the key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· linear...

31

Upload: others

Post on 30-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,
Page 2: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

18 January 2018

Stefano Galelli

people.sutd.edu.sg/~stefano_galelli/

Resilient Water Systems Group

REVEALS HISTORY OF REGIME SHIFTS

STREAMFLOW RECONSTRUCTION

IN NORTHERN THAILAND

Nguyen Tan Thai Hung

people.sutd.edu.sg/~ntthung/

A LINEAR DYNAMICAL SYSTEMS APPROACH

TO

Page 3: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

The key to the future lies in the past.

3

Page 4: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Paleohydrology

4

Ξ Ξ±Ξ»Ξ±ΞΉΟŒΟ‚ = old, ancient

Page 5: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Paleohydrology

Proxy data

β€’ Tree rings

β€’ Ice core

β€’ Corals

β€’ …

Instrumental data

β€’ Streamflow

β€’ Precipitation

β€’ Drought index

β€’ …

Model

Paleoreconstructed

data

Ξ Ξ±Ξ»Ξ±ΞΉΟŒΟ‚ = old, ancient

Page 6: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Study site: Ping River

Page 7: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Monsoon Asia Drought Atlas (MADA)

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010). Asian Monsoon Failure and Megadrought

During the Last Millennium. Science, 328(5977), 486–489. http://doi.org/10.1126/science.1185188

Figure 1B in Cook et al (2010)

Temporal resolution Annual

Spatial resolution 2.5o x 2.5o

Temporal range 1300 – 2005

Gridded time series of the Palmer’s Drought Severity Index

Page 8: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

The conventional method

β€’ How do we model catchment dynamics?

β€’ Will a dynamic model be more accurate?

β€’ What more insights can we gain with a

dynamic model?

8

𝑦𝑑 = 𝛼 + 𝛽𝑒𝑑 + πœ€π‘‘

Page 9: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Linear dynamical systems

π‘₯𝑑+1 = 𝐴π‘₯𝑑 + 𝐡𝑒𝑑 +𝑀𝑑

𝑦𝑑 = 𝐢π‘₯𝑑 + 𝐷𝑒𝑑 + 𝑣𝑑

𝑀𝑑 ∼ 𝒩 0,𝑄𝑣𝑑 ∼ 𝒩(0,𝑅)π‘₯1 ∼ 𝒩(πœ‡1, 𝑉1)

Systemπ‘₯

Input𝑒

Output𝑦

π‘₯ ∈ ℝ𝑝 system state

𝑦 ∈ β„π‘ž system output

𝑒 ∈ β„π‘š system input

𝐴 ∈ ℝ𝑝×𝑝 state transition matrix

𝐡 ∈ β„π‘Γ—π‘š input-state matrix

𝐢 ∈ ℝ𝑝×𝑝 observation matrix

𝐷 ∈ ℝ𝑝×𝑝 input-observation matrix

𝑄 ∈ ℝ𝑝×𝑝 covariance matrix of the state noise

𝑅 ∈ β„π‘žΓ—π‘ž covariance matrix of the observation noise

Page 10: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Learning: Expectation-Maximization

Shumway, R. H., & Stoffer, D. S. (1982). An Approach to The Time Series Smoothing and Forecasting Using the EM Algorithm. Journal of Time Series Analysis, 3(4), 253–264. https://doi.org/10.1111/j.1467-9892.1982.tb00349.x

Ghahramani, Z., & Hinton, G. E. (1996). Parameter Estimation for Linear Dynamical Systems. Technical Report CRG-TR-96-2. https://doi.org/10.1080/00207177208932224

Cheng, S., & Sabes, P. N. (2006). Modeling Sensorimotor Learning with Linear Dynamical Systems. Neural Computation, 18(4), 760–793. https://doi.org/10.1162/089976606775774651

E-Step

αˆ˜πœƒπ‘˜+1 = arg max β„’ π‘Œ| 𝑋, αˆ˜πœƒπ‘˜

M-Step

𝑋 αˆ˜πœƒπ‘˜ = 𝔼 𝑋|π‘Œ, αˆ˜πœƒπ‘˜

Forward pass:

Kalman filter

Backward pass:

RTS recursion

Maximum

likelihood

ොπ‘₯𝑑|𝑑 = 𝔼 π‘₯𝑑|𝑦1, … , 𝑦𝑑, αˆ˜πœƒπ‘˜

ොπ‘₯𝑑|𝑇 = 𝔼 π‘₯𝑑|𝑦1, … , 𝑦𝑇 , αˆ˜πœƒπ‘˜

Page 11: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Kalman filter

Forward pass:

Kalman filter

Backward pass:

RTS recursion

Maximum

likelihood

ොπ‘₯𝑑|𝑑 = 𝔼 π‘₯𝑑|𝑦1, … , 𝑦𝑑, αˆ˜πœƒπ‘˜

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1), 35. https://doi.org/10.1115/1.3662552

Faragher, R. (2012). Understanding the basis of the Kalman filter via a simple and intuitive derivation [lecture notes]. IEEE Signal Processing Magazine, 29(5), 128–132. https://doi.org/10.1109/MSP.2012.2203621

Figure 5 in Faragher (2012)

ොπ‘₯𝑑|π‘‘βˆ’1 = 𝐴ොπ‘₯π‘‘βˆ’1|π‘‘βˆ’1 + π΅π‘’π‘‘ΰ·œπ‘¦π‘‘|π‘‘βˆ’1 = 𝐢 ොπ‘₯𝑑|π‘‘βˆ’1 +𝐷𝑒𝑑𝑉𝑑|π‘‘βˆ’1 = 𝐴 π‘‰π‘‘βˆ’1|π‘‘βˆ’1𝐴′ + 𝑄

𝐾𝑑 = 𝑉𝑑|π‘‘βˆ’1𝐢′ 𝐢 𝑉𝑑|π‘‘βˆ’1𝐢

β€² + π‘…βˆ’1

ොπ‘₯𝑑|𝑑 = ොπ‘₯𝑑|π‘‘βˆ’1 + 𝐾𝑑 𝑦𝑑 βˆ’ ΰ·œπ‘¦π‘‘|π‘‘βˆ’1𝑉𝑑|𝑑 = 𝐼 βˆ’ 𝐾𝑑𝐢 𝑉𝑑|π‘‘βˆ’1

For 𝑑 = 2,… , 𝑇

Page 12: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

RTS recursion

Forward pass:

Kalman filter

Backward pass:

RTS recursion

Maximum

likelihood

ොπ‘₯𝑑|𝑇 = 𝔼 π‘₯𝑑|𝑦1, … , 𝑦𝑇 , αˆ˜πœƒπ‘˜

𝐽𝑑 = 𝑉𝑑|𝑑𝐴 𝑉𝑑+1|π‘‘βˆ’1

ොπ‘₯𝑑|𝑇 = ොπ‘₯𝑑|𝑑 + 𝐽𝑑 ොπ‘₯𝑑+1|𝑇 βˆ’ ොπ‘₯𝑑+1|𝑑𝑉𝑑|𝑇 = 𝑉𝑑|𝑑 + 𝐽𝑑 𝑉𝑑+1|𝑇 βˆ’ 𝑉𝑑+1|𝑑 𝐽𝑑

β€²

ΰ·œπ‘¦π‘‘|𝑇 = 𝐢 ොπ‘₯𝑑|𝑇 + 𝐷𝑒𝑑

Rauch, H. E., Tung, F., & Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 1445–1450. https://doi.org/10.2514/3.3166

For 𝑑 = 𝑇 βˆ’ 1,… , 1

Page 13: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Maximum likelihood estimation

Forward pass:

Kalman filter

Backward pass:

RTS recursion

Maximum

likelihood

Quadratic terms only Analytical solutions

Page 14: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Algorithm 1: LDS-EM

14

𝑑 = 𝑇,… , 1

Page 15: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Simultaneous learning–reconstruction

15

𝑦𝑑 ← ΰ·œπ‘¦π‘‘|𝑇

𝑦𝑑 ← ΰ·œπ‘¦π‘‘|π‘‘βˆ’1

Replace missing 𝑦𝑑 with its best available estimate

Forward pass

M-step

π‘₯1

Page 16: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Rationale for SLR

16

The substitution turns all terms related to missing 𝑦𝑑 into zero

ොπ‘₯𝑑|𝑑 = ොπ‘₯𝑑|π‘‘βˆ’1 + 𝐾𝑑 𝑦𝑑 βˆ’ ΰ·œπ‘¦π‘‘|π‘‘βˆ’1

E-Step

M-Step

Page 17: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Algorithm 2: SLR

17

𝑑 = 𝑇, … , 1

Page 18: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Model performance

18

𝑅𝐸 = 1 βˆ’

π‘‘βˆˆπ’±π‘¦π‘‘ βˆ’ ΰ·œπ‘¦π‘‘

2

Οƒπ‘‘βˆˆπ’± 𝑦𝑑 βˆ’ 𝑦𝑐

2

𝐢𝐸 = 1 βˆ’Οƒπ‘‘βˆˆπ’± 𝑦𝑑 βˆ’ ΰ·œπ‘¦π‘‘

2

Οƒπ‘‘βˆˆπ’± 𝑦𝑑 βˆ’ 𝑦𝑣

2

Page 19: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Model performance

19

Page 20: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Residual analysis

20

Page 21: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

A reconstructed history of the Ping

21

Figure 2 in Cook et al (2010)

Page 22: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Stochastic replicates

22

Page 23: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Conclusions

β€’ Replacement for conventional method

Better model performance and desirable features

β€’ A more conservative policy for the Bhumibol

There seems to be less water in the system

β€’ Regional hydrological understanding (complementing the MADA)

History of regime shifts

β€’ Direct application: regime-informed reservoir operation

Stochastic replicates of both streamflow and regime

23

Page 24: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

APPENDICES

Page 25: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Dendrochronologyδένδρον (tree limb) + Ο‡ΟΟŒΞ½ΞΏΟ‚ (time) = tree dating

Page 26: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Other reconstructions

Woodhouse et al,

2006

Gangopadhyay et al,

2009Devineni et al, 2013 Patskoski et al, 2015 Ho et al, 2016

Lo

cati

on

&D

ata

Colorado River

β€’ 4 stations

β€’ 62 chronologies

Colorado River at Lees

Ferry, Arizona

β€’ 62 chronologies

Upper Delaware River

Basin

β€’ 5 stations

β€’ 8 chronologies

South-eastern US (NC,

SC, GA, FL)

β€’ 8 stations

β€’ 7 chronologies

Missouri River Basin

β€’ 55 stations

β€’ LBDA

Pe

rfo

rman

ce

β€’ RE ~ 0.65 - 0.8

β€’ nRMSE ~ 0.14

β€’ adjusted R2

~ 0.7 -

0.8

β€’ R2

= 0.76β€’ RE ~ 0.2 - 0.5

β€’ CE ~ 0.1 - 0.5

β€’ Adjusted R2 ~ 0.1 -

0.4

β€’ Normalized RMSE

~0.25 - 0.5

β€’ NSE (positive /

negative, average

positive)

β€’ Reduction of error

(mostly positive,

average around ~0.2

β€’ Adjusted R2

~0.5 -

0.9

Page 27: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Search radius

27

Page 28: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Spatial correlation

Site Distance r p-value

LS001 406.71438 -0.2225 0.0407

LS002 438.74650 -0.1447 0.1863

TH001 55.37224 0.2024 0.0632

TH002 354.28653 0.1293 0.2757

TH003 369.80428 -0.0365 0.7589

TH004 423.49371 0.1829 0.0919

TH006 85.10499 -0.0358 0.7464

MADA Tree rings

Page 29: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

M-step solution

29

Page 30: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Wavelet analysis

30

Page 31: The key to the future lies in the past.ntthung/wp-content/uploads/...Β Β· 2018. 1. 17.Β Β· Linear dynamical systems 𝑑+1= 𝑑+ 𝑑+ 𝑑 𝑑= 𝑑+ 𝑑+ 𝑑 π‘‘βˆΌπ’©0, π‘‘βˆΌπ’©(0,

Applications

β€’ Drought adaptation planning

– Agriculture & Agri-Food Canada

– Prairie Provinces Water Board

– Denver Water Board

β€’ Informing the public (Colorado River)

β€’ Reliability of urban water supply

– Cities of Calgary and Edmonton

31