the role of solid fuel conversion in future power generation

35
Technische Universität München The Role of Solid Fuel Conversion in Future Power Generation Hartmut Spliethoff FINNISH-SWEDISH FLAME DAYS 2013 “Focus on Combustion and Gasification Research” Jyväskylä, April, 17th and 18th 2013

Upload: others

Post on 17-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Technische Universität München

The Role of Solid Fuel Conversion in Future

Power Generation

Hartmut Spliethoff

FINNISH-SWEDISH FLAME DAYS 2013

“Focus on Combustion and Gasification Research”

Jyväskylä, April, 17th and 18th 2013

Technische Universität München

Content

1. Future Developments

1. Worldwide

2. Germany

2. Power Station Requirements

3. Technologies - What Power Plants are required?

4. Research Demand for Solid Fuels

5. IFRF Research

6. EF Gasification Research at TUM

Technische Universität München

1. Future

Primary Energy – World, New Policies Scenario

IEA, WEO 2011

Technische Universität München

1. Future

Importance of Coal – Worlwide

IEA, WEO 2012

Technische Universität München

1. Future

Importance of Biomass – Worlwide

IEA, WEO 2012

Technische Universität München

1. Future

Energy concept 2010 (Germany) – Power Generation

Technische Universität München

2. Requirements

Power requirements – Situation Germany 2010

Source: Spliethoff: et. al, CIT 2011

Today (2010): Share of renewables 16 %, Wind 26 GW, PV 17 GW

Technische Universität München

2. Requirements

Power Requirements – Germany 2020

Source: Spliethoff: et. al, CIT 2011

Requirement for low minimum load

2020: Wind 46 GW, PV 50 GW, Constant consumption

Technische Universität München

2. Requirements

Power Station Requirements

Efficiency

Investment costs

Flexibility

• Future:

• Operational hours ↓ Investment costs ↓

• Flexibility:

• Start-up time ↓ , minimal load ↓

• Load change capability ↑

• Efficiency ??

Technische Universität München

3. Technologies

Technologies for the future

Source: Spliethoff: et. al, CIT 2011

- Storage technologies:

- Long term: chemical storage

- Power to heat

- Flexible conventional power generation for balancing

- Combined Cycle the preferred technologies

- Pulverized Coal Power Station with low investment costs

- Integration of storage technologies

- Renewables:

- Biomass

- Waste

Technische Universität München

3. Technologies

Comparison Flexibility: CC versus PC

Source: Spliethoff: et. al, CIT 2011

Combined

Cycle (new)

Pulverized Coal

Power Station

new old

Load Change 3-6 % / min 3-6 % / min

2-4 % / min

Minimum

load 25 % (2 GT) 20 % 40 %

Start-up

hot (8h)

warm (48 h)

0,5 – 1 h

1- 1.5 h

1-2 h

3 h

2 h

4-5 h

Technische Universität München

3. Technologies

Ongoing developments - PC

Source: Spliethoff: et. al, CIT 2011

• Reduction minimum load

– Firing stability determines

minimum load:

– Requirement: safe operation in

case of a mill failure

– Bituminous coal: Reduction for

pure coal firing: 35-40 % 20

%

– Brown coal: Reduction from

appr. 50 % to 20 % by predrying

• Operation without power production

Technische Universität München

3. Technologies

Gasification - challenges and opportunities

Gasification

Efficient CO2-

separation

Chemicals and energy

carriers/ polygeneration

Power Production

(IGCC)

Flexibility in the

context of increasing

renewables

+ High efficiency

- Costly

- Low availability

Technische Universität München

3. Technologies

Gasification - challenges and opportunities

Chemical

Synthesis • Methanol

• SNG

• FT liquids

Gasifier

Storage

for SNG and FT

fuels

infrastructures

are already

present

Electrolysis

19

Technische Universität München

3. Technologies

IGCC-EPI: Excess Power Integration

Entrained flow

gasifier

Quench/

HRSG

Synthesis

Gas-

turbine

Electrolysis Gas grid O2-storage ASU H2-storage

HRSG Coal

H2S Exhaust gas

SNG O2 H2

O2

H2

0-100%

0-100% 0-100%

0-100%

50-100%

100%

El.

Energy

El. Energy El. Energy

Steam

turbine cycle Rectisol

Excess power

Technische Universität München

3. Technologies

Waste

Electrical Efficiency

- Europe, average: 13 %

- new conventional plants: 18 %

Zella Mehlis, Germany

Technische Universität München

3. Technologies

Biomass

Source: hs energieanlagen gmbh

Biomass CxHyOz

Fluidized bed

gasification

Methanation

SNG

Source: www.skymeshgroup.com

Gas cleaning,

tar, sulphur,…

23

Entrained

Flow

gasification

Technische Universität München

4. Research Demand

Conversion

Raw coal

H2O Volatiles

Heating/ drying Pyrolysis Char combustion Ash

CO2, H2O Volatiles

combustion

Step De-

mand

Examples

Pyrolysis 2 Kinetics, composition, impact on char structure

Volatile comb. 3 Gas phase combustion

Char

combustion

1 Kinetics for O2, CO2, H2O, char structure and reactivity

Technische Universität München

4. Research Demand

Emission – Example NOx emission

- Demand: extensive research in the past and secondary measures lower

research demand

- Key: Distribution volatile N and char-N

raw coal

Fuelnitrogen coal char

char

N2

N2

NO

N

Volatiles

Volatil

N

fixedN

Technische Universität München

4. Research Demand

Ash related issues

- Ash makes the difference to gas

combustion

- Operational problems such as

slagging, fouling and corrosion are

domnination design and operation

- Research demand:

- Ash formation

- Ash chemistry

- ……..

charcombustion

Evaporation

anorganicvapours

NucleationCoagulation

heterogeneouscondensation

fragmentation

Tail cokeparticle

coalparticle

Mineral inclusions

ashparticle

I

superfineparticle(0,1 µm)

II

agglomeratedash particle(0,1 - 10 µm)

III

flyash(1 - 20 µm)

Technische Universität München

4. Research Demand

Gasification

• Gasification offers a high potential (integration, membranes)

- with CCS η < 40 %

- without CCS η ≤ 50%

• CCS power plant today is based on available technologies

Gasifier Gas

cleaning

High T

shiftLow T

shift

CO2

separation

Coal H2

CO2

Conve

ntio

nal Gasifier Gas

cleaning

High T

shiftLow T

shift

CO2

separation

Coal H2

CO2

Gasifier Gas

cleaning

High T

shiftLow T

shift

CO2

separation

Coal H2

CO2

Conve

ntio

nal

Gasifier Gas

cleaning

Membrane

shift

Coal H2

CO2

Me

mbra

ne r

ea

ctor

Gasifier Gas

cleaning

Membrane

shift

Coal H2

CO2

Me

mbra

ne r

ea

ctor

KEY for future development: Knowledge of coal behaviour including mineral

matter/ trace components at highest temp./ pressures and reducing conditions

• Gasification is an old technology ↔ knowledge base is low

Technische Universität München

4. Research Demand

Fuel characterization and CFD-modelling

Requirement for design and operation: to know the impact of

- fuel quality and

- combustion conditions

Approach:

• Fuel Characterization: Advanced FC, which consider large scale

combustion conditions

• CFD modelling: data of fuels and ashes required

on

- Combustion behaviour,

- Emissions

- Slagging, fouling and corrosion

Technische Universität München

• Characterise solid fuels

– to fill data gaps for numerical model validation

& application

– includes fuels that are environmentally and

economically significant

• Biomass, Wastes, Blends with coals

• In atmospheres that reflect O2/RFG

approach, temperatures and pressures of

current interest to members and other

sponsors (steam, CO2)

• Establish protocols for solid fuels

combustion/gasification characterisation

• Produce and maintain DATABASES (IFRF Solid

Fuel Database- http://sfdb.ifrf.net

5. IFRF Research

IFRF - Fuel characterization

Technische Universität München

• Length 4 m, ID 0.15 m

• 8 modules, 19 feed ports

• quenched collector probe

• 60 kW burner, 54 kW

resistances

• 700-1400°C

• 5-1500 ms residence time

• carrier gas (O2, N2, CO2 mix)

conditions similar to those of

full scale plants

5. IFRF Research

The IFRF Isothermal Plug Flow Reactor (Livorno – Italy)

Technische Universität München

Technische Universität München

Issues:

• Temperature is really isothermal?

• Particles residence time

distribution – trajectories

• Partciles actual T vs time history

CFD modeling can help to correctly

analyze and interpretate the raw

data produced by IPFR.

5. IFRF Research

IPFR Qualification:

CFD modeling

Technische Universität München

• Straw pellets (Denmark)

• Torrefied Spruce (BE 2020)

• Sofwood pellets (BE 2020)

• DDGS (TUD)

• Palm Kernel Shell (+ torrified) (KTH & Poland)

• Lignine (Italy)

• Sunflower seeds (Italy)

5. IFRF Research

Materials

Technische Universität München

experimental data with error bars and sub-model fitting

5. IFRF Research

IPFR - Conversion versus time/ T, gas composition

Technische Universität München

6. Gasification Research at TUM

Research Project -

Industry Partner: Siemens, Air Liquide, RWE, EnBW, Vattenfall

Research Partner: TUM, TUB Freiberg, FZ Jülich, GTT

CFD

Simulations

IGCC

Concepts Trace Species

Condensation

Gasification

Kinetics

In-situ

Monitoring

Technische Universität München

6. Gasification Research at TUM

Coal Gasification Kinetics

Technische Universität München

6. Gasification Research at TUM

Experimental Procedure

Technische Universität München

6. Gasification Research at TUM

Pressurized High Temperature EF Reactor (PiTER)

Technical Data

Temperature: up to 1800°C

Pressure: up to 5.0 MPa

Residence time: 0.5 – 5 s

Feed: pulverized coal

Fuel mass flow: up to 5 kg/h

Gas vol. flow: max. 100 mN³/h

Gas composition: N2,H2O,CO2,H2,

O2,CO

Reactor height: 7000 mm

Reaction tube

length: 2200 mm

inner diameter: 70 mm

• Experiments at pressure

• Gasification in CO2/H2O/O2

• Pyrolysis in inert atmospheres

• Char and gas analysis 7 m

1 m

Technische Universität München

6. Gasification Research at TUM

Experimental facilities – Babiter, WMR and PTGA

Optical

ports

Pressurized

heating system

Balance system

PWMR1100°C, 5.0 MPa

Sample

Coal

feederGas

preheater

Heating

zones

Water

quench

Sampling

probeChar

filter

Gas

analysis

PTGA1600°C, 5.0 MPa

BabiTER1600°C, atmospheric

(a) (b) (c)

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6

Tem

pera

ture [

°C]

Time [s]

0.1 MPa

1.0 MPa

2.5 MPa

5.0 MPa

Technische Universität München

6. Gasification Research at TUM

Reaction kinetics in a technical EF Gasifier

Technische Universität München

Conclusions

• Relative decrease of coal utilization in the medium

and long-term, but absolute increase in the short

and medium term

• Importance of biomass and waste fuels

• Increase of fluctuating renewables requires flexible

power plants

• Research in solid fuels is still required