the npdgamma experiment

36
The NPDGamma Experiment Christopher Crawford University of Tennessee 2007-05-30 • hadronic PV formalism • experimental setup • LANSCE ) SNS Madison Spencer

Upload: phyliss-fedora

Post on 03-Jan-2016

30 views

Category:

Documents


4 download

DESCRIPTION

The NPDGamma Experiment. Christopher Crawford University of Tennessee 2007-05-30. hadronic PV formalism experimental setup LANSCE ) SNS. Madison. Spencer. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The NPDGamma Experiment

The NPDGamma Experiment

Christopher Crawford

University of Tennessee

2007-05-30

• hadronic PV formalism

• experimental setup

• LANSCE ) SNS Madison Spencer

Page 2: The NPDGamma Experiment

Simple Level Diagram of n-p System; is primarily sensitive to the ∆I = 1 component of the weak interaction

Low-energycontinuum states

Bound states

E1 E1M1

E1

E1

3S1,I =0

3P1,I =1

1P1,I =0

3S1,I =0

3P1,I =1

1P1,I =0

1S0,I =1

3P0,I =1

3S1 VW3P1 ;ΔI =1

3S1 VW1P1 ;ΔI =0

1S0 VW3P0 ;ΔI =2

r n +p→ d+γ

• Weak interaction mixes in P waves to the singlet and triplet S-waves in initial and final states.• Parity conserving transition is M1.• Parity violation arises from mixing in P states and interference of the E1 transitions.• A is coming from 3S1 - 3P1 mixing and interference of E1-M1 transitions - I = 1 channel

Mixing amplitudes:

Page 3: The NPDGamma Experiment

Meson exchange model

• DDH formalism:– 6+1 meson-nucleon coupling constants– pion channel dominated by neutral current (Z0)– PV effects: interference between strong and weak vertex

N N

N N

Meson exchange

STRONG(PC)

WEAK(PV)

Desplanques, Donoghue, Holstein, Ann. Phys. 124 449 (1980)

Page 4: The NPDGamma Experiment

EFT approach

Zhu, Maekawa, Holstein, Ramsey-Musolf, van Kolck, Nucl. Phys. A748, 435 (2005)

Liu, nucl-th/0609078

Page 5: The NPDGamma Experiment

Danilov Parameters

Zero range limit:

Ramsey-Musolf, Page, Ann. Rev. Nucl. Part. Sci. 56:1-52,2006

PV NN-interaction

Page 6: The NPDGamma Experiment

Why study hadronic PV?• probe of atomic, nuclear,

and hadronic systems– map out coupling constants– resolve 18F, 133Cs discrepancy– probe nuclear structure effects– anapole and qq contributions

to PV electron scattering

np A nD A np n pp Az p Az

f-0.11 0.92 -3.12 -0.97 -0.34

h0 -0. 50 -0. 23 -0.32 0.08 0.14

h1 -0.001 0.10 0.11 0.08 0.05

h2 0.05 -0.25 0.03

h0 -0. 16 -0. 23 -0.22 0.07 0.06

h1 -0.003 -0.002 0.22 0.07 0.06

• probe of QCD in low energy non-perturbative regime– confinement, many-body

problem

– sensitive to qq correlations

– measure QCD modification of qqZ coupling

n + p d +

A = -0.11 f

+ -0.001 h1

+ -0.003 h1

n-capture elastic scatteringspin rotationBowman

Page 7: The NPDGamma Experiment

Why study hadronic PV?

Liu, nucl-th/0609078

Ramsey-Musolf, Page, Ann. Rev. Nucl. Part. Sci. 56:1-52,2006

Page 8: The NPDGamma Experiment

p-p and nuclei

Existing measurements

Anapole

Nuclear anapole moment(from laser spectroscopy)

Light nuclei gamma transitions(circular polarized gammas)

Polarized proton scattering asymmetries

Page 9: The NPDGamma Experiment

p-p and nuclei

Existing measurements

D

ed Spin rot/A Anapole

Circular components

Medium withcircular birefringence

Linear Polarization

?

Spin rotation

Neutron spin rotation

Page 10: The NPDGamma Experiment

NPDGamma Collaboration

Measurement of the Parity - Violating Gamma Asymmetry A in the Capture of Polarized Cold Neutrons by Para-Hydrogen

J.D. Bowman (spokesman), G.S. Mitchell, S. Penttila, A. Salas-Bacci, W.S. Wilburn, V. Yuan

Los Alamos National Laboratory

M.T. Gericke, S. Page, D. RamsayUniv. of Manitoba

S. Covrig, M. Dabaghyan, F.W. HersmanUniv. of New Hampshire

T.E. Chupp, M. SharmaUniv. of Michigan

C. Crawford, G.L. Greene, R. MahurinUniv. of Tennessee

R. Alarcon, L. Barron, S. BalascutaArizona State University

S.J. Freedman, B. LaussUniv. of California at Berkeley

R.D. CarliniThomas Jefferson National Accelerator Facility

W. Chen, R.C. Gillis, J. Mei, H. Nann, W.M. Snow, M. Leuschner, B. Losowki

Indiana University

T.R. GentileNational Institute of Standards and

Technology

G.L. JonesHamilton College

Todd SmithUniv. of Dayton

T. Ino, Y. Masuda, S. MutoHigh Energy Accelerator Research Org. (KEK)

S. SantraBhabbha Atomic Research Center

P.N. SeoNorth Carolina State University

E. SharapovJoint Institute of Nuclear Research

Page 11: The NPDGamma Experiment

Overview of NPDG experiment

A = -0.11 f ¼ 5 £ 10-8

d / 1 + Pn A cos + Pn APC sin

A = 1 £ 10-8 for N ¼ 3 £ 1016 events

Page 12: The NPDGamma Experiment

Overview of NPDG experiment

Page 13: The NPDGamma Experiment

Pulsed neutron beam

~6x108 cold neutrons per 20 Hz pulse at the end of

the 20 m supermirror guide(largest pulsed neutron flux)

Page 14: The NPDGamma Experiment

Time-of-flight beam profile6

5

4

3

2

1

0

Neutron current (x10

5

neutrons/ms/cm

2

/pulse)

6050403020100

Time of Flight (ms)

Neutron current at the end of a 24.3 m long guide with 150 μ A proton current

Page 15: The NPDGamma Experiment

Time-of-flight beam profile

Page 16: The NPDGamma Experiment

Beam stability

Page 17: The NPDGamma Experiment

3He neutron polarizer• n + 3He 3H + p cross section is highly spin-dependent

J=0 = 5333 b /0

J=1 ¼ 0

• 10 G holding field determines the polarization anglerG < 1 mG/cm to avoid Stern-Gerlach steering

Steps to polarize neutrons:

1. Optically pump Rb vaporwith circular polarized laser

2. Polarize 3He atoms viaspin-exchange collisions

3. Polarize 3He nuclei viathe hyperfine interaction

4. Polarize neutrons by spin-dependent transmission

nn + nnpp

ppnnpp

nn +pp

P3 = 57 %

Page 18: The NPDGamma Experiment

Neutron Beam Monitors • 3He ion chambers• measure transmission

through 3He polarizer

Page 19: The NPDGamma Experiment

Beam Polarization

Page 20: The NPDGamma Experiment

RF Spin Rotator

– essential to reduce instrumental systematics• spin sequence: cancels drift to 2nd order

• danger: must isolate fields from detector

• false asymmetries: additive & multiplicave

– works by the same principle as NMR• RF field resonant with Larmor frequency rotates spin

• time dependent amplitude tuned to all energies

• compact, no static field gradients

holding field

sn

BRF

Page 21: The NPDGamma Experiment

16L liquid para-hydrogen target

15 m

eV

ortho

para

capture

En (meV)

(b

)

• 30 cm long 1 interaction length• 99.97% para 1% depolarization• pressurized to reduce bubbles• SAFETY !!

pp pp

para-H2

pp pp

ortho-H2

E = 15 meV

Page 22: The NPDGamma Experiment

Ortho-Para Conversion Cycle

Page 23: The NPDGamma Experiment

O/P Equilibrium Fraction

Page 24: The NPDGamma Experiment

Neutron Intensity on Target

Page 25: The NPDGamma Experiment

CsI(Tl) Detector Array• 4 rings of 12 detectors each

– 15 x 15 x 15 cm3 each

• VPD’s insensitive to B field

• detection efficiency: 95%

• current-mode operation– 5 x 107 gammas/pulse– counting statistics limited– optimized for asymmetry

Page 26: The NPDGamma Experiment

Asymmetry Analysisyield (det,spin)

P.C. asym

background asym

geometry factor

P.V. asym

RFSF eff. neutron pol. target depol.

raw, beam, inst asym

Page 27: The NPDGamma Experiment

• activation of materials, e.g. cryostat windows

• Stern-Gerlach steering in magnetic field gradients

• L-R asymmetries leaking into U-D angular distribution (np elastic, Mott-Schwinger...)

• scattering of circularly polarized gammas from magnetized iron (cave walls, floor...)

estimated and expected to be negligible (expt. design)

Systematics, e.g:

A

stat. err.

systematics

(proposal)

Statistical and Systematic Errors

Systematic Uncertainties

slide courtesy Mike Snow

Page 28: The NPDGamma Experiment

Left-Right Asymmetries

• Parity conserving: • Three processes lead to LR-asymmetry

– P.C. asymmetry• Csoto, Gibson, and Payne, PRC 56, 631 (1997)

– elastic scattering• beam steered by analyzing power of LH2

• eg. 12C used in p,n polarimetry at higher energies• P-wave contribution vanishes as k3 at low energy

– Mott-Schwinger scattering• interaction of neutron spin with Coulomb field of nucleus• electromagnetic spin-orbit interaction• analyzing power: 10-7 at 45 deg

0.23 x 10-8

2 x 10-8

~ 10-8

at 2 MeV

Page 29: The NPDGamma Experiment

Detector position scans

5 mm resolution ~ 1 deg

target

detector

UP-DOWN LEFT-RIGHT

Page 30: The NPDGamma Experiment

Engineering Runs

Page 31: The NPDGamma Experiment

NPDG Asymmetry (Stat. Error)

Page 32: The NPDGamma Experiment

Spallation Neutron Source (SNS)Oak Ridge National Laboratory, Tennessee

Page 33: The NPDGamma Experiment

Spallation Neutron Source (SNS)

• spallation sources: LANL, SNS– pulsed -> TOF -> energy

• LH2 moderator: cold neutrons– thermal equilibrium in ~30 interactions

Page 34: The NPDGamma Experiment

FnPB Cold Neutron Beamline

Improvements for SNS:

• curved beamline

• 2 choppers (+ 2 unused)

• new shielding hut

• SM bender polarizer

• new LH2 vent line

• 60 Hz DAQ system

Page 35: The NPDGamma Experiment

Timeline

0

500

1000

1500

2000

2500

3000

3500

4000

2006-2 2007-1 2007-2 2008-1 2008-2 2009-1 2009-2 2010-1 2010-2 2011-1

Date

~Best Year for LANSCE Production

Early

Fin

ish D

ate

Fun

d. P

hys.

Beam

First

SNS

Beam

23 A

pr 2

006

• move NPDG to the SNS to achieve goal of A = 1£10-8

• possible follow-up experiment: n + d t +

Page 36: The NPDGamma Experiment

Conclusion

• the NPDG experiment had a successfulfirst phase at LANSCE

• project to determine A to 1£10-8 at the SNS– possible follow-up experiment: n + d t +

• hadronic parity violation is a unique probe of short-distance nuclear interactions and QCD– neutron capture is an important key to mapping

the long-range component of the hadronic weak interaction