the radio/gamma connection€¦ · mixing source’ gamma-ray lcs: e.g. source 1 (radio) with...

18
cm to short-mm band radio and gamma-ray correlated variability in Fermi bright blazars Lars Fuhrmann (Max-Planck-Institut für Radioastronomie, Bonn) S. Larsson (Stockholm Univ.), J. Chiang (Stanford Univ.), E. Angelakis, V. Pavlidou, I. Nestoras, N. Marchili, T. P. Krichbaum, C. Fromm, J. A. Zensus (MPIfR) on behalf of the F-GAMMA and Fermi/LAT collaborations 100-m Effelsberg covers the band 2.64 - 43 GHz with a precision of a few percent for monthly sampling of 60 sources 30-m IRAM covers the band 86 - 250 GHz monthly also for roughly 60 sources 12-m APEX 345 GHz, located in Atacama desert in Chile at an altitude of 5100 m The radio/gamma connection:

Upload: others

Post on 22-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

cm to short-mm band radio and ! gamma-ray correlated variability ! in Fermi bright blazars

Lars Fuhrmann (Max-Planck-Institut für Radioastronomie, Bonn)

S. Larsson (Stockholm Univ.), J. Chiang (Stanford Univ.), E. Angelakis, V. Pavlidou, I. Nestoras, N. Marchili, T. P.

Krichbaum, C. Fromm, J. A. Zensus (MPIfR)

on behalf of the

F-GAMMA and Fermi/LAT collaborations

100-m Effelsbergcovers the band 2.64 - 43 GHz with a precision of a few percent for monthly sampling of 60 sources

30-m IRAMcovers the band 86 - 250 GHz monthly also for roughly 60 sources

12-m APEX 345 GHz, located in Atacama desert in Chile at an altitude of 5100 m

The radio/gamma connection: !

Page 2: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

F-GAMMA program

Fermi-GST γ-ray blazars: broad band monitoring of variability and spectral evolution at cm/mm/sub-mm wavelengths

http://www.mpifr-bonn.mpg.de/div/vlbi/fgamma

Fuhrmann et al. 2007, Angelakis et al. 2008, Fuhrmann et al. in prep.

image by N. Tacken

Page 3: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

The radio/gamma-ray connection!Where in the jets are the gamma-rays produced? Timing analysis

radio cm/mm (F-GAMMA program) vs. Fermi-LAT 3.5 yr light curves:

0

5e-08

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

3.5e-07

flux

(E>1

00 M

eV) [

ph c

m-2

s-1]

Fermi LAT

J0854+2006

54800 55000 55200 55400 55600 55800MJD

0

2

4

6

8

10

12

14

flux

dens

ity [J

y]

3mm PV9mm EFF20mm EFF60mm EFF

PRELIMINARY

Fermi-GST

100-m Effelsberg & IRAM 30-m

0

5e-08

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

3.5e-07

flux

(E>1

00 M

eV) [

ph c

m-2

s-1]

Fermi LAT

J0854+2006

54800 55000 55200 55400 55600 55800MJD

0

2

4

6

8

10

12

14

flux

dens

ity [J

y]

3mm PV9mm EFF20mm EFF60mm EFF

PRELIMINARY

-400 -300 -200 -100 0 100 200 300 400LAG [days]

-0.2

-0.1

0

0.1

0.2

0.3

DCC

F

all sources

averaged DCCFs

LAT / 3mm radio

PRELIMINARY

statistical Discrete Cross-Correlation Function analysis:

stacking analysis: averaging over whole sample (58 sources)

relative timing of flares

Aim: study focusing on the possible connection between radio and gamma-ray flares/activity periods in the ~ 3.5 yr long-term light curves of about 60 Fermi-GST detected blazars through a detailed cross-band analysis

Main question: where in the jets are the gamma-rays produced (very close to BH ! or on pc-scales) ? (e.g. Blandford & Levinson 1995, Valtaoja et al. 1992, Jorstad ! et al. 2001, Agudo et al. 2011, Leon-Tavares et al. 2011)!

Page 4: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

0

1

2

3

4

5

6

7

54000.0 54500.0 55000.0 55500.0 56000.0

2007.0 2008.0 2009.0 2010.0 2011.0 2012.0 2013.0

Flux

Den

sity

(Jy)

MJD

J0238+1636

F-GAMMA team: Preliminary. Not for publication, distribution or any official use!

eangelakis or lfuhrmann at mpifr.de (F-GAMMA team)

2.64 GHz 4.85 GHz 8.35 GHz

10.45 GHz 14.60 GHz 23.05 GHz 32.00 GHz 42.00 GHz 86.00 GHz

142.33 GHz228.39 GHz

Project overview !The sample and data sets

1)  radio bands: F-GAMMA program since Jan. 2007:

3-4.5 yrs of Effelsberg 100-m/IRAM 30-m monthly monitoring data at 10 different frequencies (110, 60, 36, 28, 20, 13, 9, 7, 3, 2 mm) + APEX (0.8 mm)

“the best suitable” 58 1FGL sources (best sampl., frequency & time coverage) sample statistics:

Type # FSRQ 33 BL Lac 17 RG 2 Blazar 5 NLSy1 1 2) Fermi/LAT 3.5 yr monthly light

curves: Aug. 2008 – Dec. 2011

specific time boundaries to best match the radio light curves – start Aug. 15, 2008

RSP pipeline, energy range 0.1 – 300 GeV using power law over that energy range

2FGL sources for ROI, ROI size etc.

0

5

10

15

20

25

30

35

40

45

54000.0 54500.0 55000.0 55500.0 56000.0

2007.0 2008.0 2009.0 2010.0 2011.0 2012.0 2013.0

Flux

Den

sity

(Jy)

MJD

J2253+1608

F-GAMMA team: Preliminary. Not for publication, distribution or any official use!

eangelakis or lfuhrmann at mpifr.de (F-GAMMA team)

2.64 GHz 4.85 GHz 8.35 GHz

10.45 GHz 14.60 GHz 23.05 GHz 32.00 GHz 42.00 GHz 86.00 GHz

142.33 GHz228.39 GHz

Page 5: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

Cross-band analysis!The light curves

Examples:

0

5e-07

1e-06

flux

(E>1

00 M

eV) [

ph c

m-2

s-1] Fermi LAT

J0238+1637

54800 55000 55200 55400 55600 55800MJD

1

2

3

4

5

6

7

flux

dens

ity [J

y]

2mm PV3mm PV9mm EFF13mm EFF20mm EFF60mm EFF

PRELIMINARY

0

1e-07

2e-07

3e-07

4e-07

5e-07

6e-07

flux

(E>1

00 M

eV) [

ph c

m-2

s-1] Fermi LAT

J0854+2006

54800 55000 55200 55400 55600 55800MJD

5

10

15flu

x de

nsity

[Jy]

2mm PV3mm PV9mm EFF13mm EFF20mm EFF60mm EFF

PRELIMINARY

Fermi-LAT

F-GAMMA radio

Page 6: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

Project overview !Three different approaches

1) statistical Discrete Cross-Correlation Function (DCCF analysis)

[ 2) direct LC analysis: relative timing of flare onsets ]

[ 3) fluxr – fluxγ analysis using simultaneous, monthly fluxes ]

0

2e-07

4e-07

6e-07

8e-07

flux

(E>1

00 M

eV) [

ph c

m-2

s-1]

Fermi LAT

J1159+2914

54800 55000 55200 55400 55600 55800MJD

1

2

3

4

flux

dens

ity [J

y]

2mm PV3mm PV9mm EFF13mm EFF20mm EFF60mm EFF

PRELIMINARY

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

flux

(E>1

00 M

eV) [

ph c

m-2

s-1]

Fermi LAT

J2253+1608

54800 55000 55200 55400 55600 55800MJD

0

10

20

30

40

flux

dens

ity [J

y]

2mm PV3mm PV9mm EFF13mm EFF20mm EFF60mm EFF

PRELIMINARY

Page 7: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

DCCF analysis!The setup

compute DCCFs for each source: for all gamma-ray – radio (ν, ν = 142, 86….2.6 GHz) combinations following Edelson & Krolik (1988)

caveats: 3.5 yrs – still limited number of events, complicated flare structures (multiple sub-flares), “broad DCCFs”, what correlates?, “monthly smoothing” etc.

determine significances of correlations: test of chance correlations by mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels

time lags with uncertainties are estimated by Monte Carlo simulations (Peterson et al. 1998)

apply method to the whole sample plus sub-dividing according to FSRQs, BL Lacs, spectral type, physical parameters etc.

stacking of DCCFs: increasing the significance, study of averaged behavior of the sample

Page 8: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

DCCF analysis!First results

3 mm vs Fermi/LAT: examples of single source’ DCCFs

- single source cases often not significant: just a few so far! - often no obvious, simple 1:1 correlation - not yet long enough data trains - conservative upper envelops - dashed lines: significance levels

LAT / 3mm DCCFs

Page 9: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

DCCF analysis!First results

3 mm vs. Fermi/LAT: stacking of DCCFs

dashed lines: different confidence levels

DCCF peak > than our confidence levels

averaged over whole sample: we obtain highly significant correlations !

Page 10: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

DCCF analysis!First results

radio vs. Fermi/LAT: stacking of DCCFs

all LAT/radio (110 to 2 mm) combinations

DCCF peaks all > than our confidence levels

observers frame rest frame

asymmetry

Page 11: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

DCCF analysis!First results

sub-grouping: FSRQs vs. BL Lacs Dependence on physical parameters? e.g. BH masses (MBH):

-  MBH estimates for 33 sources -  low mass range: < 108.9 -  high mass range: > 108.9

stronger DCCF peaks & lower lags for high MBH, e.g. FSRQs:

<lag>3mm low MBH : 44 +/- 19 days <lag>3mm high MBH: 1 +/- 20 days

<lag>28mm low MBH : 118 +/- 31 days <lag>28mm high MBH: 46 +/- 13 days

different behavior ?

Page 12: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

DCCF analysis!First results

<lag>cm: up to 150 days <lag>short mm: drop to ~ 0-20 days

delay origin: synchrotron self-absorption/opacity (e.g. Pushkarev et al. 2010)

1) pos. delay: gamma from inside “mm-core”

2) distance between “gamma-origin” and radio τ=1 surface (VLBI jet speeds, var. Doppler factors, viewing angles): Δr ~ 0 - 0.4 pc (3, 2 mm), ~ 8 pc (cm)

Fuhrmann et al. in prep.

Page 13: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

APEX sub-mm vs. Fermi/LAT (see poster by Larsson et al.)

mm/sub-mm and gamma-ray emission regions co-spatial (within the given uncertainties)

SED modeling:

including the mm/sub-mm bands should be considered!

DCCF analysis First results

PRELIMINARY APEX 0.8 mm (38 sources)

<lag>sub-mm: 7 +/- 7 days <lag>sub-mm BL Lacs: -12 +/- 12 days <lag>sub-mm FSRQs: 13 +/- 9 days

Larsson et al. in prep.

Page 14: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

Radio variability!Is the overall flaring behavior in agreement with shocks on pc-scales?

Shock-in-jet model - each variability model: characteristic signatures in the time and spectral domain

- e.g. shock scenario (Marscher & Gear 1985, Türler et al. 2000)

- seen as standing/moving VLBI components/features in the core region and downstream on pc-scales

Courtesy of M. Türler Courtesy: MOJAVE program

Page 15: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

semi-analytical model calculations:

0 50 100 150 200frequency [GHz]

-300

-200

-100

0

time

lag

(wrt.

2.6

GH

z) [d

ays]

whole sampleaveraged delays

1 10 100 1000Rest Freq. [GHz]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

log(

Std.

Dev

.)

[Black]:All sources, [Red]: FSRQ, [Green]: BL Lacs

flare amplitude vs. freq. flare time delay vs. freq.

- standard shock model (Marscher & Gear 1985)

- Fromm et al. (2011): calculations for (a typical) blazar (CTA 102)

- a conical jet (p = 1)

- a toroidal magnetic field (b = 1.2)

- a constant Doppler factor

- predictions for variability amplitude and time delays

Radio variability!Is the overall flaring behavior in agreement with shocks on pc-scales?

Page 16: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

1 10 100 1000Rest Freq. [GHz]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

log

(Std

. Dev

.)

sample average

Variability amplitude vs. frequency

Time domain - F-GAMMA radio vs. model:

a) Variability amplitude: 0 50 100 150 200

frequency [GHz]

-300

-200

-100

0

time

lag

(wrt.

2.6

GH

z) [d

ays]

whole sampleaveraged delays

1 10 100 1000Rest Freq. [GHz]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

log(

Std.

Dev

.)

[Black]:All sources, [Red]: FSRQ, [Green]: BL Lacs

flare amplitude vs. freq.

- quantity: light curve standard deviations: “intrinsic values” using a likelihood method (Richards et al. 2011)

- sample averages: clear overall increase, max: ~ 60-80 GHz, then plateau/decreasing trend?

- individual source patterns: a) increase up to mm bands b) peak and subsequent decrease c) “flat behavior” - a) + b): good agreement with growth/plateau/decay phase of shocks, c) different mechanism? - F-GAMMA covers all stages of shock evolution!

- individual source studies/modeling (single flares, max., slopes): constrain model parameters (B-Field, non-conical geometry, shock-shock interaction etc.)

- growth: APEX band important ! optical bands?

Radio variability!Is the overall flaring behavior in agreement with shocks on pc-scales?

variability amplitude vs. freq.

Page 17: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

- detailed Discrete Cross-Correlation Function analysis (DCCF) between 2.6 and 140 GHz (110 – 2 mm)

- ~ no lags at high frequencies

- increasing lags towards lower frequencies

- overall good agreement with model predictions

0 50 100 150 200frequency [GHz]

-300

-200

-100

0

time

lag

(wrt.

2.6

GH

z) [d

ays]

whole sampleaveraged delays

1 10 100 1000Rest Freq. [GHz]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

log(

Std.

Dev

.)

[Black]:All sources, [Red]: FSRQ, [Green]: BL Lacs

flare time delay vs. freq.

0 50 100 150 200frequency [GHz]

-300

-200

-100

0

time

lag

(wrt.

2.6

GH

z) [d

ays]

whole sampleaveraged delays

1 10 100 1000Rest Freq. [GHz]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

log(

Std.

Dev

.)

[Black]:All sources, [Red]: FSRQ, [Green]: BL Lacs

time delay vs. freq.

Time domain - F-GAMMA radio vs. model:

b) sample averaged time delays:

most of the radio variability/flares produced in shocks on pc scales !

together with previous (DCCF) findings: gamma-rays likely produced in shocks on pc scales !

Radio variability!Is the overall flaring behavior in agreement with shocks on pc-scales?

Page 18: The radio/gamma connection€¦ · mixing source’ gamma-ray LCs: e.g. source 1 (radio) with source 2 to N (gamma-ray), find “upper envelop” confidence levels time lags with

Conclusions

- Fermi-LAT & F-GAMMA synergy: -  timing analysis of flares/events -  constraining the location of the gamma-ray emitting region

- DCCF and stacking analysis using 3.5 yrs Fermi LCs:

-  first significant radio/gamma-ray correlations -  strongly decreasing lags towards mm/sub-mm bands (lags 0)

-  ~ 0-0.4 pc: emitting regions co-spatial!

-  possible differences for FSRQs/BL Lacs and for physical parameters like BH mass

- radio variability in overall good agreement with shocks on pc-scales

gamma-rays likely produced in shocks on pc-scales!