the timing of covid-19 transmission - medrxiv€¦ · 04/09/2020  · perpetuity. 1 the timing of...

20
1 The timing of COVID-19 transmission Luca Ferretti 1 , Alice Ledda 2 , Chris Wymant 1 , Lele Zhao 1 , Virginia Ledda 3 , Lucie Abeler- Dörner 1 , Michelle Kendall 1 , Anel Nurtay 1 , Hao-Yuan Cheng 4 , Ta-Chou Ng 5 , Hsien-Ho Lin 5 , Rob Hinch 1 , Joanna Masel 6 , A. Marm Kilpatrick 7 , Christophe Fraser 1 1 Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, UK 2 MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK 3 Liverpool University Hospitals NHS Foundation Trust, UK 4 Epidemic Intelligence Center, Taiwan Centers for Disease Control, Taipei, Taiwan 5 Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health; Global Health Program, National Taiwan University College of Public Health, Taipei, Taiwan 6 Ecology & Evolutionary Biology, University of Arizona, USA 7 Ecology & Evolutionary Biology, University of California, Santa Cruz, USA Abstract: The timing of SARS-CoV-2 transmission is a critical factor to understand the epidemic trajectory and the impact of isolation, contact tracing and other non- pharmaceutical interventions on the spread of COVID-19 epidemics. We examined the distribution of transmission events with respect to exposure and onset of symptoms. We show that for symptomatic individuals, the timing of transmission of SARS-CoV-2 is more strongly linked to the onset of clinical symptoms of COVID-19 than to the time since infection. We found that it was approximately centered and symmetric around the onset of symptoms, with three quarters of events occurring in the window from 2-3 days before to 2-3 days after. However, we caution against overinterpretation of the right tail of the distribution, due to its dependence on behavioural factors and interventions. We also found that the pre-symptomatic infectious period extended further back in time for individuals with longer incubation periods. This strongly suggests that information about when a case was infected should be collected where possible, in order to assess how far into the past their contacts should be traced. Overall, the fraction of transmission from strictly pre-symptomatic infections was high (41%; 95%CI 31-50%), which limits the efficacy of symptom-based interventions, and the large fraction of transmissions (35%; 95%CI 26-45%) that occur on the same day or the day after onset of symptoms underlines the critical importance of individuals distancing themselves from others as soon as they notice any symptoms, even if they are mild. Rapid or at-home testing and contextual risk information would greatly facilitate efficient early isolation. Introduction The COVID-19 disease emerged at the end of 2019. Several months after the first reports on the disease, our understanding of transmission of the causative virus - SARS-CoV-2 - All rights reserved. No reuse allowed without permission. perpetuity. preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for this this version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516 doi: medRxiv preprint NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Upload: others

Post on 08-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    The timing of COVID-19 transmission LucaFerretti1,AliceLedda2,ChrisWymant1,LeleZhao1,VirginiaLedda3,LucieAbeler-Dörner1,MichelleKendall1,AnelNurtay1,Hao-YuanCheng4,Ta-ChouNg5,Hsien-HoLin5,RobHinch1,JoannaMasel6,A.MarmKilpatrick7,ChristopheFraser1

    1BigDataInstitute,LiKaShingCentreforHealthInformationandDiscovery,NuffieldDepartmentofMedicine,UniversityofOxford,UK

    2MRCCentreforGlobalInfectiousDiseaseAnalysis,DepartmentofInfectiousDiseaseEpidemiology,SchoolofPublicHealth,ImperialCollegeLondon,UK

    3LiverpoolUniversityHospitalsNHSFoundationTrust,UK

    4EpidemicIntelligenceCenter,TaiwanCentersforDiseaseControl,Taipei,Taiwan

    5InstituteofEpidemiologyandPreventiveMedicine,NationalTaiwanUniversityCollegeofPublicHealth;GlobalHealthProgram,NationalTaiwanUniversityCollegeofPublicHealth,Taipei,Taiwan

    6Ecology&EvolutionaryBiology,UniversityofArizona,USA

    7Ecology&EvolutionaryBiology,UniversityofCalifornia,SantaCruz,USA

    Abstract:ThetimingofSARS-CoV-2transmissionisacriticalfactortounderstandtheepidemic trajectory and the impact of isolation, contact tracing and other non-pharmaceutical interventionsonthespreadofCOVID-19epidemics.Weexaminedthedistributionoftransmissioneventswithrespecttoexposureandonsetofsymptoms.Weshowthatforsymptomaticindividuals,thetimingoftransmissionofSARS-CoV-2ismorestrongly linked to the onset of clinical symptoms of COVID-19 than to the time sinceinfection.Wefoundthatitwasapproximatelycenteredandsymmetricaroundtheonsetofsymptoms,withthreequartersofeventsoccurringinthewindowfrom2-3daysbeforeto2-3daysafter.However,wecautionagainstoverinterpretationoftherighttailofthedistribution,due to itsdependenceonbehavioural factorsand interventions.Wealsofound that the pre-symptomatic infectious period extended further back in time forindividualswithlongerincubationperiods.Thisstronglysuggeststhatinformationaboutwhenacasewasinfectedshouldbecollectedwherepossible,inordertoassesshowfarintothepasttheircontactsshouldbetraced.Overall,thefractionoftransmissionfromstrictlypre-symptomatic infectionswashigh (41%;95%CI31-50%),which limits theefficacyofsymptom-basedinterventions,andthelargefractionoftransmissions(35%;95%CI 26-45%) that occur on the same day or the day after onset of symptomsunderlinesthecritical importanceof individualsdistancingthemselves fromothersassoonastheynoticeanysymptoms,eveniftheyaremild.Rapidorat-hometestingandcontextualriskinformationwouldgreatlyfacilitateefficientearlyisolation.

    Introduction TheCOVID-19diseaseemergedattheendof2019.Severalmonthsafterthefirstreportsonthedisease,ourunderstandingoftransmissionofthecausativevirus-SARS-CoV-2-

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

    https://doi.org/10.1101/2020.09.04.20188516

  • 2

    isstillincomplete.Adetailedknowledgeofitstransmissionisurgentlyneededtoimprovepublichealthinterventionsaimedatreducingtheburdenofthepandemiconsocieties.Inparticular,thetemporalprofileofinfectiousnessinrelationtotheonsetofsymptomsis crucial for assessing and optimising public health interventions and minimisingdisruptiontosocietyandtheeconomy.

    Whendesigning interventionstocontrolacommunicablediseasesuchasCOVID-19,akey quantity is the fraction of transmissions occurring while the source is non-symptomatic(Fraseretal.2004;Peaketal.2017),i.e.eitherpre-symptomatic(beforesymptomonset)orasymptomatic(forindividualswhoneverdevelopsymptoms).

    Symptomaticindividualsareeasierto(self-)identifyandtheycantakemeasurestoavoidspreadingthevirus,whereastransmission fromnon-symptomatic individuals ismuchmoredifficulttoprevent.Theextentandtimingofnon-symptomatictransmissionhavealargeimpactonwhichpublichealthinterventionscanbeeffectiveandhowtheyshouldbe implemented (Fraser et al. 2004; Peak et al. 2017). For example, isolation ofsymptomaticcasesmaybesufficienttopreventspreadforadiseasethatistransmittedonly after onset of clinical symptoms, as was the case with SARS (May et al. 2004);however,furtherinterventionsmaybenecessaryforadiseasewithahighproportionofnon-symptomatic transmission such as COVID-19. In the latter case, preventingtransmission from non-symptomatic individuals requires actively finding suchindividualsthroughcontacttracing(Ferrettietal.2020)ormasstesting(Larremoreetal. 2020), and/ormeasures targeting the entire population such as facemasks, handhygiene,andvaryingdegreesofphysicaldistancing.Hence,knowingthecontributionofnon-symptomatictransmissioniskeyforthechoiceofinterventions.

    ThefractionofallCOVID-19transmissionsthatcomefromasymptomaticindividualsisdifficulttomeasureinanunbiasedmanner;inaddition,itislikelydependentontheageof infected individuals and therefore time- and population-specific. Indirect evidencesuggeststhatasymptomaticindividualsarelessinfectiousthansymptomaticindividuals(Zhouetal.2020;Leeetal.2020;Madewelletal.2020)andaccountedforlessthanhalfof infectionsof SARS-COV-2 inChinaandEuropeancountries in the firsthalfof2020(Pollánetal.2020;Lavezzoetal.2020;Buitrago-Garciaetal.2020).

    Another challenge for public health interventions is the occurrence of transmissionsbefore or shortly after symptom onset, from individuals who do develop symptomsduring the course of the infection: pre-symptomatic and early symptomatictransmissionshereafter.Pre-symptomatictransmissionshavebeenestimatedtoaccountforalmosthalfofallnon-asymptomatictransmissions(seee.g.meta-analysisin(Caseyetal.2020)).

    The timing of pre-symptomatic and early symptomatic transmission determines thespeed required for finding the contacts who could have been infected, before thesecontacts,inturn,infectothers.Iftheintervalfrominfectiontoonsetofsymptomsisjustafewdays,asseemstobethecaseforCOVID-19,itbecomescriticaltonotifycontactsinstantlywhen the index case is confirmed by rapid testing or even symptom-basedclinicaldiagnosis.Thereforedigitalcontacttracingviaasmartphoneapp,whichmakesthe exposure notification step of contact tracing instantaneous, could substantiallyenhance the effectiveness of traditionalmanual contact tracing (Ferretti et al. 2020;Kucharskietal.2020;Braithwaiteetal.2020;Anglemyeretal.2020).Effectivenessofdigitalcontacttracingdependsonmanyfactors(Hinchetal.2020)includingthefraction

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 3

    ofthepopulationinstallingtheapp,andonhowclusteredorcorrelatedappuseiswithincommunities (Farronato et al. 2020), the time until diagnosis and notification(Kretzschmaretal.2020),andthecompliancewithquarantinerecommendations.

    Bothtraditionalanddigitalcontact tracingrequireareliableestimateof thetemporalprofile of infectiousness in order to assesswhich contacts are at risk of having beeninfected and which are not. Assessing the risk of exposed contacts as accurately aspossible is key tomaximising the numberof infectious individuals in quarantine andpreventing further spread,whileminimising thenumberofnon-infectious individualsunnecessarilyquarantined.

    In this study we examine the temporal profile of infectiousness for SARS-CoV-2.Weestimate the distributions for the lengthof the intervals between infection, symptomonset and transmission using multiple datasets containing information on 191transmissionpairs.Wefindthatthetimingoftransmissioneventsdependsmorestronglyononsetofsymptomsthantimesinceinfection.Infectiousnessreachesitspeakneartheonsetofsymptoms,afterincreasinggraduallyfromthetimeofinfection.Weestimatethefractionofpre-symptomatictransmissions,andtherelativeimportanceoftransmissionsbeforeandshortlyafterthetimeofsymptomonset.Finally,weoutlinetherelevanceofthesefindingsforcontacttracing,timingofisolationandotherindividualprecautionarymeasures.

    Time intervals

    The temporalprofileofCOVID-19 infectionand transmission is characterisedby fourepidemiologicallyrelevanttimeintervals(Table1andFigure1):theincubationperiod,the serial interval, the generation time and the time from onset of symptoms totransmission(TOST).Thesefourtimeintervalsaredelimitedbyfourkeytimepoints:thetimeatwhichanindividualgetsinfected,thetimeatwhichtheyinfectanotherindividual,thetimesatwhichthesourcedevelopssymptomsandatwhichtherecipientdoes.Withthe exception of the incubation period,which is defined for a single individual, theseintervalsaredefinedforatransmissionpair:anindex(primary)caseandasecondarycaseinfectedbytheindex.

    Theincubationperiodisthetimebetweeninfectionandonsetofsymptoms.Fromtheaverageofmultipledistributionsfromtheliterature(seeMethods),itsmeanis5.7daysanditsSDis3.5days.

    The serial interval is the interval between times of onset of symptoms in index andsecondary cases. It canbedirectlymeasured from thedata, andhasbeenextensivelystudiedforCOVID-19(Griffinetal.2020;Nishiura,Linton,andAkhmetzhanov2020;Duetal.2020;Tindaleetal.2020),althoughitcanbeaffectedbyseveralbiases(Parketal.2020).Itisoccasionallynegative-whenthesecondarycasedevelopssymptomsbeforetheindexcase.Itisundefinedifeithercasehasanasymptomaticinfectionordoesnotreportsymptoms.

    Thegenerationtimeistheintervalbetweenthetimeofinfectionoftheindexcaseandthetimeofinfectionofthesecondarycase.Itistypicallyhardertoestimatedirectlyunlesstheintervalofexposureisshortforbothindexandsecondarycase.Thegenerationtimeisusuallyinferredindirectlyfromintervalsofexposureandonsetofsymptoms.Ithas

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 4

    been inferred forCOVID-19by (Ferretti et al. 2020;Ganyani et al. 2020). It is alwayspositivebydefinition.

    TOST is the time elapsed between the onset of symptoms in the index case, and thetransmissionfromindextosecondarycase.Itispositiveforsymptomatictransmissionandnegativeforpre-symptomatictransmissionbydefinition.Itisundefinediftheindexcasehasanasymptomaticinfectionordoesnotreportsymptoms.Thistimeintervalhasrarelybeendiscussedinepidemiology,althoughithasbeenconsideredforCOVID-19(Heetal.2020;Ashcroftetal.2020).

    Knowledge of these four intervals enables us to predict the relative effectiveness ofdifferentinterventions,e.g.physicaldistancing,wearingoffacemasks,masstestingorcontacttracing.

    Table1: Four time intervals that influence control via isolationof symptomaticindividuals.

    Timeinterval From ToIncubationperiod infection → onsetofsymptomsGenerationtime infection → transmission(secondary)TOST onsetofsymptoms → transmission(secondary)Serialinterval onsetofsymptoms → onsetofsymptoms(secondary)

    Results

    Serial interval

    Weanalysedtransmissionpairsfromtheonlyfourdatasetsintheliterature(Ferrettietal.2020;Xiaetal.2020;Chengetal.2020;Heetal.2020)thatcontainthedateofonsetof symptoms for both index and secondary cases, as well as partial information onintervalsof exposure.To test the robustnessof the results,we includedanadditionaldatasetby(Zhangetal.2020)withserialintervalsonly.

    Theempiricalserialinterval,whenanalysingallfivedatasetscombined,hadameanof5.1days,amedianof4days,andastandarddeviationof3.8days;themeanwas4.1dayswithoutZhangetal.Theseresultsareconsistentwithotherstudies(Tindaleetal.2020;Duetal.2020;Bietal.2020).Moststudiesfitalognormaldistributiontothedata,eventhough serial intervals are occasionally negative. The empirical distribution and thelognormal distributionwith the samemean and SD are illustrated in SupplementaryFigure1.Thereare,however,manycaveatsinusingtheserialintervaldistributionforepidemiologicalinference(Parketal.2020).

    Themedianoftheserialintervalwassimilaracrossdifferentdatasets(allp>0.2,Mann-WhitneyU-test)butthevariancewasdifferent,withFerretti&WymantetalandChengetalshowingsignificantunderdispersionandoverdispersionwithrespecttotheothers(p=0.001and0.025respectively,Fligner-Killeentest).14outof40transmissioneventsfromFerretti&Wymantetaloccurredduringaphaseofexponentialepidemicgrowth,

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 5

    whenthecorrespondingserialintervalisexpectedtobeshorter(Svensson2007).Weexplicitlycorrectedforthiseffectintheinferenceofgenerationtimeinthenextsection.

    Generation time

    Weinferredthegenerationtimedistributionbymaximumlikelihoodestimation,usingdatesofonsetofsymptomsforbothindexandsecondarycases,aswellastheirintervalsofexposure(whenavailable).Wecorrectedforexponentialgrowthandrightcensoring,asdetailedintheMethods.

    Todeterminethefunctionalformofthedistribution,wetestedawiderangeofpossibleshapesthatareconsistentwiththenear-absenceofinfectiousnessoftheindexcaseatthetimeofinfection.Thisrequirementstemsfromtheverylowinitialviralload,sinceeachcycleofviralreplicationtakesseveralhours(Bar-Onetal.2020).

    Thebest-fittingshape,asdeterminedbytheAkaikeInformationCriterion(AIC),wasaWeibull distribution (Figure 1A; mean 5.5 days, standard deviation 1.8 days). AGompertz,a log-logisticandagammadistributionprovidedgoodfitsaswell (𝛥𝐴𝐼𝐶 =0.57, 0.93 and 1.06 respectively, Supplementary Table 1). The generation timedistributions corresponding to the best parameter fits for each shape are shown inSupplementaryFigure2,andthemaximum-likelihoodparametervaluesforeachshapeinSupplementaryTable2.

    Given the heterogeneity among datasets in terms of interventions and stage of theepidemic, it is important toassess therobustnessof the inferencewithrespect to thechoiceofdatasets.Were-inferredthegenerationtimedistributionremovingonedatasetatatime,aswellasaddingtheadditionaldatasetbyZhangetal.Theresultswerequiterobustandwithintheuncertaintiesoftheinference,asillustratedinFigure1A.

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 6

    Figure1:Top: illustrationof thedefinitionsofepidemiologicallyrelevanttime intervals.Bottom:maximum-likelihooddistributionsof(A)generationtimeand(B)TOST,excludingorincludingdifferentdatasets,shownwithdifferentcolours.Thepointwise95%CIforthefittothebaselinedataset(‘full’,whichdoesnotincludeZhangetal.)isshowningrey.Thedashedblacklineshowstheincubationperioddistributionforcomparison.

    Time from onset of symptoms to transmission (TOST)

    WeinferredthedistributionforTOSTbymaximumlikelihoodestimation.AsCOVID-19isoftentransmittedpre-symptomatically(negativeTOST),weconsidereddistributionswhich include both positive and negative times. The best fit was given by a scaledStudent’s t distribution (Fig. 1B; mean=-0.07 days, SD=2.8 days). A skew-logisticdistribution (mean=0.02 days, SD=2.65 days) also provided a good fit (𝛥𝐴𝐼𝐶 = 0.65;SupplementaryTable3).TheTOSTdistributionscorrespondingtothebestparameterfitsfor each shape are shown in Supplementary Figure 3, and the parameter values inSupplementaryTable4.

    Wetestedtherobustnesswithrespecttochoiceofdatasetsbyremovingonedatasetatatimeandaddinganadditionaldatasetasbefore.Allbest-fitdistributionswerecenteredaroundthetimeofonsetofsymptomswithroughlysimilarwidth(Figure1B).

    1

    Infected

    Incubation period

    Generation time

    2

    Symptomatic

    Symptomatic

    Infected

    TOST

    Serial interval

    0.0

    0.1

    0.2

    0.3

    0 5 10 15Generation time (days)

    Prob

    abilit

    y de

    nsity

    (per

    day

    )

    A

    0.1

    0.2

    0.3

    -5 0 5 10TOST (days)

    Prob

    abilit

    y de

    nsity

    (per

    day

    )

    Dataset:full

    full - Cheng et al

    full - Ferretti et al

    full - He et al

    full - Xia et al

    full + Zhang et al

    B

    0.0

    0.1

    0.2

    0.3

    0 5 10 15Generation time (days)

    Prob

    abilit

    y de

    nsity

    (per

    day

    )

    A

    0.1

    0.2

    0.3

    -5 0 5 10TOST (days)

    Prob

    abilit

    y de

    nsity

    (per

    day

    )

    Dataset:full

    full - Cheng et al

    full - Ferretti et al

    full - He et al

    full - Xia et al

    full + Zhang et al

    B

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 7

    The peak of infectiousness depends on the onset of symptoms rather than the time of infection

    Ithaspreviouslybeennotedthatthesimilaritybetweenthemeanincubationperiodandthemeangenerationtime(about5.5days)suggestsameanTOSTofclosetozeroi.e.analmost-centereddistributionofTOST(Nishiura,Linton,andAkhmetzhanov2020;Caseyet al. 2020). Transmission events are indeed clearly concentrated around the time ofonset of symptoms, regardless of the details of the inference. This can be either acoincidence,withnorelationbetweengenerationtimeandincubationperiod(symptom-independentinfectiousness),orthetimesinceonsetofsymptomscoulddeterminetheinfectiousnessofanindividual,ratherthanthetimesincetheindividualwasfirstinfected(symptom-dependentinfectiousness).ThesetwoscenariosareillustratedinFigure2Aand2Brespectively.

    Figure2:Threealternativehypothesesforthetimingofinfectiousnessoftheblueindividual(and individuals generally). In (A), infectiousness depends on the time since infection,regardless of whether symptoms develop quickly (A top) or slowly (A bottom). In (B),infectiousnessdependsonthetimeoftheonsetofsymptoms,regardlessofwhetherthetimesinceinfectionisshort(Btop)orlong(Bbottom).In(C),infectiousnessdependsonthetimeofonsetofsymptoms,butitincreasesgraduallyfromthetimeofinfection,thereforeleadingtoashorterinfectiousperiodifsymptomsdeveloprapidly(Ctop)andalongerinfectiousperiodifsymptomsappearlate(Cbottom).

    We tested which of these two scenarios, i.e. symptom-dependent and symptom-independentinfectiousness,bestfitourdataontransmissionpairs,usingtheinformationontheintervalofexposureoftheindexandsecondarycasescomparedwiththetimeof

    A

    infection transmissionsymptom onset symptom onset

    infectiousness

    B

    C

    infection

    symptom onset

    transmission

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 8

    onsetofsymptomsoftheindex.ComparingtheAICvaluesinSupplementaryTablesFandGforthemostdirectlyinformativedatasets(Ferretti&Wymantetal,Xiaetal,andbothcombined),wefoundcleardifferencesbetweenthebestfitsforsymptom-dependentandsymptom-independent infectiousness (𝛥𝐴𝐼𝐶 = -13.9, -11.1, -22.4 for the differentdatasets respectively; Supplementary Table 5). Even the simplest Gaussian fit forsymptom-dependentinfectiousnesswasamuchbetterfittothedatathananychoiceofgeneration time distribution for symptom-independent infectiousness (𝛥𝐴𝐼𝐶 = -5.4, -11.1,-18.8).

    These results confirm the observation that for individuals that eventually developsymptoms, the period of SARS-CoV-2 infectiousness is directly related to onset ofsymptoms rather than being independent of it. For symptomatic individuals, mosttransmissioneventsoccurredinarangeofafewdaysbeforeandafteronsetofsymptoms.Morethan5daysbeforesymptomonset,infectiousnessappearedtodecreasebelowatenthofitspeakvalue,andweobservedonlyafewpercentoftransmissionsbeyond5daysaftersymptomonset.

    Infectiousness increases gradually from time of infection to onset of symptoms Our analyses suggest that time of symptom onset is the main determinant of whentransmissionoccurs,withtransmissionpeakingbeforeandaftertheonsetofsymptoms.However,theincubationperiodcouldstillaffectthewidthofthedistributionofthetimeoftransmissionevents.Indeed,thedatasuggestaweaknegativecorrelationbetweentheincubationperiodofthesourceandtheserialintervalofthepair(SupplementaryFigure4),whichwouldnotbeexpectedifthetimingoftransmissionwasdeterminedonlybytheTOST(seeMethods).

    To examine the possibility that the length of the infectious period depends on theincubation period (incubation/symptom-dependent infectiousness), we consideredseveralpossibledependenciesbetweentheTOSTdistributionandtheincubationperiod.Wemodelledthembyrescalingthetimeoftransmissionbyafactordependentontheincubationperiod,affectingeitherthewholedistributionoritsleftpartonly(detailsinMethodsandSupplementaryTable5).

    Themodelofincubation/symptom-dependentinfectiousnesswiththebestfitacrossalldatasetswasalinearrescalingofpre-symptomaticvaluesofTOSTbythelengthoftheincubationperiod(Figure2C;𝛥𝐴𝐼𝐶 =0,-9.3,-10.2,-15.5forFerretti&Wymantetal,Xiaetal,bothcombined,andalldatasetscombined,respectively).Inotherwords,individualswithlongerincubationperiodsalsotendtohaveaproportionallyearlierandlongerpre-symptomatic infectious period (Figure 3A). The profiles of transmission for differentincubationperiodsinrelationtoTOSTaredepictedinFigure3B.ThebestfitforTOSTisprovided by a rescaled skew-logistic distribution as a functionof theTOST 𝑡 and theincubationperiod𝑡(:

    𝑝*+,*(𝑡|𝑡() ∝𝑒2(*23)/5

    (1 + 𝑒2(*23)/5)89:𝑓𝑜𝑟𝑡 ≥ 0,

    𝑒2(*23)/(5*B/C)

    (1 + 𝑒2(*23)/(5*B/C))89:𝑓𝑜𝑟𝑡 < 0

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 9

    withparameters𝜇 = −4.00days,𝜎 = 1.85days,𝛼 = 5.85.Theconstant𝜏 = 5.42daysisthemeanincubationperiodaccordingto(McAloonetal.2020).Foranincubationperiod𝑡( = 𝜏,theTOSThasameanof0.1daysandSDof2.4days.

    Figure 3: probability of transmission as a function of generation time (left) and TOST(right)foragivendurationoftheincubationperiod,relativetothepeakprobability.Theblack linerepresents theaveragewithrespect to the incubationperioddistribution.Theenvelopescorrespondtothepointwise95%CI.

    Itisunclearwhetherthemagnitudeofinfectiousnessdependsontheincubationperiod.Itispossiblethatanearlyhostimmuneresponsecouldinitiallyreduceviralreplication,butonceinitialbarriersofimmunityareovercome,thesamepeakinfectiousnesscouldbereached.Thiswouldmeanthatindividualswithlateronsetofsymptomshavealongerinfectiousperiodwiththesamepeakinfectiousness;i.e.theircumulativeinfectiousnessincreaseswiththedurationoftheirincubationperiod.Ourdatasetcannotdiscriminatebetween this scenario and the onewhere cumulative infectiousness does not changedependingonthelengthoftheincubationperiod(SupplementaryTable5).Irrespectiveofthis,theaveragedistributionofTOSToveralldurationsoftheincubationperiodisverysimilartothepreviousfit(SupplementaryFigure5).

    Sincethetimeofsymptomonsetisthemaindeterminantofinfectiousness,wenoticeastrong positive correlation between incubation period and generation time, which isclearlyvisibleinFigure3A,andaweakernegativeonebetweenincubationperiodandTOST(SupplementaryTable6).

    Epidemiological biases could affect symptomatic transmissions

    Manybiases can potentially affect the shape of the temporal profile of transmissionsinferredfromobservedtransmissionpairsTheseincludebothsamplingbiasesandself-isolationorpublichealthinterventions.

    Incubation period: = 3 days = 5.5 days = 9 days average

    0.3

    0.6

    0.9

    1.2

    0 5 10 15 20days post infection

    rela

    tive

    prob

    abilit

    y of

    tran

    smis

    sion

    A

    −10 −5 0 5 10days from onset of symptoms

    B

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 10

    Themoretimehaspassedsinceanindividualbecameinfected,themorelikelytheyaretohavedevelopedsymptomsorhaveapositivetestresult(eitherthroughmasstestingorasatracedcontact),andthusthemorelikelytheyaretohavebeguntakingprecautionsto avoid transmitting the virus. Hence, inferred distributions of transmission eventscouldbeprematurelytruncatedrelativetothedistributionthatwouldbeobservedwithnointerventions,andthereforedifferfromtheprofileofpurelybiologicalinfectiousnessovertime.

    Suchepidemiologicalbiasesalsoaffecttherighttailofthedistributionofserialintervals.Inparticular,theserialintervalcanchangeduetointerventions(Alietal.2020)(Sunetal,personalcommunication)asitdependsstronglyontimetoisolation(Bietal.2020).Thesebiasescannotbedisentangledusingdatafromtransmissionpairsonly,butrequireinformationondatesofexposurefortracedcontactswhowereexposedbutdidnotgetinfected.Weextendedourapproachtoincludesuchinformationfrom(Chengetal.2020)(SupplementaryFigure6),fittingamodelwithdataset-dependentdecayoftransmissionsaftersymptoms(SupplementaryMethods).TheresultingdistributionofTOSTdoesnotdifferfromourpreviousfit,lyingmostlywithinitsconfidenceintervals(SupplementaryFigure7).Furthermore, the right tailof symptomatic transmissions is identical foralldatasets. These results confirm that the distribution of TOST is robust and thatepidemiological biases are similar between the studies, such as the tendency to self-isolatewhenexperiencingacuterespiratorysymptoms.

    Wecaution,however,thatinfectedindividualscouldbestillinfectiouswellbeyondthetimeperiods suggestedby this epidemiological analysis.Viral loads fromnasal swabsprovidesubstantialevidenceofaninfectiousperiodaftersymptomonsetlongerthanthe3-4days inferredhere.High viral loads have been observed for at least aweek aftersymptoms(Wölfeletal.2020;Panetal.2020;Heetal.2020).Thecrucialdeterminantofinfectiousnesshoweveristheprobabilityofsheddingviablevirus,whichdecaysrapidlyafter5-10days(Wölfeletal.2020;Bullardetal.2020).However,SupplementaryFigure7 clearly shows thatbothviral loadand theprobabilityof viablevirus isolation frommultiplestudies(Aronsetal.2020;vanKampenetal.2020)decaymoreslowlythanourepidemiologicalobservationssuggest.Resolutionofthismismatchislikelyaccountedforbytheincreasedcompliancetoisolationafteronsetofsymptoms,discussedabove.

    Fractions of pre-symptomatic and early symptomatic transmissions

    AkeyfeatureofCOVID-19spreadispre-symptomatictransmission.Severalstudieshaveestimated its fraction by assuming time to symptoms and time to transmission areindependent(Ferrettietal.2020;Caseyetal.2020).Aswehaveshown,thisassumptionisnotsupportedbydata:transmissioneventsarecloselytiedtosymptomonset.Also,transmissiononthedayofsymptomonsetisnotnecessarilypre-symptomaticandshouldbeconsideredseparately.Hereweassess thecontributionofstrictlypre-symptomatictransmissionusingtwodifferentapproaches.

    First,weestimatedthefractionoftransmissiononeachindividualdaybydiscretizingtheTOST distribution and considering the part of the distribution that corresponds tonegative times, i.e. the fraction of transmission events that occur before the day ofsymptomonset(Figure4).

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 11

    The fraction of strictly pre-symptomatic transmissions (TOST

  • 12

    16-32%), although this value is likely to be affected by self-isolation and non-pharmaceuticalinterventionsasdiscussedbefore.

    The above results demonstrate the importance of implementing non-pharmaceuticalinterventions to reduce pre-symptomatic transmission, such as mass testing, contacttracingandphysicaldistancing.

    TheyalsounderlinetheimportanceofstrictinfectioncontrolmeasuresatthefirstsignofevenmildsymptomspotentiallyrelatedtoCOVID-19(suchascough,fever,fatigueoranosmia),inordertoreduceearlysymptomatictransmission.Accordingtoourresults,perfect isolation of cases from onset of symptoms would stop twice as manytransmissions compared to isolation from the second day after onset of symptoms,relative to a baseline with no intervention at all (excluding transmissions from fullyasymptomatic individuals). Self-isolation of symptomatic individuals is thereforeespeciallyimportantforthefirsttwodays.

    Instant, universal, and perfect self-isolation, including from family members, ischallenging, given the low specificity of early COVID-19 symptoms and the highprevalenceof respiratoryviruseswithsimilarsymptomsbetweenautumnandspring(Mennietal.2020).Nevertheless, if low-costgoodpractices thatarewidelyadvisableirrespectiveofsymptoms-wearingafacemask,increasingspatialdistance,practicingenhanced hygiene (especially hand hygiene), and limiting social contacts (includingstayingawayasmuchaspossiblefromoffices,schools,publictransport,andclosedpublicspaces)-werefollowedstrictlyatthefirstonsetofsymptoms,evenifmild,thiscouldhave a substantial impact on the epidemic. Such a policy would greatly depend oncomplianceandcollaborationfromthepublic.Symptomtrackerapps(Drewetal.2020)could play a role in enhancing public awareness of mild COVID-19 symptoms andcompliance.Asa furtheradvantage, thispolicy couldalso reduce theburdenofotherrespiratoryviruses.

    Reducing barriers to testing, and increasing the speed of results is also critical;masstestingwithhome-basedorpoint-of-carerapidtestingcouldhelp individualsrespondappropriatelyandquicklytoonsetofmildsymptoms(Larremoreetal.2020).Likewise,exposurenotificationbycontacttracing,andanyinformationthatcanbeprovidedthatwillhelpindividualsgaugetheirlocalrisk,willhelpindividualscorrectlyinterprettheonsetofinitialsymptomsthatmightbeverynon-specificatinitialonset.

    Discussion

    Wehavepresentedanin-depthanalysisofthetimingoftransmissionfromaselectionofthemost informativedatasetsof transmissionpairs currentlyavailable.The resultingpictureofthetemporalinfectiousnessprofileofCOVID-19hassomeclearconsequencesintermsofpolicy.

    The most immediate consequences concern the assessment of the transmission riskassociated to contacts for both manual and digital tracing or exposure notificationapproaches.Contact tracingguidelines fromtheCDC(CDC2020)andtheWHO(WHO2020)supporttracingofcontactsuptotwodaysbeforetheonsetofsymptomsor,forasymptomatic individuals, before a positive test. For symptomatic individuals, this

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 13

    approach misses approximately 10% of all transmissions overall, but a much largerfractionforindividualswithalongerincubationperiod(SupplementaryFigure8).Hence,publichealthadviceshouldconsiderappropriately longer intervals forcontact tracingwheneveranestimateofthedateofinfectionisavailable(e.g.throughbackwardcontacttracing)anditprecedessymptomsbymorethan4-5days.

    Fordigitalcontacttracing,whichreliesonalgorithmsforriskscoringthatcantakeintoaccount the time profile of infectiousness (Wilson et al. 2020), our results are highlyvaluableto informtheappropriateriskscoringalgorithm.Theyshowthat thedateofonsetofsymptomsfortheindexcaseisacriticalpieceofinformationforthealgorithm,whichshouldbecollectedpreferablywithintheappitself,orbypublichealthofficialsatthetimethecaseisconfirmed.

    Beforesymptomonset,relativetransmissionprobabilitiesestimatedherecanbeusedasaproxyforinfectiousness,i.e.thedegreeofdangerfromagivenexposure.Aftersymptomonset,riskscoresshouldtakeintoaccountthatthedistributioninferredhereislikelytounderestimate infectiousness.Wenotethatquantitativetreatmentof infectiousness isonly possible in early versions of the Google/Apple exposure notification system;unfortunately,recentversionsdonotpermitmorethantwolevelsofinfectiousness.

    Theprofileofinfectiousnesspossiblydependsalsoonotherparameters,suchasinfectionseverity and age. The infectiousness profile for fully asymptomatic individuals isunknown.Forsymptomaticindividuals,thelimiteddataavailabledonotsuggestastrongdependenceonage(Alietal.2020;Furuseetal.2020),butfurtherstudiesareneeded.

    The definitionof the date of onset of symptoms suffers fromuncertainties related toambiguitiesinthechoiceofthesetofsymptomsassociatedtoCOVID-19,thetimeofonsetof different symptoms, and the uncertainties in their recall. All these sources ofuncertainty are implicitly present in our study as well. Given a known, fixed, andidentifiable set of symptoms, the date of onset of symptoms can be retrieved withreasonable precision. However, the lack of specificity for COVID-19 symptoms,internationalvariationinrecognisedsymptoms,andrelianceonpatients'recollectionsall present challenges. The date of infection often has an even greater degree ofuncertainty due to the challenges in identifying infectors (who could be non-symptomatic)andinassessingthenumberanddurationofexposures.WhentheprofileofinfectiousnessasafunctionofTOSTisusedforriskscoring,uncertaintiesinthedateof symptom onset should be taken into account (e.g. averaging the index’s expectedinfectiousnessat thetimeofexposureoverthewindowofpossible timesofsymptomonset).

    The large fraction of transmissions that occur either before or shortly after onset ofsymptomsconfirmsthatisolationofcasesmorethan2daysafteronsetofsymptomsisinsufficient to control the epidemic. Physical distancing, mask wearing, communitytestingandcontacttracingarekeynon-pharmaceuticalinterventionsthatareabletostoptransmissionsbeforeandaroundtheonsetofsymptoms,andshouldbeincludedinanyeffectivestrategyagainstCOVID-19.

    Currentphysicaldistancingpoliciesinmanycountriesalreadyincludeself-isolationafterCOVID-19symptoms, reductionof social interactions, anduseof facemasks inpublicplaces. Our results on early symptomatic transmission underline the importance offollowingexistingguidelinesasstrictlyaspossibleforthefirsttwodaysofsymptoms,

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 14

    evenifsymptomsaremildoritisunclearwhethertheyarecompatiblewithCOVID-19.Apolicybasedonreinforcingofficialadviceorsuggestingtotakeextraprecautionsforthefirsttwodaysofsymptomsisadvisableandlikelybeneficialwithminoreconomicandsocialcosts.

    Materials and Methods

    Relation between generation time, incubation period and TOST The generation time 𝑡O, incubation period 𝑡( and time from onset of symptoms totransmission(TOST)𝑡+,* bydefinitionsatisfytheequation

    𝑡O = 𝑡( + 𝑡+,*

    IntermsofPearson’scorrelationbetweentheseepidemiologicalvariables,thisimplies

    𝑐𝑜𝑟(𝑡O, 𝑡() =𝑠𝑑(𝑡()𝑠𝑑(𝑡O)

    + 𝑐𝑜𝑟(𝑡+,*, 𝑡()𝑠𝑑(𝑡+,*)𝑠𝑑(𝑡O)

    If the generation time is independent of the incubation period, this would imply ananticorrelationbetweenthelatterandtheTOST,i.e.

    𝑐𝑜𝑟(𝑡O, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡+,*, 𝑡() = −𝑠𝑑(𝑡()𝑠𝑑(𝑡+,*)

    Ontheotherhand, if theTOSTis independentof the incubationperiod, this impliesapositivecorrelationbetweengenerationtimeandincubationperiod

    𝑐𝑜𝑟(𝑡+,*, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡O, 𝑡() =𝑠𝑑(𝑡()𝑠𝑑(𝑡O)

    Therefore, if index cases’ incubation periods correlate more strongly with theirgenerationtimes,thissuggestsinfectiousnessisdrivenmorestronglybyTOST;iftheycorrelate more strongly with TOST, this suggests that infectiousness is driven morestronglybytimesinceinfection.Equivalently,ifamodelwithindependentdistributionsforTOSTandincubationperiodbetterdescribesthepatternofinfectiousnessinthedatathanonewithindependentgenerationtimeandincubationperiod,thisstronglysuggestsa correlation between the generation time and the incubation period of the disease.Assuming no correlation in the incubation periods of source and recipient (noheritability),itwouldalsoimplyanullcorrelationbetweentheincubationperiodofthesourceandtheserialinterval:

    𝑐𝑜𝑟(𝑡+,*, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡,, 𝑡() ∝ 𝑐𝑜𝑣(𝑡,, 𝑡() = 𝑐𝑜𝑣(𝑡+,*, 𝑡() + 𝑐𝑜𝑣(𝑡′(, 𝑡() = 0

    Wedefinethedistributionsfor𝑡O,𝑡( and𝑡+,* tobe𝑝O,𝑝( and𝑝+,*respectively.Itiswellknown that the generation time distribution 𝑝O(𝑡) plays a key role in the renewalequationforincidence𝐼(𝑡) = 𝑅X ∫ 𝑑𝜏𝑝O(𝜏)𝐼(𝑡 − 𝜏)

    ZX (WallingaandLipsitch2007;Fraser

    2007). Similarly, the TOST distribution 𝑝+,*(𝑡|𝑡() for a specific incubation period 𝑡( appears naturally in an alternative renewal equation relating the number of newly

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 15

    symptomaticindividualsattime𝑡withincubationperiod𝑡(, 𝐶(𝑡, 𝑡(),tothenumberofnewinfectionsattime𝑡frominfectorswithincubationperiod𝑡( ,𝐼(𝑡, 𝑡():

    𝐼(𝑡, 𝑡() = 𝑅X [ 𝑑𝜏𝑝+,*(𝜏|𝑡()𝐶(𝑡 − 𝜏, 𝑡()Z

    2Z

    Theansatzof𝐼(𝑡, 𝑡()exponentiallygrowingwith𝑡leadstoanalternativeversionoftheEuler-LotkaequationrelatingR0andindividualtransmissiontimingtotheexponentialgrowthrater:

    1𝑅X

    = [ 𝑑𝑝((𝑡()𝑒2\*BZ

    2Z⋅ [ 𝑑𝜏𝑝+,*(𝜏|𝑡()𝑒2\C

    Z

    X

    Thisequationneglectsasymptomaticinfections.

    Data and datasets Estimationsofgenerationtimeoftenuseinformationonthedatesofonsetofsymptomsfor both index and secondary cases from transmission pairs (i.e.the empirical serialintervals),combinedwithknowledgeoftheincubationperioddistribution(Ferrettietal.2020; Ganyani et al. 2020). However, an implicit assumption in this approach isindependencebetweenincubationperiodandgenerationtime.Sincethisispreciselytheassumptionbeing tested in thiswork,we restrictedouranalysis tomore informativedatasets. To avoid issues with misassignment of the index case, we discardedtransmissionpairsinclusterswithmultiplepossibleindexcases(exceptforpairsfrom(Ferrettietal.2020)whoalreadyconsideredthisissue).

    Foradirectassessmentoftherelationshipbetween𝑡( ,𝑡Oand𝑡+,* ,informationontimingof exposure forboth indexandsecondary case isneeded, aswell asdateof symptomonsetfortheindexcase.Wewereabletofindonlytwodatasetsthatprovideboththedatesofonsetofsymptomsand(partial)informationonexposureintervalsforboththeindexcaseandthesecondarycase,namely(Ferrettietal.2020)(40pairsfromdifferentgeographicareas),and(Xiaetal.2020)(32pairsfromChina).

    TofurtherimprovetheaccuracyoftheinferreddistributionofTOST,wealsoincludeddatasetsprovidingdatesofonsetofsymptomsfortheindexcasesaswellasintervalsofexposure for the secondary cases,namely (Heet al. 2020) (66pairs fromChina)and(Chengetal.2020)(18pairs fromTaiwan,excludingasymptomaticsecondarycases).Thelatteralsoprovidesdatesofonsetofsymptomsandintervalsofexposureforcontactsthatdidnotleadtoinfections(2740pairs).

    As a check of robustness of our selection of datasets,we also includeddata on serialintervalsfrom(Zhangetal.2020)(35pairsfromChina).Therecouldbesomeoverlapamong the three datasets of Chinese pairs; however, the empirical serial intervaldistributionsaresufficientlydifferenttoassumethatanyoverlaprepresentsaminorityoftransmissionpairs.

    For the incubation period, we considered a meta-distribution obtained by averagingsevenlognormaldistributionsreportedintheliterature(Bietal.2020;Laueretal.2020;Lietal.2020;Lintonetal.2020;Maetal.2020;Zhangetal.2020;Jiangetal.2020).Theprobability of onset of symptoms 𝑃((t) at day t was obtained by integrating thisdistributionbetweent-0.5andt+0.5.Totesttherobustnessoftheresults,wereplicated

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 16

    themusinga lognormaldistributionwithmean5.42daysandstandarddeviation2.7days,followingthemeta-analysis(McAloonetal.2020).Thelatterprovidedaworsefittoourdata(SupplementaryTable5),butconfirmedallourconclusions;inpractice,thedifferencebetweentheinferreddistributionswassmall(SupplementaryFigure5).

    Likelihood WeusedamaximumcompositelikelihoodapproachsimilartopreviousworkonCOVID-19(Ferrettietal.2020;Heetal.2020).Assumingthatthetransmissionprobabilitypercontactperdayissmall,thelikelihoodfunctionforatransmissionpairis

    𝐿*\`a,(𝛩, 𝛽) ∝ 𝛽 d 𝑒\eB𝑃((𝑑, − 𝑑()fg

    *Bhfi

    d 𝑊(𝑑′(|𝑑(, 𝑑,, 𝛩)𝑃((𝑑′, − 𝑑′()fkg

    *kBhfki

    where𝑒l, 𝑒maretheextremesoftheintervalofexposurefortheindexcase,𝑑( and𝑑,arethedatesofinfectionandonsetofsymptomsfortheindexcase,and𝑒′l, 𝑒′m, 𝑑′(, 𝑑′,arethesamequantitiesforthesecondarycase.Theparameters𝛽(absoluteinfectiousness)and𝛩(setofparametersofthetimedistribution)dependonthedataset.Weconsideredmultiple choices for the discretised infectiousness profile𝑊(𝑑′(|𝑑(, 𝑑, 𝛩) = 𝛺O*(𝑑′( −𝑑(|𝛩)and𝑊(𝑑′(|𝑑, 𝑑,, 𝛩) = 𝛺opqo(𝑑′( − 𝑑,|𝛩).Thegrowthrate𝑟of theepidemicwastaken to be 0.14/day for those transmission pairs sampled from the early Chineseoutbreakasexplainedin(Ferrettietal.2020),and0otherwise.Thefactor𝑒\eB weightsanotherwiseuniformdistributionfor𝑑( withintheexposurewindow[𝑒l,𝑒m],tocorrectforthefactthatgrowingincidenceinthewiderpopulationmakesmorerecentinfectionmorelikely(exceptwhenconditioningonaknowninfector,asforthesecondarycase).

    Finally,thelikelihoodistheproductoftheindividuallikelihoodsoveralltransmissionpairs.Fortheinclusionofcase-contactpairsfrom(Chengetal.2020)wheretransmissiondid not occur, each such pair contributes a multiplicative factor 𝐿a+*(𝛩, 𝛽) =𝑒𝑥𝑝s−𝛽∑ 𝛺opqo(𝑑′( − 𝑑,|𝛩)

    fkg*kBhfki utothelikelihood.

    Choice of distributions For the generation time, we tested lognormal, gamma and Weibull distributionspreviously used in other studies, as well as generalised gamma, Gompertz, inversegamma,log-logistic,Frechet,Beta’,andLevydistributions.Discretiseddistributionsasafunctionofthenumberofdaysdwereobtainedbyintegratingeachdistributionbetweend-0.5andd+0.5.

    ForTOST,weconsideredthenormaldistribution,distributionswithmoreweightinthetails(rescaledStudent’st,rescaledCauchy),andasymmetricdistributionswithGaussianand exponential tails (skew-normal, skew-logistic). We considered both the naivedistributionandaversiontruncatedatthetimeofinfection(SupplementaryTable5);thedifferencebetweeninferredshapeswassmall(SupplementaryFigure5).

    FortheanalysisoftheTOSTdistributionwithdifferenttails,weconsideredarangeofshifted and rescaled symmetric functions (normal, generalised normal, Student’s t,Cauchy) and wemodelled the left and right side of the peak separately, assuming acontinuousprobabilitydensity.

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 17

    Finally,wemodelled several options for jointdistributions by rescaling the values ofTOSTdependingontheincubationperiod.Morespecifically,weeitherrescaledtheTOSTeitherrelativetotheonsetofsymptomsortothelocationparameterofthedistribution,andwe rescaled either both tails or the left tail only.We alsoperformed somemorecomplex rescalings (Supplementary Table 5 and Supplementary Methods). Note thatwhen conditioning on the incubation period, the left tail of TOST distributions wastruncatedatthetimeofinfection.

    Bayesian reconstruction of timing of transmission for individual pairs

    Foreachtransmissionpair,weassumedanequalpriorprobabilityof transmissiononany given day. The pair’s posterior probability of pre-symptomatic transmissionthereforeisthelikelihoodoftransmissionconditionalonbeingpre-symptomatic,dividedby the overall likelihood of transmission. To estimate the uncertainty on the overallfractionofpre-symptomatictransmissions,firstweresampledthesamenumberofpairsat random with replacement, then we assigned each pair as pre-symptomatictransmissionornotaccordingtotheabovementionedposterior;werepeatedtheprocess10,000timestoobtainthecorrespondingempiricaldistribution.Weproceeded inthesamewayforearlyandlatesymptomatictransmissions.

    Acknowlegments WethankKatrinaLythgoeandtheOxfordPathogenDynamicsGroupforusefuldiscussions.ThestudywasfundedbyanawardfromtheLiKaShingFoundationtoCF.Thefundersofthestudyhadnoroleinstudydesign,datacollection,dataanalysis,datainterpretation,orwritingofthereport.

    References

    Ali,SheikhTaslim,LinWang,EricH.Y.Lau,Xiao-KeXu,ZhanweiDu,YeWu,GabrielM.Leung,andBenjamin J. Cowling. 2020. “Serial Interval of SARS-CoV-2Was Shortened over Time byNonpharmaceuticalInterventions.”Science,July.https://doi.org/10.1126/science.abc9004.

    Anglemyer,Andrew,TheresaH.M.Moore,LisaParker,TimothyChambers,AliceGrady,KelliaChiu,Matthew Parry,MagdalenaWilczynska, Ella Flemyng, and Lisa Bero. 2020. “DigitalContact Tracing Technologies in Epidemics: A Rapid Review.” Cochrane Database ofSystematic Reviews , no. 8.https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013699/abstract.

    Arons,MelissaM.,KellyM.Hatfield,SujanC.Reddy,AnneKimball,AllisonJames,JesicaR.Jacobs,JoanneTaylor,etal.2020.“PresymptomaticSARS-CoV-2InfectionsandTransmissioninaSkilledNursingFacility.”TheNewEnglandJournalofMedicine382(22):2081–90.

    Ashcroft,Peter,JanaS.Huisman,SonjaLehtinen,JudithA.Bouman,ChristianL.Althaus,RolandR.Regoes,andSebastianBonhoeffer.2020.“COVID-19InfectivityProfileCorrection.”SwissMedicalWeekly.arxiv.org.

    Bar-On,YinonM.,AviFlamholz,RobPhillips,andRonMilo.2020.“SARS-CoV-2(COVID-19)bytheNumbers.”eLife9(April).https://doi.org/10.7554/eLife.57309.

    Bi,Qifang,YongshengWu,ShujiangMei,ChenfeiYe,XuanZou,ZhenZhang,XiaojianLiu,etal.2020.“EpidemiologyandTransmissionofCOVID-19in391Casesand1286ofTheirCloseContactsinShenzhen,China:ARetrospectiveCohortStudy.”TheLancetInfectiousDiseases20(8):911–19.

    Braithwaite, Isobel, Thomas Callender, Miriam Bullock, and Robert W. Aldridge. 2020.“Automated and Partly Automated Contact Tracing: A Systematic Review to Inform theControlofCOVID-19.”TheLancetDigitalHealth,August.https://doi.org/10.1016/S2589-7500(20)30184-9.

    Buitrago-Garcia,DianaC.,DianneEgli-Gany,MichelJ.Counotte,StefanieHossmann,HiraImeri,

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 18

    Aziz Mert Ipekci, Georgia Salanti, and Nicola Low. 2020. “Asymptomatic SARS-CoV-2Infections: A Living Systematic Review and Meta-Analysis.” Epidemiology. medRxiv.https://doi.org/10.1101/2020.04.25.20079103.

    Bullard,Jared,KerryDust,DuaneFunk,JamesE.Strong,DavidAlexander,LaurenGarnett,CarlBoodman,etal.2020.“PredictingInfectiousSARS-CoV-2fromDiagnosticSamples.”ClinicalInfectiousDiseases:AnOfficialPublicationoftheInfectiousDiseasesSocietyofAmerica,May.https://doi.org/10.1093/cid/ciaa638.

    Casey, Miriam, John Griffin, Conor G. McAloon, Andrew W. Byrne, Jamie M. Madden, DavidMcEvoy, Aine B. Collins, et al. 2020. “Pre-Symptomatic Transmission of SARS-CoV-2Infection: A Secondary Analysis Using Published Data.” Epidemiology. medRxiv.https://doi.org/10.1101/2020.05.08.20094870.

    CDC.2020.“COVID-19ContactTracingCommunicationsToolkitforHealthDepartments.”August21,2020.https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing-comms.html.

    Cheng,Hao-Yuan,Shu-WanJian,Ding-PingLiu,Ta-ChouNg,Wan-TingHuang,Hsien-HoLin,andTaiwan COVID-19 Outbreak Investigation Team. 2020. “Contact Tracing Assessment ofCOVID-19TransmissionDynamicsinTaiwanandRiskatDifferentExposurePeriodsBeforeand After Symptom Onset.” JAMA Internal Medicine, May.https://doi.org/10.1001/jamainternmed.2020.2020.

    Drew, David A., Long H. Nguyen, Claire J. Steves, Cristina Menni, Maxim Freydin, ThomasVarsavsky, CaroleH. Sudre, etal.2020. “Rapid ImplementationofMobileTechnology forReal-TimeEpidemiologyofCOVID-19.”Science368(6497):1362–67.

    Du,Zhanwei,XiaokeXu,YeWu,LinWang,BenjaminJ.Cowling,andLaurenAncelMeyers.2020.“SerialIntervalofCOVID-19amongPubliclyReportedConfirmedCases.”EmergingInfectiousDiseases26(6):1341–43.

    Farronato,Chiara,MarcoIansiti,MarcinBartosiak,StefanoDenicolai,LucaFerretti,andRobertoFontana.2020.“HowtoGetPeopletoActuallyUseContact-TracingApps.”HarvardBusinessReview, July 15, 2020. https://hbr.org/2020/07/how-to-get-people-to-actually-use-contact-tracing-apps.

    Ferretti, Luca, ChrisWymant,Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dörner,Michael Parker, David Bonsall, and Christophe Fraser. 2020. “Quantifying SARS-CoV-2TransmissionSuggestsEpidemicControlwithDigitalContactTracing.”Science368(6491).https://doi.org/10.1126/science.abb6936.

    Fraser, Christophe. 2007. “Estimating IndividualandHouseholdReproductionNumbers inanEmergingEpidemic.”PloSOne2(8):e758.

    Fraser,Christophe,StevenRiley,RoyM.Anderson,andNeilM.Ferguson.2004. “FactorsThatMakeanInfectiousDiseaseOutbreakControllable.”ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica101(16):6146–51.

    Furuse,Yuki,EiichiroSando,NahoTsuchiya,ReikoMiyahara,IkkohYasuda,YuraK.Ko,MayukoSaito, et al. 2020. “Clusters of Coronavirus Disease in Communities, Japan, January-April2020.”EmergingInfectiousDiseases26(9).https://doi.org/10.3201/eid2609.202272.

    Ganyani,Tapiwa,CécileKremer,DongxuanChen,AndreaTorneri,ChristelFaes,JaccoWallinga,andNielHens.2020.“EstimatingtheGenerationIntervalforCoronavirusDisease(COVID-19)BasedonSymptomOnsetData,March2020.”EuroSurveillance:BulletinEuropeenSurLes Maladies Transmissibles = European Communicable Disease Bulletin 25 (17).https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257.

    Griffin, JohnM.,AineB. Collins,KevinHunt,DavidMcEvoy,MiriamCasey,AndrewW.Byrne,Conor G. McAloon, Ann Barber, Elizabeth Ann Lane, and Simon J. More. 2020. “A RapidReview of Available Evidence on the Serial Interval and Generation Time of COVID-19.”Epidemiology.medRxiv.https://doi.org/10.1101/2020.05.08.20095075.

    He,Xi,EricH.Y.Lau,PengWu,XilongDeng,JianWang,XinxinHao,YiuChungLau,etal.2020.“TemporalDynamicsinViralSheddingandTransmissibilityofCOVID-19.”NatureMedicine26(5):672–75.

    Hinch,R.,W.Probert,A.Nurtay,M.Kendall,C.Wymant,M.Hall,K.Lythgoe,etal.2020.“EffectiveConfigurationsofaDigtalContactTracingApp:AReporttoNHSX(2020).”AvailableHere.

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 19

    Jiang,X.,Y.Niu, X.Li,L.Li,W.Cai,Y.Chen,andB.Liao.2020. “Isa14-DayQuarantinePeriodOptimal for Effectively Controlling Coronavirus Disease 2019 (COVID-19)?” medRxiv.https://www.medrxiv.org/content/10.1101/2020.03.15.20036533v1.abstract.

    Kampen,JeroenJ.A.van,DavidA.M.C.vandeVijver,PieterL.A.Fraaij,BartL.Haagmans,MartM.Lamers,NisreenOkba,JohannesP.C.vandenAkker,etal.2020.“SheddingofInfectiousVirusinHospitalizedPatientswithCoronavirusDisease-2019(COVID-19):DurationandKeyDeterminants.” Infectious Diseases (except HIV/AIDS). medRxiv.https://doi.org/10.1101/2020.06.08.20125310.

    Kretzschmar,MirjamE.,GannaRozhnova,MartinC.J.Bootsma,MichielvanBoven,JannekeH.H.M.vandeWijgert,andMarcJ.M.Bonten.2020.“ImpactofDelaysonEffectivenessofContactTracingStrategiesforCOVID-19:AModellingStudy.”TheLancet.PublicHealth5(8):e452–59.

    Kucharski,AdamJ.,PetraKlepac,AndrewJ.K.Conlan,StephenM.Kissler,MariaL.Tang,HannahFry, Julia R. Gog, W. John Edmunds, and CMMID COVID-19 working group. 2020.“Effectivenessof Isolation,Testing,ContactTracing,andPhysicalDistancingonReducingTransmissionof SARS-CoV-2 inDifferent Settings:AMathematicalModelling Study.”TheLancetInfectiousDiseases,June.https://doi.org/10.1016/S1473-3099(20)30457-6.

    Larremore,DanielB.,BryanWilder,EvanLester,SorayaShehata,JamesM.Burke,JamesA.Hay,Milind Tambe, Michael J. Mina, and Roy Parker. 2020. “Test Sensitivity Is Secondary toFrequencyandTurnaroundTimeforCOVID-19Surveillance.”medRxiv:ThePreprintServerforHealthSciences,June.https://doi.org/10.1101/2020.06.22.20136309.

    Lauer,StephenA.,KyraH.Grantz,QifangBi,ForrestK.Jones,QuluZheng,HannahR.Meredith,AndrewS.Azman,NicholasG.Reich, and JustinLessler. 2020. “The IncubationPeriodofCoronavirusDisease2019(COVID-19)FromPubliclyReportedConfirmedCases:EstimationandApplication.”AnnalsofInternalMedicine172(9):577–82.

    Lavezzo,Enrico,ElisaFranchin,ConstanzeCiavarella,GinaCuomo-Dannenburg,LuisaBarzon,ClaudiaDelVecchio,LuciaRossi,etal.2020.“SuppressionofaSARS-CoV-2OutbreakintheItalianMunicipalityofVo’.”Nature584(7821):425–29.

    Lee,Seungjae,TarkKim,EunjungLee,CheolguLee,HojungKim,HeejeongRhee,SeYoonPark,etal. 2020. “Clinical Course and Molecular Viral Shedding Among Asymptomatic andSymptomaticPatientsWithSARS-CoV-2InfectioninaCommunityTreatmentCenterintheRepublic of Korea.” JAMA Internal Medicine, August.https://doi.org/10.1001/jamainternmed.2020.3862.

    Linton,NatalieM.,TetsuroKobayashi,YichiYang,KatsumaHayashi,AndreiR.Akhmetzhanov,Sung-MokJung,BaoyinYuan,RyoKinoshita,andHiroshiNishiura.2020.“IncubationPeriodandOtherEpidemiologicalCharacteristicsof2019NovelCoronavirusInfectionswithRightTruncation:AStatisticalAnalysisofPubliclyAvailableCaseData.”JournalofClinicalMedicineResearch9(2):538.

    Li,Qun,XuhuaGuan,PengWu,XiaoyeWang,LeiZhou,YeqingTong,RuiqiRen,etal.2020.“EarlyTransmissionDynamicsinWuhan,China,ofNovelCoronavirus–InfectedPneumonia.”TheNewEnglandJournalofMedicine382(13):1199–1207.

    Madewell,ZacharyJ.,YangYang,IraM.Longini,M.ElizabethHalloran,andNatalieE.Dean.2020.“Household Transmission of SARS-CoV-2: A Systematic Review and Meta-Analysis ofSecondary Attack Rate.” medRxiv : The Preprint Server for Health Sciences, July.https://doi.org/10.1101/2020.07.29.20164590.

    Ma,Shujuan,JiayueZhang,MinyanZeng,QingpingYun,WeiGuo,YixiangZheng,ShiZhao,MaggieH.Wang,andZuyaoYang.2020.“EpidemiologicalParametersofCoronavirusDisease2019:APooledAnalysisofPubliclyReportedIndividualDataof1155CasesfromSevenCountries.”Medrxiv.https://www.medrxiv.org/content/10.1101/2020.03.21.20040329v1.abstract.

    May,R.M.,A.R.McLean, J.Pattison,R.A.Weiss,RoyM.Anderson,ChristopheFraser,AzraC.Ghani,etal.2004.“Epidemiology,TransmissionDynamicsandControlofSARS:The2002–2003Epidemic.”PhilosophicalTransactionsoftheRoyalSocietyofLondon.SeriesB,BiologicalSciences359(1447):1091–1105.

    McAloon,Conor,ÁineCollins,KevinHunt,AnnBarber,AndrewW.Byrne,FrancisButler,Miriam

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516

  • 20

    Casey,etal.2020.“IncubationPeriodofCOVID-19:ARapidSystematicReviewandMeta-AnalysisofObservationalResearch.”BMJOpen10(8):e039652.

    Menni,Cristina,AnaM.Valdes,MaximB.Freidin,CaroleH.Sudre,LongH.Nguyen,DavidA.Drew,SajaysuryaGanesh,etal.2020.“Real-TimeTrackingofSelf-ReportedSymptomstoPredictPotentialCOVID-19.”NatureMedicine26(7):1037–40.

    Nishiura,Hiroshi,NatalieM.Linton,andAndreiR.Akhmetzhanov.2020.“SerialIntervalofNovelCoronavirus(COVID-19)Infections.”InternationalJournalofInfectiousDiseases:IJID:OfficialPublicationoftheInternationalSocietyforInfectiousDiseases93(April):284–86.

    Pan,Yang,DaitaoZhang,PengYang,LeoL.M.Poon,andQuanyiWang.2020.“ViralLoadofSARS-CoV-2inClinicalSamples.”TheLancetInfectiousDiseases20(4):411–12.

    Park,SangWoo,KaiyuanSun,DavidChampredon,MichaelLi,BenjaminM.Bolker,David J.D.Earn, Joshua S. Weitz, Bryan T. Grenfell, and Jonathan Dushoff. 2020. “Cohort-BasedApproach to Understanding the Roles of Generation and Serial Intervals in ShapingEpidemiological Dynamics.” medRxiv.https://www.medrxiv.org/content/10.1101/2020.06.04.20122713v1.abstract.

    Peak,CoreyM.,LaurenM.Childs,YonatanH.Grad,andCarolineO.Buckee.2017. “ComparingNonpharmaceuticalInterventions forContainingEmergingEpidemics.”Proceedingsof theNationalAcademyofSciencesoftheUnitedStatesofAmerica114(15):4023–28.

    Pollán, Marina, Beatriz Pérez-Gómez, Roberto Pastor-Barriuso, Jesús Oteo, Miguel A. Hernán,Mayte Pérez-Olmeda, Jose L. Sanmartín, et al. 2020. “Prevalence of SARS-CoV-2 in Spain(ENE-COVID):ANationwide,Population-BasedSeroepidemiologicalStudy.”TheLancet396(10250):535–44.

    Svensson,Ake.2007.“ANoteonGenerationTimesinEpidemicModels.”MathematicalBiosciences208(1):300–311.

    Tindale,LaurenC.,JessicaE.Stockdale,MichelleCoombe,EmmaS.Garlock,WingYinVenusLau,ManuSaraswat,LouxinZhang,DongxuanChen, JaccoWallinga,andCarolineColijn.2020.“Evidence for Transmission of COVID-19 prior to Symptom Onset.” eLife 9 (June).https://doi.org/10.7554/eLife.57149.

    Wallinga,J.,andM.Lipsitch.2007.“HowGenerationIntervalsShapetheRelationshipbetweenGrowth Rates and Reproductive Numbers.” Proceedings. Biological Sciences / The RoyalSociety274(1609):599–604.

    WHO. 2020. “Contact Tracing in the Context of COVID-19.”https://www.who.int/publications/i/item/contact-tracing-in-the-context-of-covid-19.

    Wilson,AmandaM.,NathanAviles,PalomaI.Beamer,ZsomborSzabo,KaceyC.Ernst,andJoannaMasel. 2020. “Quantifying SARS-CoV-2 Infection Risk within the Apple/Google ExposureNotification Framework to Inform Quarantine Recommendations.” medRxiv.https://www.medrxiv.org/content/10.1101/2020.07.17.20156539v1.abstract.

    Wölfel,Roman,VictorM.Corman,WolfgangGuggemos,MichaelSeilmaier,SabineZange,MarcelA.Müller,DanielaNiemeyer,etal.2020. “VirologicalAssessmentofHospitalizedPatientswithCOVID-2019.”Nature581(7809):465–69.

    Xia,Wei, JiaqiangLiao, Chunhui Li, YuanyuanLi, XiQian,Xiaojie Sun,HongboXu, et al.2020.“TransmissionofCoronaVirusDisease2019during the IncubationPeriodMayLead toaQuarantine Loophole.” Epidemiology. medRxiv.https://doi.org/10.1101/2020.03.06.20031955.

    Zhang,Juanjuan,MariaLitvinova,WeiWang,YanWang,XiaoweiDeng,XinghuiChen,MeiLi,etal.2020. “Evolving Epidemiology and TransmissionDynamics of CoronavirusDisease 2019OutsideHubeiProvince,China:ADescriptiveandModellingStudy.”TheLancet InfectiousDiseases20(7):793–802.

    Zhou,Rui,FurongLi,FengjuanChen,HuaminLiu,JiazhenZheng,ChunliangLei,andXianboWu.2020. “ViralDynamicsinAsymptomaticPatientswithCOVID-19.” International JournalofInfectiousDiseases:IJID:OfficialPublicationoftheInternationalSocietyforInfectiousDiseases96(July):288–90.

    All rights reserved. No reuse allowed without permission. perpetuity.

    preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188516doi: medRxiv preprint

    https://doi.org/10.1101/2020.09.04.20188516