theory and practice of power electronic converter controlmams.rmit.edu.au/2i9yhiiriuesz.pdf ·...

68
Theory and Practice of Power Electronic Converter Control Professor Grahame Holmes Dr Brendan McGrath Power & Energy Group RMIT University March 2011

Upload: hoangliem

Post on 31-Mar-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

Theory and Practice of Power Electronic Converter Control

Professor Grahame Holmes

Dr Brendan McGrath

Power & Energy GroupRMIT UniversityMarch 2011

RMIT Power and Energy Group (PEG) 2

Scope of Presentation

Output Harmonics of Voltage Source Inverters

Natural Balancing of Flying Capacitor Inverters

AC Current Regulation

Practical Systems

RMIT Power and Energy Group (PEG) 3

Power Electronic Theory has advanced over the last few decades to a mature knowledge base that is more than sufficient to design most types of power electronic conversion systems.

SO WHAT IS THE CHALLENGE WITH PRODUCING PRACTICAL DESIGNS ?

(i.e. what is not in the textbooks)

Advances in Power ElectronicsBackground

RMIT Power and Energy Group (PEG) 4

25 kVA

Inverter -

Front View

Background

RMIT Power and Energy Group (PEG) 5

switched mode power supplies

semiconductor devices•

converter topologies

motor drive systems•

electrical distribution systems

control theory•

electromagnetic field theory

electronic circuit design

Power Electronics requires both breadth and depth of knowledge

computer and microprocessor systems

mathematical modeling (for simulation)

signal processing theory•

fundamental circuit theory

Communications•

Thermodynamics

laws of physics•

The list goes on and on

Background

RMIT Power and Energy Group (PEG) 6

Background

Modelling and Analysis in Power Electronics:– Control system synthesis– Evaluation of component rating– Compliance with standards (Harmonic Distortion and EMI)– Fundamental insight and understanding (Breakthroughs)– Compliment and support simulation

Switched nature of power electronic converters results in complex (nonlinear) dynamic and spectral phenomena:

– State variable and/or input constraints– Products involving state variables and inputs – Non-periodic nature of Pulse Width Modulation (PWM)– Practical effects (dead-time, device volt-drop, finite rise/fall time)

RMIT Power and Energy Group (PEG) 7

Background

Approximation techniques to simplify converter analysis :– State space averaged models– Circuit averaging (equivalent average switch elements)– Dynamic phasors and waveform envelope models

Alternative strategy : Models based on Fourier series– Instantaneous dynamic (transient) model of the converter– Substitute the Fourier representation of the converter gate signals

into the instantaneous dynamic model– Generally results in a simplified converter model defined in terms

of the converter modulation process

RMIT Power and Energy Group (PEG) 8

Scope of Presentation

Output Harmonics of Voltage Source Inverters

•••

Natural Balancing of Flying Capacitor InvertersNatural Balancing of Flying Capacitor InvertersNatural Balancing of Flying Capacitor Inverters

•••

AC Current RegulationAC Current RegulationAC Current Regulation

•••

Practical SystemsPractical SystemsPractical Systems

RMIT Power and Energy Group (PEG) 9

VSI output harmonics for different PWM methods

Solution : Bennett (1933), Black (1953), Bowes (1975), Holmes + Lipo (2003).

– A non-periodic PWM waveform is separately periodic in the carrier and fundamental phase spaces respectively

VSI Harmonics

sa(t)

ia(t)

sa(t)

ib(t)ic(t)

sb(t)

sb(t)

sc(t)

sc(t)

���

cbaxtsx ,,for0,1

vb

vc

vab

va

Phase "a" Reference

Phase "b" Reference

Phase "c" Reference Triangular

Carrier

t

t

+Vdc

-Vdc

+Vdc

-Vdc

+Vdc

-Vdc

-2Vdc

+2Vdc

t

t

t

Phase Legs Switching in Response to

PWM Comparison

l-l output voltage

RMIT Power and Energy Group (PEG) 10

Double Fourier SeriesDouble Fourier series representation –

Decomposes PWM waveform into:

Must then represent the PWM waveform in 2D space solve Fourier Double Integral:

tytx

dxdyeyxFjBA

oc

nymxjmnmn

,

,2

12

10

100

100

00

sincos

sincos

sincos

2

mnn

ocmnocmn

mcmcm

nonon

tntmBtntmA

tmBtmA

tnBtnA

AtF

DC Offset

Baseband Harmonics

Carrier Harmonics

Carrier Sideband Harmonics

F u nd a m e n ta l

B a se b a n d H a r m o n ic s

C a r r ie r

C a r r ie r S id e b a n d H a r m o n ic s

F r e q u e nc y

Mag

nitu

de

RMIT Power and Energy Group (PEG) 11

VSI Harmonics –

Sine Triangle PWM

0

0

-M

+M

g(y)

y = ot

+1

-1

g(y) = Mcos(y)

0

0

-1

+1

f(x)

x = ctf(x) = -1 + x/2

f(x) = -1 - x/2

Example : Two Level Sine Triangle PWM Switching Function

F(x,y)= 0

0

0

-

+

y =ot

x = ct

F(x,y) =VDC

F(x,y)= 0F(x,y)

VDC

0

0 x x0

21cos xyM

21cos xyM

21cos xyM

21cos xyM

RMIT Power and Energy Group (PEG) 12

VSI Harmonics –

Sine Triangle PWM•

Individual phase leg voltage harmonics:

1 cos

22sin1

2cos22

1

m noaocac

noaoa

tntm

MmJnmmtMts

DCaa Vtstv DCbaab Vtststv

0 500 1000 1500 200010

−4

10−3

10−2

10−1

100

THD ( 60th harmonic) = 102.14 %Weighted THD = 3.73 %fo = 40.0Hz, fcarrier = 1000Hz

Frequency (Hz)

Har

mon

ic M

agni

tude

Naturally Sampled Phase Leg Spectrum

0 500 1000 1500 200010

−4

10−3

10−2

10−1

100

THD ( 60th harmonic) = 58.29 %Weighted THD = 1.89 %fo = 40.0Hz, fcarrier = 1000Hz

Frequency

Har

mon

ic M

agni

tude

VSI Line to Line Voltage, m = 0.90

RMIT Power and Energy Group (PEG) 13

Scope of Presentation

•••

Output Harmonics of Voltage Source InvertersOutput Harmonics of Voltage Source InvertersOutput Harmonics of Voltage Source Inverters

Natural Balancing of Flying Capacitor Inverters

•••

AC Current RegulationAC Current RegulationAC Current Regulation

•••

Practical SystemsPractical SystemsPractical Systems

RMIT Power and Energy Group (PEG) 14

Flying Capacitor Converters

N-Level Flying Capacitor Converter

Target blocking voltage for each switch is : VDC /(N-1)

Voltage of the kth

flying

capacitor is: kVDC /(N-1) for k = 1,…,N-2

This voltage profile evolves naturally under open loop PWM

������

����� ���� ���

������

���

����

����

����� ������

������ ����� ������

���

����

����

���

���

����

����

����

����

����

�������������� �����������������������

����ω

����ω

����ω

RMIT Power and Energy Group (PEG) 15

Natural Balance Phenomena

Requirement -

Cell pulses are switched with approximately equal duty cycles phase shifted by 2/(N-1)

This is typically achieved using Phase Shifted Carrier PWM:

������������������������������

���

���������

������

������!

������"

������#

$������%�&' �������%�&'

�������%�&'

��(��)(*

���

+��

,��

#��

!��

� !�� -�� .�� �� "�� #�� ,�� +��

��

"��

-��

.��

���

/���0�����1��'+ ��1�-��234� ��1�-�23

RMIT Power and Energy Group (PEG) 16

Transient Circuit Model

AIM : Quantify the variation and robustness of the natural balance dynamics as a function of operating conditions

First obtain the transient circuit model –

Consider kth flying capacitor within a phase leg:

�����

����� ��

����� ���

����

����

5�

����

����� ����

����

����

����

����

����

56

5�

When ,

va (t) includes +va,k (t), and:

When ,

va (t) includes –va,k (t), and:

0, dt

tdvC ka

k

0&1 ,1, kaka SS

tidt

tdvC a

kak ,

1&0 ,1, kaka SS

tidt

tdvC a

kak ,

When ,

va (t) does not include va,k (t), and

kaka SS ,1,

RMIT Power and Energy Group (PEG) 17

Transient Circuit Model•

This can be expressed in the compact form:

Where vx,k (t) are state variables and VDC and Sx,k (t) are inputs

Non-linearity : product of system inputs and state variables

Must also incorporate a load model which introduces states ix (t):

titStSdt

tdvC xkxkx

kxk ,1,

,

2

1,,1,1, 2

12N

kkxkxkx

DCNxx tvtStS

VtStv

2,,2,1 Nk

cbax ,,

tvtvtv

tititititititititi

pZtititi

pZ

c

b

a

cccbca

bcbbba

acabaa

c

b

a

211121112

31

dtdp

LpRpZ

RMIT Power and Energy Group (PEG) 18

Analytic Voltage Balance Model

Use of the Double Fourier series, requires transformation of the transient circuit model into the frequency domain

But! -

Input-state product terms leads to convolution in the frequency domain

However, the Double Fourier series produces a line spectrum -

infinite summation of delta functions

Therefore the convolution integral reduces to an infinite summation series

Hence the analytic balance model is developed by considering each Double Fourier harmonic in isolation, and then the complete model is developed using super-

position

RMIT Power and Energy Group (PEG) 19

Analytic Voltage Balance Model

For a single harmonic at mn = mc + no , the switching difference expressions are:

Where:

Also, the load impedance can be written in phasor form as :

nmkxmnmnmnkxkx tAtStS ,

,,1, cos

nmxmnmnmnNx tBtS ,

1, cos12

mnjmnmn eZZ

mnmn CNmA 1sin2 mnmn CB 2

xNcnm

x nm 1,, 2112,

, Nkmn xnm

kx

tvtvtv

eZtititititititititi

tititi

c

b

a

jmn

cccbca

bcbbba

acabaa

c

b

a

mn

211121112

31

RMIT Power and Energy Group (PEG) 20

Analytic Voltage Balance Model

Combining these terms with the transient expression for the load current terms, and solving for the AC steady state solution gives:

These results can be substituted into the capacitor voltage derivatives to yield phase leg self and mutually coupled contributions

This results in a product of two sine-waves of the same frequency, returning a DC term and a double frequency

Average value is of interest -

extract the DC term only

2

1,

,,

,,, cos

32

cos3

N

kkxmn

nmkxmn

mn

mnmn

nmxmnmn

mn

DCnmxx tvt

ZA

tBZ

Vti

2

1,

,,

,,, cos

3cos

6

N

kkymn

nmkymn

mn

mnmn

nmymn

mn

DCmnnmyx tvt

ZA

tZVB

ti

RMIT Power and Energy Group (PEG) 21

Analytic Voltage Balance Model

Yields the following linear differential equations for the capacitor voltages:

Accounting for all harmonics, and after considerable algebra we obtain a linear state space model, with states vx,k (t), and input VDC :

2

1,

2,

3Re

6Re1 ,,, N

llx

mnmn

jj

mnDCmnmn

jj

mnmnk

xxmn

kx tvjZeeAV

jZeeBA

Ct

dtdv

mnkx

mnlx

mnkx

mnx

2

1,

2,

6Re

12Re1 ,,, N

lly

mnmn

jj

mnDCmnmn

jj

mnmnk

xymn

kx tvjZ

eeAVjZ

eeBAC

tdt

dvmn

kxmn

lymn

kxmny

TNccNbbNaa tvtvtvtvtvtvt 2,1,2,1,2,1, cV

DCVtt BVAV cc

RMIT Power and Energy Group (PEG) 22

Analytic Voltage Balance Model

Where:

cccbca

bcbbba

acabaa

AAAAAAAAA

A

cccbca

bcbbba

acabaa

BBBBBBBBB

B

1

*1

3Re

m nj

mn

Tmnx

mnx

xxmneZ

ΛΛCA

1

*1

6Re

m nj

mn

Tmny

mnx

xymneZ

ΛΛCA

1

*1

6Re

m nj

mn

mnx

mnx

xxmneZ

ΛCB

1

*1

12Re

m nj

mn

mny

mnx

xymneZ

ΛCB

21 NCCdiag C

nmxj

mnnm

x eB,,

Tjjj

mnmnx

nmNx

nmx

nmx eeeA

,2,

,2,

,1,

Λ

RMIT Power and Energy Group (PEG) 23

Simulation ResultsFour Level Three Phase Flying Capacitor Converter –

DC Link

Transient

��(��)*

"��

!��

��

� �'! �'- �'.�' �'" �'# �', �'+

-�

-�

!-�

�'� '�

/���0�����1��'+ ��1�!'�7234� ��1�-�23

��(8������%�����

���������/����

��

�0� ��������������������/����

��������������������/����

��!

�������������������/����

�������������������/����

RMIT Power and Energy Group (PEG) 24

Analytic Root LociThree Level Three Phase Flying Capacitor Converter -

System Poles

as a function of Load Inductance

%�����9��

�-�� ��� -��!���!-��#��

��'#

��'-

��'!

�'"

�'#

�'-/�1��'+4&��1�-�234

&��1�!���234

%��1�!!�Ω4

�7�1�"��μ

��1� �(2

�"���"-�

��'"

��'

�'!

�' ��1� (2

��1� �(2

��1� �(2

��1� (2

�������5���

������������

RMIT Power and Energy Group (PEG) 25

Analytic Root LociThree Phase Flying Capacitor Converter -

System Poles as a function

of Load Resistance

%�����9��

�!��#��,��+�� ��

��'#

��'+

��'!

�'!

�'#

�',

/�1��'+4&��1�-�234

&��1�!���234

��1�-'"�(24

�7�1�"��μ

�'+

��',

%��1� �Ω

�������5���

������������

�������5���

������������

%��1�.�Ω %��1� �Ω

%��1�-��Ω%��1�-��Ω

%��1� �Ω

RMIT Power and Energy Group (PEG) 26

Experimental Validation

Single Phase 5-Level Flying Capacitor Converter –

DC Link Transient

��(��)*

"��

!��

��

� �'- '- '� !'�

-�

-�

!-�

!'-

/���0�����1��'+ ��1�!'+7234� ��1�-�23

:9����(������%�����

���������/����

��"

��!

��

�0�

;�������0��

RMIT Power and Energy Group (PEG) 27

Experimental Validation

Frequency dependence of the load resistance

102

103

104

101

102

103

Frequency (Hz)

Res

ista

nce

(Ohm

s)

RMIT Power and Energy Group (PEG) 28

Experimental Validation

Single Phase 5-Level Flying Capacitor Converter –

DC Link Transient including the variable load resistance

��(��)*

"��

!��

��

� �'- '- '� !'�

-�

-�

!-�

!'-

/���0�����1��'+ ��1�!'+7234� ��1�-�23

:9����(������%�����

���������/����

��"

��!

��

�0�

;�������0��

RMIT Power and Energy Group (PEG) 29

Scope of Presentation

•••

Output Harmonics of Voltage Source InvertersOutput Harmonics of Voltage Source InvertersOutput Harmonics of Voltage Source Inverters

•••

Natural Balancing of Flying Capacitor InvertersNatural Balancing of Flying Capacitor InvertersNatural Balancing of Flying Capacitor Inverters

AC Current Regulation

•••

Practical SystemsPractical SystemsPractical Systems

RMIT Power and Energy Group (PEG) 30

r ascoil

bscoil

cscoil

arcoil

brcoil

crcoil

r

AC Induction Motor Principles

2'21

22'21

'2

213

2 cXXScRSR

SRVp

se

2'

212

2'

21

'2

2

213

2cLLcRR

RVp

rss

rs

rs

se

Fixed Frequency Supply

Variable VoltageVariable Frequency Supply

s

rsSslip

S

RIp

se

'22'

23

2

~

ja2 X2

I 1

I o jX1 R1 a2 R2

R0 jX0 Eg V1

a2 R2(1-s) s

I2’

'2R '

2jX S

SR 1'2

RMIT Power and Energy Group (PEG) 31

Alternative AC Induction Motor Equivalent Circuits

~

I 1

I o jX1=jXs-jXo R1 R2/s

jX0 Eg V1

I2

jX2=jXr-jXo

~

I 1

jX1=jXs-jbXo R1 b2R2/s

jbX0 Eg V1

jX2=jb2Xr-jbXo

~

I 1

jX1=jXs-jXo2/Xr R1 Xo

2/Xr2

. R2/s

jXo2/Xr

Eg V1

Iq

Id

ro

XXb

SRIPr

2223

SR

XXIP

r

oqr

22

223

s

r

r

meche

PpolesPpolesT 22

S

RSIPPs

rrmech

222

13

dqr

o

s

r

oq

se

IIXXp

SR

XXIpT

2

22

22

12

3

12

3

dr

q I

sRXjI2

AC Induction Motor Principles

RMIT Power and Energy Group (PEG) 32

~

I 1

jX1=jXs-jXo2/Xr R1 Xo

2/Xr2

. R2/s

jXo2/Xr

Eg V1

Iq

Id

ro

XXb

dqr

o

se II

XXpT

212

3

dr

q I

SRXjI2

Challenges

How to separate I1

into Id

and Iq•

How to control Id

and Iq•

Transient torque response

Potential for independent flux and torque control

d

q

r II

XRS 2

Slip relationship

AC Induction Motor Principles

RMIT Power and Energy Group (PEG) 33

m

drr

m

drrrds

Lp

LprLi

11*

Summary

Torque

qsdrr

me i

LLpolesT

223

qsi*

Fluxdsi*

dtLidr

mqs

rr

es *

*1

bs

as

es

es

es

es

qs

ds

i

i

i

i

32

31

01

cossin

sincos

Transformation of stationary frame measured currents to synchronous frame equivalents

Principles of Field Oriented Control

RMIT Power and Energy Group (PEG) 34

AC Induction Motor Variable Speed Drive ss

sksi rr

rpqs

** 11

m

drrds L

sssi

** 1

Torque Controller Flux Controller

RMIT Power and Energy Group (PEG) 35

AC Current Regulated VSI

Three phase Voltage Source Inverter (VSI) connected to a back EMF load through a series R-L impedance

RMIT Power and Energy Group (PEG) 36

Substituting voltage constraints into KVL loops gives:

For an isolated three phase system

Thus only two currents need to be controlled for a three phase system, each regulated only by their individual phase

voltages

Modulate third phase according to:

36Wang Yui

[email protected]

0 sisisi cba

sLR

sesVsi aaa

sLRsesVsi bb

b

sLR

sesVsi ccc

“Average”

model of Three Phase VSI

sVsVsV bac

RMIT Power and Energy Group (PEG) 37

Stationary Frame PI Current Regulator

Forward path transfer function with PI regulator :

Larger PI gains make ∆I(s)→0

System is unconditionally stable irrespective of PI gains because forward path phase is always < 1800

i

i

p

DCpPDCC s

ssTR

VksGVsG

1

11

GP s 1R

11 sTP

RLTP Single phase “average model”

block diagram

sLR

sEMFsVsI s

sGVsG

sGsEMFsIsIPDCC

P

1

*

RMIT Power and Energy Group (PEG) 38

It is “standard”

knowledge that AC motor current regulators MUST be either

synchronous frame controllers, or

PR resonant equivalent stationary form

to adequately eliminate steady state error

This “knowledge”

raises two questions

1.

WHY ?? (what are the limiting factors)

2.

How to set the maximum possible PI gains

AC Current Regulation Strategies

RMIT Power and Energy Group (PEG) 39

Stationary Frame PI with Back EMF Compensation

sisi

sisi

sk

sv

sv

bb

aa

ripi

b

a

*

*

*

*11

RMIT Power and Energy Group (PEG) 40

Stationary Frame Proportional + Resonance

* *

* *2 2

( ) ( ) ( )1

( ) ( ) ( )a a a

pib b bri rc e

v s i s i sskv s i s i ss s

rr

pr1*dr

*r

*di

*qi

*ai

*bi

*av

*bv

*cve

s

RMIT Power and Energy Group (PEG) 41

Synchronous Frame Proportional + Integral

* *

* *

( ) ( )11( ) ( )

d d dpi

q q qri

v i s i sk

v i s i ss

pr1

rr

*dr

*r

*di

*qi

*qv

*dv

es

es

*

*

*

*

cossin

sincos

23

21

01

q

d

es

es

es

es

b

a

v

v

v

v

RMIT Power and Energy Group (PEG) 42

Response of ideal “Average”

model system

Simulated response of ideal average value model AC current

regulator with high PI gains

Circuit Parameter Value

Resistive load (R) () 2

Inductive load (L) (mH) 20

Switching Freq. (fs

) (kHz) 5.0

DC Bus volt. (2VDC

) (V) 400

Back EMF volt. (VEMF

) (VRMS

) 80

Back EMF freq. (Hz) 50

Sampling period (T) (sec) 10-4

Test circuit parameters

RMIT Power and Energy Group (PEG) 43

,

,

AC Current Regulation Strategies

For all linear current regulation strategies, the question is

HOW TO SET THE GAINS ????

WHY NOT ARBITRARILY LARGE ???

RMIT Power and Energy Group (PEG) 44

Transport and PWM Delays

Control loop delays :–

Regulator computation time introduces at least half carrier delay

Regular sampled PWM introduces a minimum quarter carrier delay

Total delay = 0.75 carrier period

Transport and Sampling Delay caused by PWM process and digital

controller sampling/computation

RMIT Power and Energy Group (PEG) 45

PI Regulator with sampling and transport delay

Bode plot of open loop forward path gain for ideal and non-ideal regulators

Transport and PWM Delays

RMIT Power and Energy Group (PEG) 46

Maximum Achievable Stationary Frame PI Controller Gains

Maximum possible kp is for a given c

is:

Integral time constant i

can be determined by making

These gains are independent of the plant time constant, and are determined only by m

Td

VDC and L

For any given system with regulator delay Td

, these are the maximum possible PI gains for a phase margin of m

DC

c

ic

pcc

DC

ip V

LTVRk

22

22

1

1

2/tan 1 ic i 10/c

RMIT Power and Energy Group (PEG) 47

Gains matched for Linear Current Regulation Strategies

CONCLUSION: Gains can be set to same maximum gains irrespective of current regulation strategy – sampling and transport delay are always

the limiting factors

RMIT Power and Energy Group (PEG) 48

PSIM 7 with Motor Drive module was used to simulate all the vector control systems.

A combination of components and C-script blocks were used to emulate the functionality of a 3 phase inverter and microcontroller.

Component parameters were set to match the experimental rig.

Simulation System

RMIT Power and Energy Group (PEG) 49

Experimental System

RMIT Power and Energy Group (PEG) 50

Experimental Results -

PIstat

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

200

400

600

Time (s)

Spe

ed (R

PM

)

Stationary Frame PI

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-5

0

5

AB

C C

urre

nt (A

)

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

Time (ms)

DQ

Cur

rent

(A)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-4

-2

0

2

RMIT Power and Energy Group (PEG) 51

Experimental Results -

PRstat

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

200

400

600

Time (s)

Spe

ed (R

PM

)

Stationary Frame PR

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-5

0

5

AB

C C

urre

nt (A

)

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

Time (ms)

DQ

Cur

rent

(A)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-4

-2

0

2

RMIT Power and Energy Group (PEG) 52

Experimental Results -

PIsync

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

200

400

600

Time (s)

Spe

ed (R

PM

)Synchronous Frame PI

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-5

0

5

AB

C C

urre

nt (A

)

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

Time (ms)

DQ

Cur

rent

(A)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-4

-2

0

2

RMIT Power and Energy Group (PEG) 53

Scope of Presentation

•••

Output Harmonics of Voltage Source InvertersOutput Harmonics of Voltage Source InvertersOutput Harmonics of Voltage Source Inverters

•••

Natural Balancing of Flying Capacitor InvertersNatural Balancing of Flying Capacitor InvertersNatural Balancing of Flying Capacitor Inverters

•••

AC Current RegulationAC Current RegulationAC Current Regulation

Practical Systems

RMIT Power and Energy Group (PEG) 54

Specifications–

415VAC input–

110VDC output–

Naturally cooled–

-5oC to 55oC ambient–

Efficiency >93%–

30 kVA

rating

30kVA AC-DC Battery Charger

RMIT Power and Energy Group (PEG) 55

30kVA AC-DC Battery Charger

RMIT Power and Energy Group (PEG) 56

30 kVA

Battery Charger Preproduction -

Front View

30kVA AC-DC Battery Charger

RMIT Power and Energy Group (PEG) 57

30 kVA

Battery Charger Production Version -

Front View

30kVA AC-DC Battery Charger

RMIT Power and Energy Group (PEG) 58

30 kVA

Battery Charger Production Version -

Front View

30kVA AC-DC Battery Charger

RMIT Power and Energy Group (PEG) 59

30 kVA

Battery Charger Production Version -

Rear View

30kVA AC-DC Battery Charger

RMIT Power and Energy Group (PEG) 60

Initial Captured Results -

Australia

-1000

-500

0

500

1000

1500

2000

2500

3000

1 22 43 64 85 106127148169190 211232253274295

-250

-200

-150

-100

-50

0

50

100

150

200

250

vhi vac_bavac_cavdc_outidc_out v_earth yHBearthiac_aiac_bitrx

RMIT Power and Energy Group (PEG) 61

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289

-100

-80

-60

-40

-20

0

20

40

60

80

100

v_bav_cat_aiac_aiac_bItarg_aItarg_bIerr_aIerr_b

Initial Captured Results -

Australia

RMIT Power and Energy Group (PEG) 62

-400

-300

-200

-100

0

100

200

300

400

0 50 100 150 200 250 300 350

-280

-240

-200

-160

-120

-80

-40

0

40

iac_a f ilt

iac_b f ilt

a targ

b targ

a err

b err

Final Captured Results -

Australia

RMIT Power and Energy Group (PEG) 63

Captured Results -

India

-6000

-4000

-2000

0

2000

4000

6000

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289

-400

-300

-200

-100

0

100

200

300

400

v_bav_cat_at_bt_ciac_aiac_bItarg_aItarg_bIerr_aIerr_b

RMIT Power and Energy Group (PEG) 64

Captured Results -

India

-6000

-4000

-2000

0

2000

4000

6000

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289

-800

-600

-400

-200

0

200

400

600

800

v_bav_cat_at_bt_ciac_aiac_bItarg_aItarg_bIerr_aIerr_b

RMIT Power and Energy Group (PEG) 65

-3000

-2000

-1000

0

1000

2000

3000

4000

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289

-50

-40

-30

-20

-10

0

10

20

30

40

50

vhi vac_bavac_cavdc_outidc_outearthiac_aiac_bitrx

Captured Results - India

RMIT Power and Energy Group (PEG) 66

Preproduction Experimental Results

RMIT Power and Energy Group (PEG) 67

Things that go wrong

Wrong analog cutoff freq Correct analog cutoff freq

RMIT Power and Energy Group (PEG) 68

Conclusion

A Little Bit of Control Theory goes a long way controlling a Power Electronic Converter

PROVIDED

You Get Your Practical Electronics working properly FIRST