general meeting.

The nominating member must have the affirmation of the nominee to be placed on the ballot. The

Nominating Committee shall then prepare a slate of no more than three and no less than two names for

each position according to the response of the members.

Page 65: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):63 (2014) Section 3 – Voting Process.

Voting shall be by secret ballot. A secured, electronic ballot shall be activated on the Society's website,

along with instructions for electronic voting. All ballots must be electronically submitted to the website or

received in the mail by the Chairman of the Nominating Committee on or before midnight Eastern Time

(GMT minus five hours) on the day of the election to be counted. The chair of the nominating committee

will be in charge of overseeing the process. The voting should take place not later than thirty (30) days prior

to the biennial meeting. Each member is eligible to cast one vote for each office. A majority of the vote

cast is required to declare a winner. In the event of a tie vote, the members attending the general biennial

meeting and their proxy votes will determine the winner.

Section 4 – Change of the Executive Committee.

The new executive and council shall take office at the conclusion of the General Meeting.

Article IX - COMMITTEES

There shall be five permanent committees of the Society and the President as required may appoint other

standing or ad hoc committees.

Section 1 – Executive Committee

The Executive Committee shall consist of the President, the Vice-president, the Past-President, the

Secretary, the Treasurer and the four councilors. They shall be responsible for the general running of the

Society and ensure the various sub-committees perform their duties.

Section 2 – Membership Committee

The Membership Committee shall consist of the Vice-president (chairman), the Treasurer and each regional

representative. Regional representatives shall be appointed by the Executive, and shall assist in the

recruiting of members and the collection of dues in their own area of responsibility. The current regions

with representatives are: U.S.A., Canada, Europe and Australia. This committee shall receive all applications

for membership, remit dues to the treasurer and maintain a list of members.

Section 3 – Nominations Committee

This Committee shall consist of four members at large, appointed by the Executive. They shall be

responsible for preparing nominations for the next biennial meeting, as described in Article VIII.

Section 4 – Journal Editor

The Editor of the Society's journal shall be appointed by the President and shall be responsible for obtaining

articles, selecting and editing copy, layout, printing and distribution of the journal. The editor shall also be

the chairperson of the editorial board. A further function shall be the publication of a newsletter, to be

distributed quarterly if possible, or as warranted. Members of the Society shall receive these publications

without charge. Non-members may purchase the journal or the Newsletter for a price set by the executive

committee.

Page 66: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):64 (2014)

Section 5 – Editorial Board.

The President in consultation with the Journal Editor shall appoint the Editorial Board. It shall be the

responsibility of the board to review all articles and papers submitted for publication. It shall be their

responsibility to ensure that all submissions meet current standards for scientific journals.

Section 6 – Conference Planning Committee.

This Committee should consist of 4 - 6 members at large appointed by the President to assist the host

sponsor. The committee shall report on its progress to the executive committee.

Article X. AMENDMENTS

The Bylaws of the Society not embodied in the Letters Patent may be repealed or modified by a bylaw

enacted by a majority of members present at a General Business Meeting, provided that notice of motion of

such change be sent to all members at least 60 days prior to the Meeting.

Article XI. DISSOLUTION

In the event of dissolution, the assets and property of the Society remaining after payment of expenses and

the satisfaction of all liabilities shall be distributed as determined by the Executive Committee and as

approved by a court of competent jurisdiction, to charitable organizations then qualified under Section 501

(c) (3) of the code. Any of the Societies assets not so distributed shall be disposed of for such purposes as

approved by a Justice of the Supreme Court of the State having jurisdiction over the Society.

Article XII. SEAL

The Society shall have an official seal which shall contain the words: "International Society for Plastination”.

The seal shall be in the custody of the Secretary of the Society.

Article XIII. APPROVAL OF ARTICLES

These articles became binding and effective when they were duly accepted by the eligible voting

membership at the Fourth Biennial Meeting of the International Society for Plastination in Graz, Austria, July

28, 1994. Amended and accepted by the eligible voting membership at the Tenth Biennial Meeting of the

International Society for Plastination in St Etienne, France, July 4, 2000. Amended and accepted by the

eligible voting membership at the Twelfth Biennial Meeting of the International Society for Plastination in

Murcia, Spain, July 16, 2004. Amended and accepted by the eligible voting membership at the Seventeenth

Biennial Meeting of the International Society for Plastination in St. Petersburg, Russia, July 18, 2014

*Footnote: Members will be notified initially by email (or postal mail if they do not have email). A second

notice will be sent to members by postal mail if they do not respond to the initial notice

Page 67: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):65 (2014)

Index of Authors

ADDS PJ .............................................................. 11

AGUT A ............................................................... 50

AJA GUARDIOLA S ............................................... 39

ALCANTARA AIS .................................................. 12

ALGIERI RD .......................................................... 39

ASADI Mohammad H .......................................... 13

ATKINSON G ....................................................... 23

AUBAKIROV AB ................................................... 14

AVERKIN I ........................................................... 37

BACELAR AC ........................................................ 20

BAHADORAN H ................................................... 13

BAPTISTA CAC ......................................... 14, 19, 34

BAPTISTA CAC ........................ 15, 16, 17, 18, 20, 35

BARROS HP ......................................................... 41

BERTONE VH ....................................................... 39

BIANCHI HF ................................................... 39, 40

BİLGE O ............................................................... 19

BITTENCOURT APS .............................................. 20

BITTENCOURT AS .......................................... 17, 20

BLASI E ................................................................ 39

BODUC E ............................................................. 19

BORGES BRUM G ................................................ 39

BUENDÍA M ........................................................ 21

BUSARIN D .................................................... 22, 27

CAAMAÑO D ....................................................... 40

CHANG C-W ......................................................... 23

CHEMNITZ J ......................................................... 25

CHI Y-Y ................................................................. 52

CHUNG I-H ........................................................... 36

CIRIGLIANO V ................................................. 39,40

CONCHA I ............................................................ 24

DA SILVA IN ......................................................... 41

DALL AM .............................................................. 25

DE PAULA RC ....................................................... 53

DIDENKO M ................................................... 26, 37

DOLL S ................................................................. 44

DOSMAMBETOVA KK .......................................... 14

ESFANDIARI E ...................................................... 45

FARRELL ML ......................................................... 23

FERNANDEZ A ...................................................... 34

FILHO AJM ........................................................... 41

FOMIN N.............................................................. 27

FUENTES FERNANDEZ R ................................ 39, 40

GANDHI N ............................................................ 23

GAO H-B .............................................................. 52

GIL F ..................................................................... 50

GONZÁLVEZ M .................................................... 28

GUTIERREZ THA ............................................. 12, 29

Page 68: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):66 (2014)

HAFFAJEE MR ..................................................... 30

HENRY RW ................................... 24, 31, 32, 38, 53

HERMEY D .......................................................... 38

IHLE B.................................................................. 44

ILIFF S ............................................................ 24, 38

JILWAN A ............................................................ 35

JIMENEZ R ..................................................... 33, 34

KAUTZNER J ........................................................ 26

KHAMIDULIN BS ................................................. 14

KHUBULAVA G .............................................. 26, 37

KIM I-B ................................................................ 36

KIM S-H ............................................................... 36

KIRSCH J .............................................................. 44

KWAK D-S ........................................................... 36

LABRASH S .......................................................... 23

LATORRE R ................................... 12, 21, 28, 29, 50

LI Y-F ................................................................... 52

LIMA FC .............................................................. 41

LO TARTARO M ................................................... 40

LOPEZ-ALBORS O ...............................12, 21, 28, 29

LOZANOFF BK ..................................................... 23

LOZANOFF S ........................................................ 23

MARCHENKO S ............................................. 26, 37

MASUKO T .......................................................... 35

MATHURA G ....................................................... 30

MAUL YA ............................................................. 14

MCCREARY J. ....................................................... 38

MCCREARY K ....................................................... 38

MEDAN C ............................................................. 40

MINAIDAROV AK ................................................. 14

NISHT A ............................................................... 27

NORTON NS ......................................................... 23

OLORIZ L ........................................................ 39, 40

ORBES J................................................................ 34

ORTIZ J ................................................................. 28

OTTONE NE .................................................... 39,40

OUVERNEY TN ..................................................... 20

PEREIRA KF .......................................................... 41

PEREIRA-SAMPAIO MA ....................................... 53

RABIEI AA ............................................................ 45

RAOOF A ........................................................ 42, 43

SAMPAIO FJB ....................................................... 53

SANCIO LB ........................................................... 20

SANT´ANA HGF .................................................... 41

SARRIA R .............................................................. 50

SCHINDLER N ....................................................... 44

SETAYESH MEHR M ............................................. 45

SHARKEY J............................................................ 52

SHIKHVERDIEV N ................................................. 37

SHUKLA V ............................................................ 35

Page 69: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):67 (2014) SISABEKOV KE ..................................................... 14

SOLER M ............................................................. 50

SORA M-C ..................................................... 46, 47

STARCHIK D ........................... 22, 26, 27, 37, 48, 49

SUI H ............................................................. 42, 52

SULEIMENOVA FM ............................................. 14

TAMEH AA .......................................................... 13

TENBRINK P ........................................................ 18

TUNALI S ............................................................. 23

USOVICH A .......................................................... 22

VILLAMONTE AC .................................................. 50

VON HAGENS R ................................................... 54

VON HORST C ...................................................... 51

YU S-B .................................................................. 52

YUAN X-Y ............................................................. 52

ZAK PW ................................................................ 17

ZHAO X ................................................................ 52

ZHENG N .............................................................. 52

ZIDDE DH ............................................................. 52

Page 70: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):68 (2014)

Journal of Plastination Instructions for Authors (Revised January 2013)

JOURNAL OF PLASTINATION is owned and controlled by the International Society for Plastination (ISP). Goals - The Journal of Plastination (ISSN 1090-2171) is to provide a medium for the publication of scientific papers dealing with all aspects of plastination and preservation of biological specimens. Submission Guidelines All manuscripts must be submitted to the Editorial Office via the e-mail: [email protected]. If you experience any problems or need further information, please contact Philip J. Adds, [email protected].

Authors must have an e-mail address at which they may be reached.

Necessary Files for Submission Include:

Cover letter

Manuscript (including references and figure legends)

Table(s) (when appropriate)

Figure(s) (when appropriate)

Copyright Release Form (after acceptance)

Note: The above items should be prepared as separate files. Each file must contain a file extension (.doc, tif, jpg, eps).

File formats appropriate for text and table submissions: Microsoft Word

File formats appropriate for figure submissions: TIFF, JPEG (JPG) and EPS

Categories of submissions: Articles published in Journal of Plastination are grouped into general article types (listed below). Final designation of a manuscript’s article type is determined by the EDITOR.

Original Research – Plastination

Original Research – preservation

Education

Case reports

Technical brief notes

Review - by invitation only

Legacy – institutions and people

Correspondence

Editorial

Acceptance of a submission implies the transfer of copyright from the authors to the publisher. It is the author's responsibility to obtain permission to reproduce illustrations, tables and figures from other publications. Copyright Transfer Form may be downloaded from http://www.journal.plastination.org/downloads/copyright.pdf. After the form is completed and signed by all the authors, it should be submitted to the Editorial Office ([email protected]) as a pdf or jpeg file via an e-mail attachment. Manuscript preparation

Cover Letter The cover letter should include a statement of authorship, notification of conflicts of interest, ethical adherence, and any financial disclosures. Cover letters may be addressed to the Editor-in-Chief, Journal of Plastination.

Manuscript The manuscript should consist of subdivisions in the following sequence:

Title Page Abstract with keywords Text Introduction Materials and methods Results Discussion References Figure Legends

Title Page The first page of the manuscript should include:

Title of paper

Each author’s name

Institution from which paper emanated, with city, state, and postal code. Each affiliation should be listed as a separate entity, with a superscript number that links it to the individual author.

Page 71: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):69 (2014) For example: S. D. HOLLADAY

1*, B. L. BLAYLOCK2 and B. J. SMITH

1 1Department of Biomedical Sciences and Pathobiology, Virginia Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0442, USA. 2College of Pharmacy and Health Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA.

Corresponding Author’s name, address, telephone and telefax numbers, and e-mail address.

For example: *Correspondence to: Dr Shane D. HOLLADAY, Department of Biomedical Sciences and Pathobiology, Virginia Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0442, USA. Tel.: +001 404 739 6403; Fax.: +001 404 739 6492; E-mail: [email protected] It is the corresponding author’s responsibility to notify the Editorial Office of changes of address. Only the corresponding author should communicate with the Editorial office for matters regarding each manuscript. Abstract & Key Words: The abstract should be no longer than 250 words. It should contain a description of the objectives, materials and methods, results, and conclusions. The abstract should include a section on technique/technical development if the paper is significantly technical in nature. The abstract must be written in complete sentences and be intelligible without reference to the rest of the paper. No references should be used in the abstract. On the same page, list, in alphabetical order, five Key Words that reflect the content of the manuscript. Consult the Medical Subject Headings for appropriate key words. Key words should be set in lower case (except for essential capitals), separated by a semicolon and bolded. Text The body of the text should be written using American English spelling.

Where quantities are specified, S.I. units should be used. Equivalent Imperial or U.S. units, if desired, should follow in parentheses e.g. 1 Kg (2.2 pounds). References:

References to published works, abstracts and books must include all that are relevant and necessary to the manuscript.

Citations in the text should be in parentheses and listed chronologically; e.g. (Bickley et al., 1981; von Hagens, 1985; Henry and Haynes, 1989) except when the authors name is part of a sentence; e.g. "…von Hagens (1985) reported that…" When references are made to more than one paper by the same author published in the same year, designate each citation as 1999 a, b, c, etc.

Literature cited may only include the publications, which are cited in the text. References are to be listed alphabetically using abbreviated journal names according to Index Medicus. Page numbers of the citation must be included.

Examples of the reference style are as follows:

For a journal article: Bickley HC, von Hagens G, Townsend FM. 1981: An improved method for preserving of teaching specimens. Arch Pathol Lab Med 105:674-676.

For a book section: Henry R, Haynes C. 1989: The urinary system. In: Henry R, editor. An atlas and guide to the dissection of the pony, 4th ed. Edina, MN: Alpha Editions, p 8-17.

For other publications: Von Hagens G. 1985: Heidelberg plastination folder: Collection of technical leaflets for plastination. Heidelberg: Anatomiches Institut 1, Universität Heidelberg, p 16-33.

Figure legends

Legends for all figures should be brief, specific and not be a substitute listing for the result section, and appear on a separate page at the end of the manuscript, following the list of references.

Legends must be numbered consecutively as they first appear in the text.

Page 72: The Journal of Plastinationjournal.plastination.org/archive/jp_vol.26.1/jp_vol.26.1_Jul14_full.pdf · on Plastination held in Saint Petersburg, Russia, July 14 to 18, 2014. ... slide

The Journal of Plastination 26(1):70 (2014)

All symbols or abbreviations appearing in any figure must be defined in the legend.

Tables

All tables must be cited in the text and have titles. Table titles should be complete but brief. Information other than that defining the data should be presented as footnotes.

Create tables using the table creating and editing feature of Microsoft Word. Do not use Excel or comparable spreadsheet programs.

Each table should be simple and uncomplicated, with NO vertical and as few horizontal lines as possible.

Each table is to appear on a separate page and must include the table title and appropriate column heads.

Save each table in a separate word document file and upload individually, like figures.

Do not embed tables within the body of the manuscript.

Figures

All figures must be cited in the text and must have legends.

Each figure should be attached as a separate file and labeled with the appropriate number.

Figures should be created, saved and submitted as either a TIFF, JPEG (JPG) or an EPS file.

Line drawings must have a resolution of at least 1200 dpi, and electronic photographs, scanned images, radiographs, CT and MRI scans must have a resolution of at least 300 dpi.

The size of each figure should be at least 8.25 cm / 3.25 inches (one-column width) or 16 cm / 6 inches (two-column width).

Magnification must be recorded and have a “scale bar” in the photo. Since reproduction of illustrations is costly, authors should limit the number of figures to those which adequately present the findings, and add to the understanding of the manuscript.

Figures that are submitted in color must be published in color. Authors are responsible for the costs of any color reproductions. Contact the editor for details.