the neutron beta decay correlation program at...

45
The neutron beta decay correlation program at SNS Dinko Poˇ cani´ c University of Virginia NSAC Subcommittee Review Chicago, IL, 15 April 2011 D. Poˇ cani´ c (UVa) n beta correlations at SNS 15 Apr ’11 1 / 42

Upload: others

Post on 19-Nov-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

The neutron beta decay correlation program at SNS

Dinko Pocanic

University of Virginia

NSAC Subcommittee ReviewChicago, IL,

15 April 2011

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 1 / 42

Page 2: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

n-decay program at FnPB

The FnPB neutron decay program at SNS

I Nab: a precise measurement of

a, the electron-neutrino correlation in neutron decay, and b, the Fierz interference term (so far not measured in n decay).

I Polarized program (abBA/PANDA): precise measurements of

A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron decay, C , the proton asymmetry in neutron decay; also

Goal uncertainties: δa/a, δA/A, δB/B ≤ 10−3, andδb ≤ 3× 10−3.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 2 / 42

Page 3: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Motivation, goals

Neutron Decay Parameters (SM)

dw

dEedΩedΩν' keEe(E0 − Ee)2

×[

1 + a~ke ·~kν

EeEν+ b

m

Ee+ 〈~σn〉 ·

(A~ke

Ee+ B

~kν

)+ . . .

]where:

a =1− |λ|2

1 + 3|λ|2A = −2

|λ|2 + Re(λ)

1 + 3|λ|2

B = 2|λ|2 − Re(λ)

1 + 3|λ|2λ =

GA

GV(with τn ⇒ CKM Vud)

also:C = κ(A + B) where κ ' 0.275 .

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 3 / 42

Page 4: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Motivation, goals

Goals of the Nab experiment

I Measure the electron-neutrino parameter a in neutron decay

with accuracy of∆a

a' 10−3

current results:−0.1054± 0.0055 Byrne et al ’02−0.1017± 0.0051 Stratowa et al ’78−0.091± 0.039 Grigorev et al ’68

I Measure the Fierz interference term b in neutron decay

with accuracy of ∆b ' 3× 10−3

current results: none (in n decay)

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 4 / 42

Page 5: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

CKM matrix: Vud

Status of A and λ in n decay

-0.125 -0.120 -0.115 -0.110

PERKEO II, prelim.

Δ A/A = 0.1%(abBA goal)

Average:-0.1187(8)

UCNA, 2010

PERKEO II, 2002

Liaud, 1997

PERKEO,1986

Yerozolimskii, 1997

Beta Asymmetry A

Uncertainty of the averagescaled up by factor 2.3×

Global fit χ2/dof = 27/5 !

Statistical probability forthis χ2 is 6× 10−5.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 5 / 42

Page 6: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

CKM matrix: Vud

Status of A and λ in n decay (cont’d)

Δ λ/ = 0.03%(Nab/abBA goals)

λ

PERKEO II, prelim.

Mostovoi, 2001

Average:-1.2733(20)

UCNA, 2010

PERKEO II, 2002

Liaud, 1997

PERKEO,1986

λ = /g gA V

-1.28 -1.26 -1.25-1.27

Yerozolimskii, 1997

Goals for ∆a, ∆A:

⇒ ∆λ ' 3.5× 10−4

i.e., an order of magn.improvement.

∆λ

λ' 0.27

∆a

a' 0.24

∆A

A

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 6 / 42

Page 7: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Beyond Vud

n-decay correlation parameters beyond Vud

I Beta decay parameters constrain L-R symmetric, SUSY extensions tothe SM. [Reviews: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001),N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006),

Ramsey-Musolf, Su, Phys. Rep. 456, 1 (2008)]

I Fierz int. term, never measured for the n, along with B, offers asensitive test of non-(V − A) terms in the weak Lagrangian (S ,T ).[S. Profumo, M. J. Ramsey-Musolf, S. Tulin, PRD 75, 075017 (2007)]

I Measurement of the electron-energy dependence of a and A canseparately confirm CVC and absence of SCC.

[Gardner, Zhang, PRL 86, 5666 (2001), Gardner, hep-ph/0312124]

I A connection exists between non-SM (e.g., S ,T ) terms in d → ueνand limits on ν masses. [Ito + Prezaeu, PRL 94 (2005)]

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 7 / 42

Page 8: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Beyond Vud non-V − A interaction terms

Updated limits for RH S and T currents n decay

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

RS/L

V

RT/L

A

neutron and nuclear decays(survey, 95% C.L.)

Δχ2

C.L.

2.30 68.3%

90%

95.4%

4.61

6.17neutrino

mass(68% C.L.)

neutrino mass(68% C.L.)

muon decay“90% C.L.”

Present limits (n decay data)(SM values at origin of plot.)

S V

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

R /LR

T/L

A

neutron and nuclear decays(survey, 95% C.L.)

Δχ2

C.L.

2.30 68.3%

90%

95.4%

4.61

6.17

neutrino mass(68% C.L.)

neutrino mass(68% C.L.)

muon decay“90% C.L.”

Projected limits based on a = −0.1030(1),

b ≡ 0, and no improvement in A.

[G. Konrad, W. Heil, S. Baeßler, D. Pocanic, F. Gluck, arXiv 1007.3027.]

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 8 / 42

Page 9: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Beyond Vud non-V − A interaction terms

Limits for LH S and T currents n decay

LS/L

V

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

LT/L

A

neutron andnuclear decays(survey, 68% C.L.)

superallowed

0 →0 decays(68% C.L.)

+ +

“present limits”(68% C.L.)

muon decay“90% C.L.”

nuclear decays

( ( In), 90% C.L.)P107

Δχ2

C.L.

2.30 68.3%

90%

95.4%

4.61

6.17

Present limits (n decay data)(SM values at origin of plot.)

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

LS/L

V

LT/L

A

Δχ2

C.L.

2.30 68.3%

90%

95.4%

4.61

6.17

“future limits”

(68% C.L.)

superallowed

0 →0 decays(68% C.L.)

+ +

neutron andnuclear decays(survey, 68% C.L.)

nuclear decays

( ( In), 90% C.L.)P107

Projected limits assuming a = −0.1030(1);

b = 0±0.003: no new A,B measurements.

[G. Konrad, W. Heil, S. Baeßler, D. Pocanic, F. Gluck, arXiv 1007.3027.]

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 9 / 42

Page 10: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Beyond Vud Second class currents

Correlation parameters with recoil correction[Gardner, Zhang, PRL 86, 5666 (2001), Gardner, hep-ph/0312124]

Most general form of hardonic weak current consistent with (V-A):

〈p(pp)|Jµ|n(pn,P)〉 =

up(pp)

(f1(q2)γµ − i

f2(q2)

Mnqµ +

f3(q2)

Mnqµ + g1(q2)γµγ5

− ig2(q2)

Mnσµνγ5qν +

g3(q2)

Mnγ5qµ

)un(pn,P)

a,A,B⇒ λ =g1

f1while τn ∝ (f1)2 + 3(g1)2

However, f2 (weak magnetism) and SCC’s (g2, g3), remain unresolved inbeta decays (best tested in A=12 system). With recoil corrections,Gardner and Zhang find:

a(Ee) = func(f2) while A(Ee) = func(f2, g2)

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 10 / 42

Page 11: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Comparison w/other experiments Little a

Current experiments aiming to measure a

1. Nab: goal is to measure ∆a/a ∼ 10−3

I Discussed in this presentation.

2. aCORN: goal is to measure ∆a/a ∼ 0.5− 2 %I Funded, under way at NIST,I Uses only part of neutron decays.

3. aSPECT: aims to measure ∆a/a ∼ 10−3

I Funded and running; recently overcame trapping problems,I Stat. sensitivity not as good as Nab due to integration; presently∼ 2 %/day—will likely improve on publ. results, not < 1 % this yr,

I Determination of detection function relies on theoretical model ofspectrometer; if assumptions fulfilled, input param’s easy to measure.

I Singles measurement!I will become part of the PERC program with improvements.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 11 / 42

Page 12: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Comparison w/other experiments Polarized measurements

Current state of the art in A: PERKEO III obtained A = −0.1189(7) in 2002; −0.1198(5) current prelim.

I data acquisition finished,

I data analysis of last (3rd) run completed; result not yet published,

I symmetric setup on cold n beam, similar to original abBA design,

Electron Detector (Plastic Scintillator)

Polarized Neutrons

Split Pair Magnet

Decay Electrons

Magnetic Field PERKEO II

I singles e detection

I benchmark design forall comparisons,

I major uncertainties:I statistics,I neutron beam

polarization,I background,I electron detection.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 12 / 42

Page 13: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Comparison w/other experiments Polarized measurements

1. abBA: aim δA/A ' 1× 10−3; (discussed in this talk)I uses magnetic filter,I expected improvements: background (coincidences), electron detection

(Si detector), sensitivity to field inhomogeneities,I measurements of C (B) planned

2. PERKEO III: aim δA/A ' 2× 10−3 in AI data analysis of second run ongoing, aim to measure A and f2I expected improvements: pulsed wide beam (statistics, background)

3. UCNA: aim δA/A ' 2× 10−3 (discussed at this meeting)I achieved −0.11966+152

−166 in 2010,I uses (so far, dedicated) UCN source,I major uncertainties: statistics, Pn (so far: > 99.5%, viz. 99.7(1)% in

PERKEO II), E loss in foil, muon veto bgd,I further measurements of B, b planned,

4. PERC: aim δA/A ' 3× 10−4; (funded, being designed)I uses magnetic filter behind a pulsed beam in a neutron guide,I main expected improvements: counting statistics, background (singles

det’n, but w/pulsed beam), sensitivity to field inhomogeneities;I future measurements of a, C, et al., in planning.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 13 / 42

Page 14: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles

Nab Measurement principles: Proton phase space

Ee (MeV)

p p2 (

MeV

2 /c2 )

cos θeν = -1

cos θeν = 1

cos θeν = 0

proton phase spaceprobability (arb. units)

Ee =

75 keV

236 keV

450 keV

700 keV

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8

NB: For a given Ee , cos θeν is a function of p2p only. Slope = a

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 14 / 42

Page 15: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles Detection function

Measurement principles: Detection function (I)

Proton time of flight in B field:

tp =f (cos θp,0)

ppwhere cos θp,0 =

~pp0 · ~Bpp0B

∣∣∣∣∣decay pt.

.

For an adiabatically expanding field prior to acceleration,

f (cos θp,0) =

∫ l

z0

mp dz

cos θp(z)=

∫ l

z0

mp dz√1− B(z)

B0sin2 θp,0

.

To this we add effects of magnetic reflections and, later, of electric fieldacceleration.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 15 / 42

Page 16: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles Detection function

Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is givenby

Pp(p2p) = 1 + aβe cos θeν , [recall: cos θeν = f (p2

p)]

while

Pt

(1

t2p

)=

∫Pp(p2

p) Φ

(1

t2p

, p2p

)dp2

p .

Detection function Φ relates the proton momentum and time-of-flightdistributions! To extract a reliably:

I Φ must be as narrow as possible,

I Φ must be understood very precisely.

Two methods (“A” and “B”) pursued to specify Φ.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 16 / 42

Page 17: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles Detection function

Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is givenby

Pp(p2p) = 1 + aβe cos θeν , [recall: cos θeν = f (p2

p)]

while

Pt

(1

t2p

)=

∫Pp(p2

p) Φ

(1

t2p

, p2p

)dp2

p .

Detection function Φ relates the proton momentum and time-of-flightdistributions! To extract a reliably:

I Φ must be as narrow as possible,

I Φ must be understood very precisely.

Two methods (“A” and “B”) pursued to specify Φ.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 16 / 42

Page 18: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles Detection function

Measurement principles: Detection function (III)

kine-maticinput

pp2 (MeV2/c2)

Yie

ld (

arb.

uni

ts)

Ee = 500 keV

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

mean: 0.00394 s

RMS: 0.00015

μ-2

μs-2

0.000 0.001 0.002 0.003 0.004

1/tp

2[1/µs

2]

101

102

103

104

Sp

ectr

om

eter

resp

on

sefu

nct

ion

Φ(⋅

,p

p

2)

mean

Ep =500 eV

analyt.calcul’n

0.00 0.02 0.04 0.06 0.08

1/tp

2[1/µs

2]

103

104

105

106

107

Sim

ula

ted

cou

nt

rate

Ee = 300 keV

Ee = 500 keV

Ee = 700 keV

1/tp

2[1/µs

2]

Sim

ula

ted

co

un

ts [

A.U

.]

0.002 0.004 0.0060

Ee = 300 keV

Ee = 500 keV

Ee = 700 keV

MCGEANTsimul’n

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 17 / 42

Page 19: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles Apparatus

Nab principle of operation

I Collect and detectboth electron andproton from neutronbeta decay (magneticfield, detectors at bothends)

I Measure electronenergy and protonTOF and reconstructdecay kinematics(Magnetic field shape,silicon detectors atboth ends).

SegmentedSi detector

SegmentedSi detector

TOF region(field ∙ )r BB 0

Uup (upper HV)

Udown (lower HV)

magnetic filterregion (field )B0

decay volume(field ∙ )r BB,DV 0

Neutronbeam

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 18 / 42

Page 20: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles Apparatus

abBA/PANDAconfiguration:

I A: detect electronsin upper, protonsin lower detector;

I B/C: detectprotons in upper,electrons in lowerdetector;

SegmentedSi detector

TOF region(field ∙ )r BB 0

Uup (upper HV)

Udown (lower HV)

magnetic filterregion (field )B0

decay volume(field ∙ )r BB,DV 0

Polarizer withspin-reversal

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 19 / 42

Page 21: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Measurement principles Apparatus

The spectrometer: coil design and magnetic field profile

466.25

0.03

5.00

25.28 43.81

37.50

0.50

481.25

14.7525.90

67.09

0.47

41.66

14.7725.90

4.34

4.34

10.5220.5838.16

3.13

3.13

29.94

16.4130.24

3.19

3.28

4.9312.92

8.00

16.77

c1i

z

r

c6i

c4i

c5i

c3ic2i

c1o

c6o

c4o

c5o

c3oc2o

Mag

net

ic f

ield

[T]

B

z [m]

z [cm]

00

0

1

20

-1 2

-20

3

10

4

-10

5

-30

1

2

3

4

5

Bz(on axis)

Bz(on axis)

Bz(off axis)

Mag

net

ic f

ield

[T]

B

0

1

2

3

4

5

Decayvolume

Decayvolume

Si detector

Filter

4 m flight path is omitted here

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 20 / 42

Page 22: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Hardware and installation Detectors

Si detector prototypes (15 cm diameter)

LANL group has full-size prototypes from Micron Corp.Full thickness t = 2 mm; dead layer thickness td ≤ 100 nm.Detailed testing currently under way at LANL.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 21 / 42

Page 23: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Hardware and installation Detectors

Spectrometerinstallationin FnPB:

Beam shutter

Beam stop

Spectrometer magnet

Passive Antimagnetic Shield

Neutron guide

Beam pipe

200cm

200cm

300cm

Spectrometer magnet

Magnet Pit

Detector housing

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 22 / 42

Page 24: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Overview of uncertainties Event statistics, rates, running time

Statistical uncertainties for a and b

Statistical uncertainties for a

Ee,min 0 100 keV 100 keV 300 keVtp,max – – 100µs 40µs

σa 2.4/√N 2.5/

√N 2.5/

√N 2.5/

√N

σa† 2.5/

√N 2.6/

√N 2.6/

√N 2.7/

√N

σa§ 4.1/

√N 4.1/

√N 4.1/

√N 4.1/

√N

† with Ecalib and LTOF variable; § using inner 70% of p2p data.

Statistical uncertainties for b

Ee,min 0 100 keV 200 keV 300 keV

σb 7.5/√N 10.1/

√N 15.6/

√N 26.3/

√N

σb†† 7.7/

√N 10.3/

√N 16.3/

√N 27.7/

√N

†† with Ecalib variable.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 23 / 42

Page 25: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Overview of uncertainties Event statistics, rates, running time

Statistical uncertainties for a and b

Statistical uncertainties for a

Ee,min 0 100 keV 100 keV 300 keVtp,max – – 100µs 40µs

σa 2.4/√N 2.5/

√N 2.5/

√N 2.5/

√N

σa† 2.5/

√N 2.6/

√N 2.6/

√N 2.7/

√N

σa§ 4.1/

√N 4.1/

√N 4.1/

√N 4.1/

√N

† with Ecalib and LTOF variable; § using inner 70% of p2p data.

Statistical uncertainties for b

Ee,min 0 100 keV 200 keV 300 keV

σb 7.5/√N 10.1/

√N 15.6/

√N 26.3/

√N

σb†† 7.7/

√N 10.3/

√N 16.3/

√N 27.7/

√N

†† with Ecalib variable.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 23 / 42

Page 26: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Overview of uncertainties Event statistics, rates, running time

Nab event rates, statistics and running timesNab expects data rates of about 300 evts./s.In a typical ∼ 10-day run of 7× 105 s of net beam time we would achieve

σa

a' 2× 10−3 and σb ' 6× 10−4

We plan to collect samples of 1− 2× 109 events in several 6–8-week runs.

Overall accuracy will not be statistics-limited.

Analysis methods to be used:

A. parametrize edges and width of Φ(pp, 1/tp) by fitting; use central partof Φ (∼ 70%) to extract a in a multiparameter fit, and

B. specify all possible parameters of Φ by direct measurement; ⇒treat a, µ = 1/t2

p(pp), and Ndecays as free parameters in a two-stepfitting procedure,

as well as a hybrid of the two.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 24 / 42

Page 27: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Overview of uncertainties Event statistics, rates, running time

Nab event rates, statistics and running timesNab expects data rates of about 300 evts./s.In a typical ∼ 10-day run of 7× 105 s of net beam time we would achieve

σa

a' 2× 10−3 and σb ' 6× 10−4

We plan to collect samples of 1− 2× 109 events in several 6–8-week runs.

Overall accuracy will not be statistics-limited.

Analysis methods to be used:

A. parametrize edges and width of Φ(pp, 1/tp) by fitting; use central partof Φ (∼ 70%) to extract a in a multiparameter fit, and

B. specify all possible parameters of Φ by direct measurement; ⇒treat a, µ = 1/t2

p(pp), and Ndecays as free parameters in a two-stepfitting procedure,

as well as a hybrid of the two.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 24 / 42

Page 28: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Overview of uncertainties Systematic uncertainties

Nab systematic uncertainties

Experimental parameter (∆a/a)SYST

Magnetic field: curvature at pinch 5× 10−4

ratio rB = BTOF/B0 2.5× 10−4

ratio rB,DV = BDV/B0 3× 10−4

LTOF, length of TOF region (*)U inhomogeneity: in decay / filter region 5× 10−4

in TOF region 1× 10−4

Neutron Beam: position 4× 10−4

width 2.5× 10−4

Doppler effect smallunwanted beam polarization small

Adiabaticity of proton motion 1× 10−4

Detector effects: Ee calibration (*)Ee resolution 5× 10−4

Proton trigger efficiency 2.5× 10−4

Accidental coincidences smallResidual gas smallBackground small

Sum 1× 10−3

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 25 / 42

Page 29: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Overview of uncertainties Systematic uncertainties

abBA/PANDA rates and statistical uncertainties

Additions to Nab apparatus:

(supermirror) polarizers,

polarization analyzers,yield these rates:

decays in DV: nd =dNd

dt' 250 s−1 , and

e’s in UD: neU =dNeU

dt' 30 s−1 .

(He-3 polarizers may give higher rates.)

Ee lower cutoff (keV) none 100 200 250

σA (symm., 2 det’s) 2.7/√

Nd 2.9/√

Nd 4.8/√

Nd 7.4/√

Nd

σA (asymm., 1 det.) 4.3/√

Nd 4.8/√

Nd 7.8/√

Nd 11.9/√

Nd

To reach ∆A/A = 1× 10−3 we need Nd = 1.7× 109 or 75 live days.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 26 / 42

Page 30: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Overview of uncertainties Systematic uncertainties

abBA/PANDA systematic uncertainties

Experimental parameter (∆A/A)SYST

Neutron Beam: position not relevantprofile & edge effect smallDoppler effect smallpolarization ≤ 1× 10−3

U inhomogeneity: smallDetector effects: Ee calibration 2× 10−4

Trigger efficiency smallAccidental coincidences smallResidual gas smallBackground small

Sum under study

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 27 / 42

Page 31: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Schedule Milestones

Optimal schedule, excluding major technical, administrative or funding delays:

Milestone Completion0.b Detector prototype detects protons Sep. 20110. Magnet design ready for bidding Sep. 2011

1.a Order for magnet placed (design & option to build) Dec. 20111.b Acceptance of engineering drawings Dec. 20121.c Delivery of magnet Sep. 20131. Spectrometer magnet accepted Dec. 2013

2.a Passive Antimagnetic screen: magnetic design finished Sep. 20122. Passive Antimagnetic screen built Dec. 2013

3.a Detector test chamber available Mar. 2012. . . . . . . . . . . . . . . . . . . . . . . . . . .

3.g Electrode system ready Mar. 20143. Main detectors work in spectrometer Jun. 2014

4.a Shielding calculation for Nab accepted Jun. 2013. . . . . . . . . . . . . . . . . . . . . . . . . . .

4.d Shielding and utilities ready Jun. 20144. Spectrometer ready for data taking Sep. 2014

5.a Magnetometer calibrated Sep. 20125.b Magnetic field mapping system constructed Dec. 20135. Magnetic field of spectrometer mapped Mar. 2014

6. Data acquisition Sep. 2015

7. Data analysis Sep. 2016

Potential shifts in schedule result in a linear translation.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 28 / 42

Page 32: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Schedule Milestones

Schedule overview

2011 2012 2013 2014 2015 2016 2017 2018

dsgn

procurement

Nab setup/daq

pol. pgm. setup/daq

† Changeover to polarized program.

Last two items (polarized program) may take place at the new NGCbeamline at NIST (scientific approval granted).

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 29 / 42

Page 33: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Tasks, collaboration

Tasks and responsibilities

SubprojectResponsible

Instit. Person(s)

1 Spectrometer magnet UVa Baeßler/Pocanic2 Passive antimagnetic screen ASU R. Alarcon3 Beamline UT G.L. Greene4 Shielding and utilities ORNL S.I. Penttila

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Detectors

LANL W.S. WilburnUVa D. Pocanic

U Manitoba M.T. GerickeU Winnipeg J. Martin

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 DAQ UKy C. Crawford7 Electrode System ORNL J.D. Bowman8 Vacuum system UVa S. Baeßler9 B field measurement UVa D. Pocanic

10 Beamline modification ORNL S.I. Penttila11 Polarization & polarimetry UMich T. Chupp

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 30 / 42

Page 34: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Tasks, collaboration Asymptotic manpower commitments

Asymptotic manpower commitments

UVaFaculty:D. Pocanic 50%S. Baeßler 40%Res. Sc./P’doc:E. Frlez 50%A. Salas-B./TBD 67%Grad. St:TBD 100%TBD 100%TBD 100%

UMichFaculty:T. Chupp 30%Grad. St:TBD 100%

NCSUGrad. St:TBD 50%†

ASUFaculty:R. Alarcon 35%Grad. St:TBD 100%

UKyFaculty:C. Crawford 50%Grad. St:TBD 100%

UNHFaculty:J. Calarco 50%Grad. St:TBD 100%

ORNLSr. Scient:S. Penttila 70%D. Bowman 70%

LANLSr. Scient:S. Wilburn 100%†

Postdoc:N. Fomin/TBD 100%†

UTennFaculty:Geoff Greene 30%Postdoc:S. Kucuker/TBD 10%Grad. St:TBD 100%

UNAMFaculty:L. Barron-Palos 20%Grad. St:TBD 100%† Shared with UCNx.

In addition: Karlsruhe, Sussex, Manitoba/Winnipeg, . . .

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 31 / 42

Page 35: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Tasks, collaboration Asymptotic manpower commitments

Asymptotic manpower commitments in FTE

(Teaching load taken into account for university faculty)

UVaFaculty:D. Pocanic .33S. Baeßler .40Res. Sc./P’doc:E. Frlez .50A. Salas-B./TBD .67Grad. St:TBD 1.0TBD 1.0TBD 1.0

UMichFaculty:T. Chupp .20Grad. St:TBD 1.0

NCSUGrad. St:TBD .50†

ASUFaculty:R. Alarcon .22Grad. St:TBD 1.0

UKyFaculty:C. Crawford .33Grad. St:TBD 1.0

UNHFaculty:J. Calarco .33Grad. St:TBD 1.0

ORNLSr. Scient:S. Penttila .70D. Bowman .70

LANLSr. Scient:S. Wilburn .05†

Postdoc:N. Fomin/TBD 1.0†

UTennFaculty:Geoff Greene .25Postdoc:S. Kucuker/TBD .10Grad. St:TBD 1.0

UNAMFaculty:L. Barron-Palos .15Grad. St:TBD 1.0† Shared with UCNx.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 32 / 42

Page 36: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides Detector response

Additional slides

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 33 / 42

Page 37: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides Fierz term

∆b = 3×10-3 can be reached (systematically limited)

( ) ( )2 ee

e

1 3 1m

dw E bE

λρ

∝ ⋅ + ⋅ +

The determination of the Fierz Interference term

Electron spectrum:

Systematic uncertainties:

1.Electron energy determination

2.Background

detected [keV] Ee,kin

incoming electron, E = 300 keVe,kin

3% of events in tail (deadlayer, external bremsstrahlung)

0 50 100 150 200 250 300 350

Yield

0 200 400 600 800

Ee,kin (keV)Yield

(arb.uni ts)

b = +0.1

SM

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 34 / 42

Page 38: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides U inhomogeneity—Kelvin probe

0 4 8 120

4

8

12

16

Hei

ght [m

m]

Work Function [meV]

Width [mm]

0 50 100 150 200 250 300 3500

5

10

15

20

25

30

35

40

Azimuth angle [°]

Hei

ght [m

m]

4900

4950

5000

5050

5100

In collaboration with Prof. I. Baikie, KP Technologies

(arbitrary offset added)

PRELIMINARY

PRELIMINARY

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 35 / 42

Page 39: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides Detector response

Electron energy response

histoE_NEntries 85243

Mean 1.263

RMS 0.658

Number of bounces

1 2 3 4 5 6 7 8

Yie

ld

10

210

310

410

510

histoE_NEntries 85243

Mean 1.263

RMS 0.658

Number of bounces

above threshold(10 keV upper det.)

(40 keV lower det.)

all bounces

histoEe300idealsum

Entries 85243Mean 298.9RMS 9.131

detected Ee [keV]0 100 200 300 400 500 600 700 800

Yie

ld

1

10

210

310

410

510

histoEe300idealsum

Entries 85243Mean 298.9RMS 9.131

Ee in both detectors

histoEe300escEntries 85243Mean 1.203RMS 12.1

non-detected Ee [keV]0 50 100 150 200 250 300

Yie

ld

1

10

210

310

410

510

histoEe300escEntries 85243Mean 1.203RMS 12.1

Ee loss in escaped particles

in dead layerescaped particle

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 36 / 42

Page 40: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides Detector response

Detector response:

Electron energy

Note that detectors are made so big that radial walk wouldn’t be visible. We have to study the

edge effect in more detail.

I am quite embarrassed to admit that nothing of what I found is new. E.g, in [Abe93] the power

of the backscattering suppression for electrons on silicon detectors, as well as the remaining tails,

are shown well.

Energy Green off Green ok Red off Red ok

150 keV 1807 78082 5762 74127

300 keV 2103 83140 3999 81244

450 keV 2025 59592 2809 58808

600 keV 1112 24865 1301 24676

750 keV 71 989 83 977

Tab. 1: Errors in electron energy

reconstruction for different

algorithms. “Off” is defined as

being farther away than 5 keV

from the nominal energy.

I summarize the results for other electron energies in the Table 1. The electron response spectra

look similar (see Fig. 4) and can be described analytically with a fit which assumes that some

electrons (a relative amount of about 1 %) are detected with an energy too high by 30 keV, and

some electrons (a relative amount of 7·10-5

·Ee·keV-1

, so 2.1% at 300 keV) are in an exponential

tail with a “growth constant” of 0.13·Ee). The analytical function describes the detector response

sufficiently good for a further study of the sensitivity of Nab to the non-perfect detector response

for electrons.

Fig. 4: Detector response functions for electrons with energies which are multiples of 150 keV. The “data points”

are from the simulation, and the lines show our analytical model.

A consequence for Nab is that the determination of a (and b) is affected by the knowledge of the

low energy tail. To study the effect on the a determination, I used the analytic model for Nab, in

which the magnetic field is simplified so that the proton TOF can be given as an analytical

function. The model includes the neutron beam width, but computes protons only on axis and

omits the electrostatic acceleration. Fig. 5 shows the 1/TOF2 response for protons with different

energies.

Proton TOF

10

100

1000

10000

100000

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

1/TOF^2 [us^-2]

Yie

ld

Ee = 75 keVEe = 75 keV, Ee responseEe = 225 keVEe = 225 keV, Ee responseEe = 375 keVEe = 375 keV, Ee responseEe = 525 keVEe = 525 keV, Ee responseEe = 675 keVEe = 675 keV, Ee response

Fig. 5: 1/TOF

2 spectra for protons. The solid lines show the 1/TOF

2 spectra for perfect electron detection. The

dashed lines show the modification due to the low energy tail in the electron energy response. The ideal shape (sharp edges, slope of top line proportional to a) is modified by the TOF

response function, and the neutron beam width. In particular, the TOF response leads to a tail at

the low energy (low 1/TOF2) side. The electron energy response leads to tails at the other side,

too. The high energy tail could serve to verify the detection function, this is not studied.

There is some structure in the tails which are probably due to the rather coarse binning for the

electron energies. The main result is that the fitted value for a is sensitive to the size of the tail,

and an uncertainty the in the relative amount of electrons in the tail of 2% (out of the couple of

percent of electrons which are in the tail) would lead to ∆a/a ~ 10-3

.

Fig. 6: Camel hump curve, showing

the time difference (defined as the

impact time on the upper minus the

impact time on the lower detector)

between hits in different detectors.

Furthermore, the event reconstruction goes wrong if our timing resolution is not good enough to

determine the earlier detector. This is only important for observables for which the detector

being hit first is significant. In Fig. 6, we show the time difference between different hits in the

detectors. The black line shows cases in which the lower detector is hit first and the upper

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 37 / 42

Page 41: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides Detector response

histoETOF300du

Entries 5134Mean 33

RMS 6.017

TOF [ns]-200 -150 -100 -50 0 50 100 150 200

Yie

ld

1

10

210

310

histoETOF300du

Entries 5134Mean 33

RMS 6.017

Camel hump curve

lower det hit first upper det hit first

TOF = time of upper det. hit − time of lower det. hit

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 38 / 42

Page 42: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides

Nab anti-magnetic shield (AMS)

X

Y 3020

10010

5

30

50

20100

Anti­magnetic solenoids

Inner solenoids

Top view: Side view:

Spectrometer magnet

Nab: Passive Anti­Magnetic Screen (WBS 4)

Staging area for Nab would save FnPB beam time during AMS testing.

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 39 / 42

Page 43: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides

Nab:DAQ

Det

ecto

r &

pre

amps

PIX

IE-

16

R5400n

contr

oll

er

PNChp

30 kV

rear

I/O

module

FS725

Rb freqP

IXIE

-

16

PXI

crate

PX

I-P

CI

8336

x8

x16

x16

DAQ

workstation

Analysis

workstation

RAID

storageD

etec

tor

&

pre

amps

PIX

IE-

16

R5400n

contr

oll

er

PNChp

30 kV

rear

I/O

module

PIX

IE-

16

PXI

crate

PX

I-P

CI

8336

x8

x16

x16

optical

signal

Isolation

transformer

power

120 V

Isolation

transformer

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 40 / 42

Page 44: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Additional slides Nab collaborators

R. Alarcon1, L.P. Alonzi2§, S. Baeßler2∗, S. Balascuta1§, J.D. Bowman3†,M.A. Bychkov2, J. Byrne4, J.R. Calarco5, V. Cianciolo3, C. Crawford6,

E. Frlez2, M.T. Gericke7, F. Gluck8, G.L. Greene9, R.K. Grzywacz9,V. Gudkov10, F.W. Hersman5, A. Klein11, M. Lehman2§, J. Martin12,

S. McGovern2§, S.A. Page6, A. Palladino2§, S.I. Penttila3‡, D. Pocanic2†,R. Rodgers2§, K.P. Rykaczewski3, W.S. Wilburn11, A.R. Young13.

1Arizona State University 2University of Virginia3Oak Ridge National Lab 4University of Sussex5Univ. of New Hampshire 6University of Kentucky7University of Manitoba 8Uni. Karlsruhe/RMKI Budapest9University of Tennessee 10University of South Carolina11Los Alamos National Lab 12University of Winnipeg13North Carlolina State Univ.†Co-spokesmen ∗Experiment Manager‡On-site Manager §Graduate Students

Home page: http://nab.phys.virginia.edu/

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 41 / 42

Page 45: The neutron beta decay correlation program at SNSgalileo.phys.virginia.edu/.../slides/...pocanic.pdf · A, the electron asymmetry in neutron decay, B, the neutrino asymmetry in neutron

Search for Standard Model Parameters

-1.290 -1.280 -1.270 -1.260

λ = gA/gV

0.960

0.965

0.970

0.975

0.980

Vud

τ n[S

ereb

rov0

5]τ n

[MA

MBO

II]

τ n[P

DG

201

0]

ft(0+→0+) [Hardy09]

ft(0+→0+) [Liang09 – PKO1]

ft(0+→0+) [Liang09 – DD-ME2]

PIBETA [Pocanic04]

λ[P

DG

201

0]

A[U

CN

A 2

010

]

A [PERKEO II,

prel.]

Kaons

+Unitarity [PDG 2010]

D. Pocanic (UVa) n beta correlations at SNS 15 Apr ’11 42 / 42