theory manual eng 2011

117
DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.  Page | 1 DEEPXCAV  A SOFTWA RE FOR ANA LYSIS A ND DESIGN OF RETAINING WAL LS THEORY MA NUA L RELEASE 9.1.1.9 - November 2011 

Upload: bza-zabug

Post on 12-Oct-2015

64 views

Category:

Documents


0 download

DESCRIPTION

asdasd

TRANSCRIPT

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|1

    DEEPXCAV

    A SOFTWARE FOR ANALYSIS AND DESIGN OF RETAINING WALLS

    THEORY MANUAL

    RELEASE 9.1.1.9 - November 2011

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|2

    TableofContentsSection Title Page1 Introduction 42 GeneralAnalysisMethods 43 Groundwateranalysismethods 44 UndrainedDrainedAnalysisforclays 45 ActiveandPassiveCoefficientsofLateralEarthPressures 55.1 ActiveandPassiveLateralEarthPressuresinConventional

    Analyses6

    5.2 ActiveandPassiveLateralEarthPressuresinPARATIEmodule 65.3 PassivePressureEquations 105.4 ClassicalEarthPressureOptions 115.4.1 Active&PassivePressuresfornonLevelGround 115.4.2 Peck1969EarthPressureEnvelopes 135.4.3 FHWAApparentEarthPressures 145.4.4 FHWARecommendedApparentEarthPressureDiagramfor

    SofttoMediumClays16

    5.4.5 FHWALoadingforStratifiedSoilProfiles 165.4.6 ModificationstostiffclayandFHWAdiagrams 195.4.7 VerificationExampleforSoftClayandFHWAApproach 225.4.8 CustomTrapezoidalPressureDiagrams 245.4.9 TwoStepRectangularPressureDiagrams 255.5 Verticalwalladhesioninundrainedloading 266 Eurocode7analysismethods 276.1 SafetyParametersforUltimateLimitStateCombinations 286.2 Automaticgenerationofactiveandpassivelateralearth

    pressurefactorsinEC7typeapproaches.35

    6.3 DeterminationofWaterPressures&NetWaterPressureActionsinthenewsoftware(ConventionalLimitEquilibriumAnalysis)

    36

    6.4 Surcharges 376.5 LineLoadSurcharges 386.6 StripSurcharges 406.7 Other3Dsurchargeloads 407 AnalysisExamplewithEC7 428 Groundanchorandhelicalanchorcapacitycalculations

    GroundAnchorCapacityCalculations61

    8.1 GroundAnchorCapacityCalculations 618.2 Helicalanchorcapacitycalculations 67

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|3

    Section Title Page9 GeotechnicalSafetyFactors 719.1 Introduction 719.1.1 Introduction 719.1.2 CantileverWalls(conventionalanalysis) 729.1.3 Wallssupportedbyasinglebracinglevelinconventional

    analyses.73

    9.1.4 Wallssupportedbyamultiplebracinglevels(conventionalanalysis)

    739.2 CloughPredictions&BasalStabilityIndex 749.3 Groundsurfacesettlementestimation 7610 HandlingunbalancedwaterpressuresinParatie 7811 WallTypesStiffnessandCapacityCalculations 7912 SeismicPressureOptions 8312.1 Selectionofbaseaccelerationandsiteeffects 8412.2 DeterminationofretainingstructureresponsefactorR 8512.3 SeismicThrustOptions 8712.3.1 Semirigidpressuremethod 8712.3.2 MononobeOkabe 8812.3.3 RichardsShimethod 8912.3.4 Userspecifiedexternal 8912.3.5 WoodAutomaticmethod 9012.3.6 WoodManual 9012.4 WaterBehaviorduringearthquakes 9012.5 WallInertiaSeismicEffects 9112.6 VerificationExample 92

    13 Verificationoffreeearthmethodfora10ftcantileverexcavation

    9614 Verificationof20ftdeepsinglelevelsupportedexcavation 10015 Verificationof30ftexcavationwithtwosupportlevels 105 AppendixA APPENDIX:VerificationofPassivePressureCoefficient

    Calculations109

    AppendixB APPENDIX:SampleParatieInputFileGeneratedbyNewSoftwareProgram

    113

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|4

    1. Introduction

    ThisdocumentbrieflyintroducesthenewDeepXcavParatiecombinedsoftwarefeatures,analysismethods,andtheoreticalbackground.ThehandlingofEurocode7isemphasizedthroughanexampleofasimplesingleanchorwall.

    2. GeneralAnalysisMethodsThecombinedDeepXcavParatiesoftwareiscapableofanalyzingbracedexcavationswithconventionallimitequilibriummethodsandbeamonelasticfoundations(i.e.thetraditionalPARATIEengine).Anexcavationcanbeanalyzedinoneofthefollowingsequences:

    a) Conventionalanalysisonlyb) Paratieanalysisonlyc) CombinedConventionalParatieAnalysis: 1stConventionalanalysiswithtraditionalsafety

    factorsstoredinmemory.Oncethetraditionalanalysisiscompleted,thentheParatieanalysisislaunched.

    3. GroundwateranalysismethodsThesoftwareoffersthefollowingoptionsformodelinggroundwater:

    a) Hydrostatic: ApplicableforbothconventionalandParatieanalysis.InParatie,hydrostaticconditionsaremodeledbyextendingthewallliningeffectto100timesthewalllengthbelowthewallbottom.

    b) Simplifiedflow: ApplicableforbothconventionalandParatieanalysis.Thisisasimplified1Dflowaroundthewall.IntheParatieanalysismode,thetraditionalParatiewaterflowoptionisemployed.

    c) FullFlowNetanalysis: ApplicableforbothconventionalandParatieanalysis.Waterpressuresaredeterminedbyperforminga2Dfinitedifferenceflowanalysis.InPARATIE,waterpressuresarethenaddedbytheUTABcommand.Theflownetanalysisdoesnotaccountforadropinthephreaticline.

    d) Userpressures: ApplicableforbothconventionalandParatieanalysis.Waterpressuresdefinedbytheuserareassumed.InPARATIE,waterpressuresarethenaddedbytheUTABcommand.

    IncontrasttoPARATIE,conventionalanalysesdonotgenerateexcessporepressuresduringundrainedconditionsforclays.

    4. UndrainedDrainedAnalysisforclaysClaybehaviordependsontherateofloading(orunloading).WhenfaststresschangestakeplacethenclaybehavioristypicallymodeledasUndrainedwhileslowstresschangesorlongtermconditionsaretypicallymodeledasDrained.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|5

    Inthesoftware,thedefaultbehaviorofaclaytypesoilissetasUndrained.However,thefinalDrained/UndrainedanalysismodeiscontrolledfromtheAnalysistab.ThesoftwareoffersthefollowingDrained/UndrainedAnalysisOptions:a) Drained: Allclaysaremodeledasdrained. In thismode,conventionalanalysismethods

    use theeffectivecohesioncand theeffective frictionangle todetermine theappropriatelateralearthpressures.Forclays, thePARATIEanalysisautomaticallydetermines theeffectivecohesionfromthestressstatehistoryandfromthepeakandconstantvolumeshearingfrictionangles(peakandcvrespectively)anditdoesnotusethedefinedcinthesoilstab.

    b) Undrained: Allclaysaremodeledasundrained.Inthismode,conventionalanalysismethodsusetheUndrainedShearStrengthSuandassumeaneffectivefrictionangle=0otodeterminethe appropriate lateral earth pressures. For clays, the PARATIE analysis automaticallydeterminestheUndrainedShearStrengthfromthestressstatehistoryoftheclayelementandfrom thepeakand constantvolume shearing frictionangles (peakandcv respectively),butlimitstheupperSutothevalueinthesoilstab.

    c) Undrainedforonlyinitiallyundrainedclays: Onlyclayswhoseinitialbehaviorissettoundrained(Soilsform)aremodeledasundrainedasdescribedinitemb)above.Allotherclaysaremodeledasdrained.

    IncontrasttoPARATIE,conventionalanalysesdonotgenerateexcessporepressuresduringundrainedconditionsforclays.

    5. ActiveandPassiveCoefficientsofLateralEarthPressuresThenewsoftwareoffersanumberofoptionsforevaluatingtheActiveandPassivecoefficientsthatdependon theanalysismethodemployed (ParatieorConventional).An importantdifferencewithPARATIE isthattheoldconceptofUphillandDownhillsidehasbeenchangedtoDrivingsideandResistingSide.Sections5.1and5.2presentthemethodsemployedindeterminingactiveandpassivecoefficients/pressuresinConventionalandParatieanalysesrespectively.However,inallcasesthemethodslistedinTable1availableforcomputingactiveandpassivecoefficients.Table1:AvailableExactSolutionsforActiveandPassiveLateralEarthPressureCoefficients

    MethodActiveCoefficient PassiveCoefficient

    AvailableSurfaceangle

    WallFriction EQ.2 Available

    Surfaceangle

    WallFriction EQ.

    Rankine Yes No1 No1 No Yes No1 No1 NoCoulomb Yes Yes Yes No Yes Yes Yes YesCaquotKeriselTabulated No Yes Yes Yes NoCaquotKeriselTabulated No Yes Yes Yes NoLancellota No Yes Yes Yes YesNotes: 1. RankinemethodautomaticallyconvertstoCoulombifasurfaceangleorwallfrictionisincluded.2. Seismiceffectsareaddedasseparately.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|6

    5.1 ActiveandPassiveLateralEarthPressuresinConventionalAnalysesIn theconventionalanalysis thesoftware firstdetermineswhichside isgeneratingdrivingearthpressures.Oncethedrivingside isdetermined,thesoftwareexamines ifasinglegroundsurfaceangleisassumedonthedrivingandontheresistingsides.Ifasinglesurfaceangleisusedthentheexact theoretical equation is employed as outlined in. If an irregular ground surface angle isdetectedthentheprogramstartsperformingawedgeanalysisontheappropriateside.Horizontalground earth pressures are then prorated to account for all applicable effects including wallfriction.Itshouldbenotedthattheactive/passivewedgeanalysescantakeintoaccountflownetwaterpressuresifaflownetiscalculated.Thecomputedactiveandpassiveearthpressuresarethenmodified iftheuserassumesanothertypeof lateralearthpressuredistribution (i.e.apparentearthpressurediagramcomputed fromactiveearthpressuresabovesubgrade,dividepassiveearthpressuresbyasafetyfactor,etc.).Allof theaboveKa/Kpcomputationsareperformedautomatically foreach stage.Theuserhasonlytoselecttheappropriatewallfrictionbehaviorandearthpressuredistribution.

    5.2 ActiveandPassiveLateralEarthPressuresinPARATIEmoduleParatie7.0 incorporates theactiveandpassiveearthpressure coefficientswithin the soildata.Hence,intheexistingParatie7.0eventhoughKa/Kpareinthesoilpropertiesdialog,theuserhastomanuallycomputeKa/Kpand includewallfrictionandothereffects(suchasslopeangle,wallfriction). If a slope angle surface change takes place on a subsequent stage, then the existingParatie user has tomanually compute and change Ka/Kp to properly account for all requiredeffects.Thenewsoftwareoffersadifferent,morerationalizedapproach.

    InthenewSWthedefaultKa/Kp(forbothpeakandcv)defined inthesoilstabarebydefaultcomputedwithnowallfrictionandforahorizontalgroundsurface.TheuserstillhastheabilitytousethedefaultPARATIEengineKa/Kpbyselectingacheckbox inthesettings (TabulatedButeevalues). This new approach offers the benefit that the same soil type can easily be reused indifferent design sectionswithout having tomodify the base soil properties. Otherwise, whilestronglynotrecommended,wallfrictionandgroundsurfaceanglecanbeincorporatedwithinthedefaultKa/KpvaluesintheSoilDataDialog.IngeneralthelayoutlogicindeterminingKaandKpisdescribedinFigure1.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|7

    Options 1 2 3Default Ka, Kp = Rankine

    (RECOMMENDED)Default engine Ka/Kp (Butee) for zero

    wall friction and horizontal ground gives same numbers as Rankine

    User defined Ka/Kp that can include slope and wall friction (NOT

    RECOMMENDED)

    Default KaBase, KpBase defined for each soil type

    (Performed for each stage)

    1. Default Option (YES) 2. NoSW automatically determines slope angle, wall friction, and other effects KaBaseOptions: A. Enable Kp changes for seismic effects (Default = Yes) KpBase

    B. Enable Ka/Kp changes for slope angle (Default = Yes)C. Enable wall friction adjustments (Default = Yes)

    For each stage then Options 1.1 and 1.2 are available:

    Ka= Kabase x Ka(selected method, slope angle, wall friction)Ka Rankine (i.e. ground slope =0, wall friction = 0)

    Kp= Kpbase x Kp(selected method, slope angle, wall friction, EQ)Kp Rankine (i.e. ground slope =0, wall friction = 0)

    Ka= Ka(selected method, slope angle, wall friction)

    Kp= Kp(selected method, slope angle, wall friction, EQ)

    IMPORTANT LIMITATIONSA) Ka/Kp for irregular surfaces is not computed and is treated as horizontal.B) Seismic thrusts are not included in the default Ka calculations.

    Sub option 1.2: Use Actual Ka/Kp as determined from Stage Methods and Equations (see Table 1)

    3. Examine material changes. The latest Material change property will always override the above equations.

    Soil Type Dialog/Base Ka-Kp

    Enable automatic readjustment of Ka/Kp for slope angle, wall friction etc?

    Sub option 1.1: Prorate base Ka/Kp for slope and other effects (Default)

    *notewallfrictioncanbeindependentlyselectedonthedrivingortheresistingside.However,basicwall frictionmodeling is limited to threeoptionsa)Zerowall friction,b)%ofavailablesoil friction,andc)setwallfrictionangle.

    Figure1:Ka/KpdeterminationoptionsforParatiemoduleinnewsoftware

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|8

    When thesoftwaredetectsthattheuser isrunningananalysiswithnonhorizontalsoil layers(i.e. custom linemode is turned on), the softwarewill calculate the appropriate active and passivelateral earth pressure coefficients by performing a series ofwedge analysis. Eachwedge analysis isperformed at the bottom elevation of each layer by assuming a linearwedge failure with nowallfriction.Then,ifwallfrictionisassumed,theKaandKpvaluesareproratedbytheratioofthehorizontallayerKawith the selectedmethod (Coulomb,Caquot, etc) to theRankineKaorKp values. Last, thecomputedKaandKpcoefficientsaremultipliedordividedbytheappropriatepartialsafetyfactors ifaEC7 typeapproach is selected.For clays, thewedgeanalysis isperformed forboth thepeakand theconstantvolumefrictionangleKaandKpvalues(KaCV,KpCV,KaPeak,KpPeak).Moreinformationaboutthewedgeanalysisequationsispresentedinsections5.4and5.5. InmostcasesthisapproachyieldsgoodroughapproximationstotheactualKaandKpvaluesincomplex geological stratigraphies. However, results should be more closely inspected as in someconditionsmoreconservativecoefficientsmaybegeneratedwhenblock type failuresare initiated. Inthesecases, itmightbemoreappropriatetodefineacustom increasedKaanddecreasedKpfromthesoilsinputdialogandtheResistanceTab.Theprogramoffersawaytoquicklyinspectthewedgeanalysisvalues(withoutthewallfrictionprorating)bytypingthefollowingcommandsintheCommandPrompttextbox: GENWEDGES0LEFT =GeneratestheequivalentKaandKpfortheleftsideoftheleftwall GENWEDGES0RIGHT =GeneratestheequivalentKaandKpfortherightsideoftheleftwall GENWEDGES1LEFT =GeneratestheequivalentKaandKpfortheleftsideoftherightwall GENWEDGES1RIGHT =GeneratestheequivalentKaandKpfortherightsideoftherightwallNote: Thecommandscanbeexecutedonlywhen theexcavationsectionhasbeenanalyzedatleast once.The following example presents a case where the previous commands were verified with no wallfriction.

    Figure2.1.a:Wedgeanalysisexamplefornonlinearanalysis

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|9

    Inthisexamplethelayerpropertiesare:

    FortheGenWedges0Rightcommandthefollowingmessagewillbeproduced:

    Forsand layers the reportedKaWedgeandKpWedge isalso reported in theCVandPeakValues.Forclays,theKaWedgeandKpWedgerepresentthevaluesusedinthelimitequilibriumanalysis,whiletheKaCV,KpCV,KaPK,KpPKrepresentthevaluesusedinthenonlinearanalysis(Paratieengine).Negativeandzerovaluesarereportedwhenalayerisnotintersectedbythewall.Uponcloserinspectionofthepreviouslypresented resultsone can see that the calculated Ka and Kp values are very close to thetheoreticalhorizontalKaandKpRankinevalues.SomeexpectedsmalldifferencesarealsoobservedbuttheseareexpectedbecausethetypicallyusedKaandKpequationsformultilayeredsoilsassumeastepwisewedgefailure(whichisalsoaroughapproximation)whereasthewedgeanalysisassumesasingleanglefromthewalltothesurface.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|10

    5.3 PassivePressureEquationsThis sectionoutlines the specific theoreticalequationsused fordetermining thepassive lateralearthpressurecoefficientswithinthesoftware.a) Rankinepassiveearthpressurecoefficient:Thiscoefficient isapplicableonlywhennowall

    frictionisusedwithaflatpassivegroundsurface.Thisequationdoesnotaccountforseismiceffects.

    b) Coulomb passive earth pressure coefficient: This coefficient can include effects of wall

    friction,inclinedgroundsurface,andseismiceffects.TheequationisdescribedbyDasonhisbook Principles of Geotechnical Engineering, 3rd Edition, pg. 430 and in many othertextbooks:

    Where = Slopeangle(positiveupwards) = Seismiceffects= with

    ax= horizontalacceleration(relativetog)ay= verticalacceleration,+upwards(relativetog)= Wallanglefromvertical(0radianswallfaceisvertical)

    c) Lancellotta:Accordingtothismethodthepassive lateralearthpressurecoefficient isgiven

    by:

    Where And

    d) CaquotKerisel(Tabbuttee):RefertomanualbyParatieandtabulatedvalues.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|11

    5.4 ClassicalEarthPressureOptions5.4.1 Active&PassivePressuresfornonLevelGround

    Occasionallynonlevelgroundsurfacesandbencheshavetobeconstructed.ThecurrentversionofDeepXcavcanhandleboth singleangle sloped surfaces (i.e single10degree slopeangle)andcomplexbencheswithmultiplepoints.DeepXcavautomaticallydetectswhichconditionapplies.Forsingleangleslopes,DeepXcavwilldetermineusethetheoreticalRankine,Coulomb,orCaquotKeriselactive,orpassivelateralthrustcoefficients(dependingonuserpreference).For non level ground that does not meet the single slope criteria, DeepXcav combines thesolutionsfroma levelgroundwithawedgeanalysisapproach.Pressuresaregenerated inatwostepapproach:a)first,soilpressuresaregeneratedpretendingthatthesurfaceislevel,andthenb)soilpressuresaremultipliedbytheratioofthetotalhorizontalforcecalculatedwiththewedgemethoddividedby the totalhorizontal forcegenerated fora levelgroundsolution.This isdoneincrementallyatallnodes throughout thewalldepth summing forces from the topof thewall.Wall friction is ignored in the wedge solution but pressures with wall friction according toCoulombforlevelgroundareproratedasdiscussed.This approach does not exactly match theoretical wedge solutions. However, it is employedbecauseitisveryeasywiththeiterativewedgesearch(asshowninthefigurebelow)tomissthemostcriticalwedge.Thus,when lateralactiveorpassivepressureshave tobebackfigured fromthetotal lateralforcechangeaspike in lateralpressurecaneasilyoccur(whilethetotalforce isstill the same). Hence, by prorating the activepassive pressure solution a much smootherpressure envelope is generated. Inmost cases this soil pressure envelope is very close to theactual critical wedge solution. The wedgemethods employed are illustrated in the followingfigures.Surcharge loadsarenotconsidered inthewedgeanalysessincesurchargepressuresarederivedseparatelyusingwellacceptedlinearelasticityequations.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|12

    Figure 2.1: Active force wedge search solution according to Coulomb.

    Figure 2.2: Passive force wedge search solution according to Coulomb.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|13

    5.4.2 Peck1969EarthPressureEnvelopesAfterobservationofseveralbracedcutsPeck(1969)suggestedusingapparentpressureenvelopeswiththefollowingguidelines:

    istaken astheeffectiveunitweightwhilewaterpressuresareaddedseparately(privatecommunicationwithDr.Peck).

    Figure2.3:ApparentEarthPressuresasOutlinedbyPeck,1969

    Formixedsoilprofiles(withmultiplesoil layers)DeepXcavcomputesthesoilpressureas ifeachlayeractedonlybyitself.AfterprivatecommunicationwithDr.Peck,theunitweightgrepresentseither the totalweight (forsoilabove thewater table)or theeffectiveweightbelow thewatertable.For soilswithboth frictionalandundrainedbehavior,DeepXcavaverages the"Sand"and"Soft clay" or "Stiff Clay" solutions.Note that the Ka used inDeepXcav is only for flat groundsolutions. The same effect for different Ka (such as for sloped surfaces), can be replicated bycreatingacustomtrapezoidalredistributionofactivesoilpressures.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|14

    5.4.3 FHWAApparentEarthPressuresThe current version of DeepXcav also includes apparent earth pressurewith FHWA standards

    (Federal Highway Administration). The following few pages are reproduced from applicable FHWAstandards.

    Figure2.4:RecommendedapparentearthpressurediagramforsandsaccordingtoFHWA

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|15

    TOTALLOAD(kN/m/meterofwall)=3H2to6H2(Hinmeters)

    Figure2.5:RecommendedapparentearthpressurediagramforstifftohardclaysaccordingtoFHWA.Inbothcasesforfigures2.4and2.5,themaximumpressurecanbecalculatedfromthetotalforceas:a. Forwallswithonesupport:p=2xLoad/(H+H/3)b. Forwallswithmorethanonesupport:p=2xLoad/{2H2(H1+Hn+1)/3)}

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|16

    5.4.4 FHWARecommendedApparentEarthPressureDiagramforSofttoMediumClays

    Temporaryandpermanentanchoredwallsmaybeconstructedinsofttomediumclays(i.e.Ns>4)if a competent layer of forming the anchor bond zone iswithin reasonable depth below theexcavation. Permanently anchoredwalls are seldom usedwhere soft clay extends significantlybelowtheexcavationbase.Forsofttomediumclaysandfordeepexcavations(andundrainedconditions),theTerzaghiPeckdiagram shown in figure2.5hasbeenused toevaluateapparentearthpressures fordesignoftemporarywalls insofttomediumclays.Forthisdiagramapparentsoilpressuresarecomputedwithacoefficient:

    Where m is an empirical factor that accounts for potential base instability effects in deepexcavationsissoftclays.WhentheexcavationisunderlainbydeepsoftclayandNsexceeds6,misset to0.4.Otherwise,m is takenas1.0 (Peck,1969).Using theTerzaghiandPeckdiagramwithm=0.4incaseswhereNs>6mayresultinanunderestimationofloadsonthewallandisthereforenot conservative. In this case, the softwareusesHenkelsequationasoutlined in the followingsection.An importantrealization isthatwhenNs>6thentheexcavationbaseessentiallyundergoesbasalfailure as the basal stability safety factor is smaller than 1.0. In this case, significant soilmovementsshouldbeexpectedbelowtheexcavationthatarenotcapturedbyconventionallimitequilibriumanalysesandmaynotbeincludedinthebeamonelastoplasticsimulation(Paratie).

    ThesoftwareinthecaseofasinglesoillayerwillusethethisequationifNs>4andNs

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|17

    Distribute the factored total force into an apparent pressure diagram using the trapezoidaldistributionshowninFigure2.4.

    Wherepotentialfailuresurfacesaredeepseated, limitequilibriummethodsusingslopestabilitymaybeusedtocalculateearthpressureloadings.TheTerzaghiandPeck(1967)diagramsdidnotaccountforthedevelopmentofsoilfailurebelowthebottomof theexcavation.Observationsand finiteelement studieshavedemonstrated thatsoil failure below the excavation bottom can lead to very large movements for temporaryretainingwallsinsoftclays.ForNs>6,relativelargeareasofretainedsoilneartheexcavationbaseare expected to yield significantly as the excavation progresses resulting in largemovementsbelowtheexcavation,increasedloadsontheexposedportionofthewall,andpotentialinstabilityoftheexcavationbase.Inthiscase,Henkel(1971)developedanequationtodirectlyobtainKAforobtaining themaximum pressure ordinate for soft tomedium clays apparent earth pressurediagrams (thisequation isappliedwhenFHWAdiagramsareusedand theprogramexamines ifNs>6):

    Wherem=1accordingtoHenkel(1971).Thetotalloadisthentakenas:

    Figure2.6:Henkelsmechanismofbasefailure

    Figure2.7showsvaluesofKAcalculatedusingHenkelsmethodforvariousd/Hratios.ForresultsinthisfigureSu=Sub.This figure indicatesthatfor4

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|18

    usingthesofttomediumapparentearthpressurediagramwithKa=0.22is0.193H2resultinginamaximumpressurep=0.26H.UseofKa=0.22,accordingtoFHWA,representarationaltransitionvalueforthesecases.Henkelsmethod is limitedtocaseswheretheclayssoilsontheretainedsideoftheexcavationand below the excavation can each be reasonably characterized using a constant value forundrained shear strength. Where a more detailed shear strength profile is required, limitequilibriummethodsmaybeusedtoevaluatetheearthpressureloadingsonthewalldescribedinsection5.7.3oftheFHWAmanual(notperformedwithinthesoftware).

    Figure2.7:Comparisonofapparentlateralearthpressurecoefficientswithbasalstabilityindex(FHWA2004).Forclaysthestabilitynumberisdefinedas:

    Pleasenotethatsoftwareusestheeffectiveverticalstressatsubgradetofindanequivalentsoilunitweight,Waterpressuresareaddedseparatelydependingonwaterconditionassumptions.This is slightlydifferent from theapproach recommendedby FHWA,however,afterpersonalcommunicationwith the lateDr.Peck,has confirmed thatusersof apparent earthpressuresshouldusetheeffectivestressatsubgradeandaddwaterpressuresseparately.By ignoring thewater table, or by using customwater pressures, the exact same numericalsolutionaswiththeoriginalFHWAmethodcanbeobtained.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|19

    5.4.6 ModificationstostiffclayandFHWAdiagramsOvertheyearsvariousresearchersandengineershaveproposednumerousapparentlateralearthpressure diagrams for braced excavations. Unfortunately, most lateral apparent pressurediagramshavebeentakenoutofcontextormisused.Historically,apparentlateralearthpressurediagrams have been developed from measured brace reactions. However, apparent earthpressurediagramsareoftenarbitrarilyusedtoalsocalculatebendingmomentsinthewall.In excavations supporting stiff clays, many researchers have observed that the lower bracescarriedsmallerloads.Thishasmisledengineerstoextrapolatetheapparentlateralearthpressuretozeroatsubgrade. In thisrespect,manyapparent lateralearthpressurediagramscarrywithinthemahistoricalunconservativeoversight inthefactthatthe lateralearthpressureatsubgradewasneverdirectlyorindirectlymeasured.Konstantakos(2010)hasproventhatthezeroapparentlateral earth pressure at the subgrade level assumption is incorrect, unconservative, andmostimportantlyunsubstantiated.Thishistoricaloversight,can leadtosevereunderestimationoftherequiredwallembedmentlengthandoftheexperiencedwallbendingmoments.Iflargerdisplacementscanbetoleratedordrainedconditionsareexperiencedtheapparentearthpressurediagramsmustnot,ataminimum,dropbelowthetheoreticalactivepressure,unlesssoilarching iscarefullyevaluated.Alternatively, in thesecases, for fastcalculationsorestimates,anengineer can increase the apparent earth pressure from 50% atmidway between the lowestsupport leveland the subgrade to the full theoreticalapparentpressureor theactivepressurelimitatthesubgradelevel(seeFigure2.8).Asalways,theseequationsrepresentasimplificationofcomplexconditions.Iftighterdeformationcontrol isrequiredorwhenfullyundrainedconditionsaretobeexpected,then the virtual reaction at the subgrade levelhas to take intoaccount increased lateralearthpressures that caneven reach close to fiftypercentof the totalvertical stressat the subgradelevel.The initialstateofstresshastobetaken intoconsiderationasoverconsolidatedsoilstratawill tend to induce larger lateral earth stresses on the retainingwalls. In such critical cases, adesignengineermustalwayscomplimentapparentearthpressurediagramcalculationswithmoreadvancedandwellsubstantiatedanalysismethods.TheabovemodificationscanbeappliedwithinthesoftwarebydoubleclickingonthedrivingearthpressurebuttonwhentheFHWAorPeckmethodisselected.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|20

    Figure2.8:MinimumlateralpressureoptionforFHWAandPeckapparentpressurediagrams(check

    box).

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|21

    Figure 2.9: Proposed modifications to stiff clay and FHWA apparent lateral earth pressure diagrams (Konstantakos 2010).

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|22

    5.4.7 VerificationExampleforSoftClayandFHWAApproachA10mdeepexcavationisconstructedinsoftclaysandthewallisembedded2minasecondsoftclaylayer.Thewallissupportedbythreesupportsatdepthsof2m,5m,and8mfromthewalltop.Assumedsoilpropertiesare:

    Clay1: From0to10mdepth, Su=50kPa 20kN/m3Clay2: From10mdepthandbelow Su=30kPa 20kN/m3Thedepthtothefirmlayerfromtheexcavationsubgradeisassumedasd=10m(whichisthe

    modelbase,i.e.thebottommodelcoordinate)

    Figure2.10:VerificationexampleforFHWAapparentpressureswithasoftclay

    Thetotalverticalstressattheexcavationsubgradeis:v20kN/m3x10m=200kPa

    Thebasalstabilitysafetyfactoristhen:

    FS=5.7x30kPa/200kPa=0.855(verifiedfromFig.2.10)

    ThenaccordingtoHenkelKaiscalculatedas(m=1):

    Thetotalthrustabovetheexcavationisthen:Ptotal=0.5KAvxH=647kN/mThemaximumearthpressureordinateisthen:

    p=2xLoad/{2H2(H1+Hn+1)/3)}=2x647kN/m/{2x10m2x(2m+2m)/3}=74.65kPa

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|23

    Thesoftwarecalculates74.3kPaandessentiallyconfirmstheresultsasdifferencesareattributedtoroundingerrors.Thetributaryloadinthemiddlesupportisthen3mx74,3kPa=222.9kN/m(whichisconfirmedbythe program).When performing only conventional limit equilibrium analysis it is important toproperlyselect thenumberofwallelements thatwillgenerateasufficientnumberofnodes. Inthisexample,195wallnodesareassumed.Ingeneralitisrecommendedtouseatleast100nodeswhenperformingconventionalcalculationswhile200nodeswillproducemoreaccurateresults.

    Nowexaminethecaseifthesoilwasasandwithafrictionangleof30degrees.

    Figure2.11:VerificationexampleforFHWAsoftclayanalysis

    Inthiscase,thetotalactivethrustiscalculatedas:Ptotal=0.65KAvxH=432.9kN/mThemaximumearthpressureordinateisthen:

    p=2xLoad/{2H2(H1+Hn+1)/3)}=2x432.9kN/m/{2x10m2x(2m+2m)/3}=49.95kPaThisapparentearthpressurevalueisconfirmedbythesoftware.

    Next,wewillexaminethesameexcavationwithamixedsandandclayprofile.Sand: From0to5mdepth, =30o 20kN/m3 Clay1: From5to10mdepth, Su=50kPa 20kN/m3Clay2: From10mdepthandbelow Su=30kPa 20kN/m3

    Inthisexample,Ns=6.67.AsaresultwewillhavetouseHenkelsequationbutaveragetheeffectsofsoilfrictionandcohesion.Thismethodisaroughapproximationandshouldbeusedwithcaution.

    From0mto5mthefrictionforceonaverticalfaceinSand1canbecalculatedas:Ffriction=0.5x20kN/m3x5mxtan(30degrees)x5m=144.5kN/m

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|24

    TheavailablesidecohesiononlayerClay1is:5mx50kPa=250kN/mThetotalsideresistanceontheverticalfaceisthen:250kN/m+144.5kN/m=395.5kN/mTheaverageequivalentcohesioncanbecomputedas:

    Su.ave=395.5kN/m/10m=39.55kPa

    ThenaccordingtoHenkelKaiscalculatedas(m=1):

    Thetotalthrustabovetheexcavationisthen:Ptotal=0.5KAvxH=849kN/mThemaximumearthpressureordinateisthen:

    p=2xLoad/{2H2(H1+Hn+1)/3)}=2x647kN/m/{2x10m2x(2m+2m)/3}=98kPaThisresultisconfirmedbythesoftwarethatproduces99.2kPa.

    Figure2.12:VerificationexampleforFHWAmixedsoilprofilewithsoftclayandsand

    5.4.8 CustomTrapezoidalPressureDiagrams Withthisoptiontheapparentearthpressurediagram isdeterminedastheproductoftheactive

    soilthrusttimesauserdefinedfactor.Thefactorshouldrangetypicallyfrom1.1to1.4dependingon the user preferences and the presence of a permanent structure. The resulting horizontalthrust is then redistributed as a trapezoidal pressure diagram where the top and bottomtriangularpressureheightsaredefinedasapercentageoftheexcavationheight.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|25

    5.4.9 TwoStepRectangularPressureDiagramsVeryoften,especially in theUS,engineersareprovidedwith rectangularapparent lateralearthpressuresthataredefinedwiththeproductofafactortimestheexcavationheight.TwofactorsareusuallydefinedM1forpressuresabovethewatertableandM2forpressuresbelowthewatertable.M1andM2shouldalreadyincorporatethesoiltotalandeffectiveweight.Useofthisoptionshould be carried with extreme caution. The following dialog will appear if the rectangularpressureoptionisselectedinthedrivingpressuresbutton.

    Figure2.10:Twosteprectangularearthpressurecoefficients.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|26

    5.5 VerticalwalladhesioninundrainedloadingShorttermtotalstressconditions(i.e.undrainedloading)representthestateinthesoilbeforetheporewaterpressureshavehadtimetodissipatei.e.immediatelyafterconstructioninacohesivesoil.Fortotalstressthehorizontalactiveandpassivepressuresarecalculatedusingthefollowingequations:pa=Ka(z+q)SuKacpp=Kp(z+q)+SuKpc

    Where:(z+q)representsthetotaloverburdenpressureKa=Kp=1.0forcohesivesoils.

    Designsu=sud=sumc/FSsuwhereFssuistypically1.5.Theearthpressurecoefficients,KacandKpc,makeanallowanceforwall/soiladhesionandarederivedasfollows:

    Kac=Kpc=2(1+Swmax/Sud)0.5

    AccordingtothePilingHandbookbyArcelor(2005),the limitingvalueofwalladhesionSwmaxatthe soil/sheet pile interface is generally taken to be smaller than the design undrained shearstrengthofthesoil,sud,byafactorof2forstiffclays.i.e.Swmax=xSud,where=0.5.Lowervaluesofwalladhesion,however,mayberealized insoftclays. Inanycase,thedesignershouldrefertothedesigncodetheyareworkingtoforadviceonthemaximumvalueofwalladhesiontheymayuse.Currently, thesemodificationscanbeusedonly inconventional limitequilibriumanalyses.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|27

    6. Eurocode7analysismethods

    In the US practice excavations are typically designed with a service design approach while aStrengthReductionApproachisusedinEuropeandinmanyotherpartsoftheworld.Eurocode7(strength design, herein EC7) recommends that the designer examines a number of differentDesign Approaches (DA1, DA2, DA3) so that the most critical condition is determined. InEurocode 7 soil strengths are readjusted according to thematerial M tables, surcharges andpermanentactionsarereadjustedaccordingtotheactionAtables,andresistancesaremodifiedaccordingto theR tabulatedvalues. Hence, inacasethatmaybeoutlinedasA2+M2+R2onewouldhavetoapplyalltherelevantfactorstoActions,Materials,andResistances.A designer still has to perform a service check in addition to all the ultimate design approachcases.Hence,aconsiderablenumberofcaseswillhave tobeexaminedunless themostcriticalcondition canbeeasilyestablishedby anexperiencedengineer. In summary,EC7provides thefollowingcombinationswherethefactorscanbepickedfromthetablesinsection6.1:DesignApproach1,Combination1: A1+M1+R1DesignApproach1,Combination2: A2+M2+R1DesignApproach2: A1*+M1+R2DesignApproach3: A1*+A2++M2+R3

    A1*=Forstructuralactionsorexternalloads,andA2+=forgeotechnicalactions EQK(fromEC8): M2+R1 (TheItaliancodeDM08usesDA11,DA12,andEQKdesignapproachmethodsonly).IntheoldParatie(version7andbefore),thedifferentcaseswouldhavebeenexaminedinmanyLoadHistories.ThetermLoadHistoryhasbeenreplacedinthenewsoftwarewiththeconceptofDesignSection.EachdesignsectioncanbeindependentfromeachotheroraDesignSectioncanbe linkedtoaBaseDesignSection.Whenadesignsection is linked, themodelandanalysisoptions are directly copied from the BaseDesign Sectionwith the exception of the Soil CodeOptions(i.e,Eurocode7,DM08etc).InEurocode7,variousequilibriumandothertypechecksareexamined:a) STR: Structuraldesign/equilibriumchecksb) GEO: Geotechnicalequilibriumchecksc) HYD: Hydraulicheavecasesd) UPL: Uplift(onastructure)e) EQU: Equilibriumstates(applicabletoseismicconditions?)

    Thenew softwarehandles anumberof STR,GEO, andHYD checkswhile it gives the ability toautomaticallygenerateallEurocode7casesforamodel.Unfortunately,Eurocode7asawholeismostlygearedtowardstraditionallimitequilibriumanalysis.Inmoreadvancedanalysismethods(suchas inParatie),Eurocode7canbehandledaccordingtothe letterofthecodeonlywhenequalgroundwater levelsareassumed inbothwallsides.However,muchdoubtexistsastothe

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|28

    mostappropriatemethodtobeemployedwhendifferentgroundwaterlevelshavetobemodeled.Section6.1presentsthesafety/strengthreductionparametersthatthenewsoftwareuses.

    6.1 SafetyParametersforUltimateLimitStateCombinationsTable 2.1 lists all safety factors that areused in thenew software and alsoprovides theusedsafetyfactorsaccordingtoEC72008.Thelast4tablecolumnslistthecodesafetyfactorsforeachcodecase/scenario(i.e. inthefirstrowCase1referstoM1,Case2referstoM2).Table2.2 liststhesamefactorsfortheItaliancodeNTC08,whiletables2.3,2.4,and2.5listthesafetyfactorsfortheGreek,theFrench,andtheGermancodesrespectively.Last, table 2.6 presents the load combinations employed byAASHTO LRFD 5th edition (2010).AASHTOslightlydiffersfromEuropeanstandardsinthatsoilstrengthisnotfactored.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|29

    Table2.1:ListofsafetyfactorsforstrengthdesignapproachaccordingtoEurocode7

    InternalSWParameter Description

    Type EurocodeParameter

    EurocodeReference

    EurocodeChecks

    Case1DA1:comb1.

    A1+M1+R1

    Case2DA1:comb2.

    A2+M2+R1

    Case3DA2:

    A1+M1+R2

    Case4DA1:

    A1+M1+R1

    EQU:M2+R1

    F_Fr SafetyfactorontanFR M M SectionA.3.2 STRGEO 1.00 1.25 1.00 1.25 1.25F_C Safetyfactorc' M M STRGEO 1.00 1.25 1.00 1.25 1.25F_Su SafetyfactoronSu M M STRGEO 1.00 1.40 1.00 1.40 1.40

    F_LV Safetyfactorforvariablesurcharges(unfavorable) A Q SectionA.3.1 STRGEO 1.50 1.30 1.50 1.50 0.00

    F_LP Safetyfactorforpermanentsurcharges(unfavorable) A G TableA.3.pg130 STRGEO 1.35 1.00 1.35 1.35 1.00

    F_LvfavorSafetyfactorforvariablesurcharges(favorable) A Q SectionA.3.1 STRGEO 0.00 0.00 0.00 0.00 1.00

    F_Lpfavor Safetyfactorforpermanentsurcharges(favorable) A G TableA.3.pg130 STRGEO 1.00 1.00 1.00 1.00 1.00

    F_EQ Safetyfactorforseismicpressures

    A 0.00 0.00 0.00 0.00 1.00

    F_ANCH_T Safetyfactorfortemporaryanchors

    R a;t SectionA.3.3.4 STRGEO 1.10 1.10 1.10 1.00 1.10

    F_ANCH_P Safetyfactorforpermanentanchors

    R a;p TableA.12.pg134 STRGEO 1.10 1.10 1.10 1.00 1.10

    F_RESSafetyfactorearthresistancei.e.Kp R R;e

    SectionA.3.3.5TableA.13pg.

    135STRGEO 1.00 1.00 1.40 1.00 1.00

    F_WaterDRSafetyfactoronDrivingWaterpressures(appliedinBeamANALYSISONLYtoaction)

    A G SectionA.3.1 STRGEO 1.35 1.00 1.35 1.00 1.00

    F_WaterRESSafetyfactoronResistingwaterpressures(appliedinBeamAnalysistoaction)

    A G TableA.3.pg130 STRGEO 1.00 1.00 1.00 1.00 1.00

    F_HYDgDST HydraulicCheckdestabilizationfactor A G;dst SectionA.5 HYD 1.35 1.35 1.35 1.35 1.00

    F_HYDgSTABSafetyfactoronHydrauliccheckstabilizingaction A G;stb

    TableA.17.pg136

    HYD 0.90 0.90 0.90 0.90 0.90

    F_gDSTABFactorforUNFAVORABLEpermanentDESTABILIZINGACTION

    UPL G;dst SectionA.4 UPL 1.10 1.10 1.10 1.10 1.10

    F_gSTABFactorforfavorablepermanentSTABILIZINGaction UPL G;stb

    TableA.15.pg136

    UPL 0.90 0.90 0.90 0.90 0.90

    F_DriveEarthmultiplicationfactorappliedtodrivingearthpressures A Gonactions TableA.3 STRGEO 1.35 1.00 1.35 1.00 1.00

    F_DriveActive N/A N/A N/A N/A N/AF_DriveAtRest N/A N/A N/A N/A N/A

    F_Wall Safetyfactorforwallcapacity STR Modelfactorforwallcapacity 1.00 1.00 1.00 1.00 1.00

    TableA.4pg.130

    EUROCODE7,EN19971:2004(2007) CodeCase

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|30

    Table2.2:ListofsafetyfactorsforstrengthdesignapproachaccordingtoItalianNTC2008code

    InternalSWParameter Description

    TypeEurocodeParameter

    EurocodeReference

    EurocodeChecks

    Case1 Case2 Case3* Case4 EQK

    F_Fr SafetyfactorontanFR M M SectionA.3.2 STRGEO 1.00 1.25 1.25

    F_C Safetyfactorc' M M STRGEO 1.00 1.25 1.25

    F_Su SafetyfactoronSu M M STRGEO 1.00 1.40 1.4

    F_LVSafetyfactorforvariablesurcharges(unfavorable) A Q SectionA.3.1 STRGEO 1.50 1.30 1

    F_LPSafetyfactorforpermanentsurcharges(unfavorable) A G

    TableA.3.pg130

    STRGEO 1.30 1.00 1

    F_LvfavorSafetyfactorforvariablesurcharges(favorable) A Q SectionA.3.1 STRGEO 0.00 0.00 1

    F_Lpfavor Safetyfactorforpermanentsurcharges(favorable) A G

    TableA.3.pg130

    STRGEO 1.00 1.00 1

    F_EQSafetyfactorforseismicpressures

    A 0.00 0.00 1

    F_ANCH_TSafetyfactorfortemporaryanchors

    R a;t SectionA.3.3.4 STRGEO 1.10 1.10 1.10 1.1

    F_ANCH_PSafetyfactorforpermanentanchors

    R a;p TableA.12.pg134 STRGEO 1.20 1.20 1.20 1.2

    F_RESSafetyfactorearthresistancei.e.Kp R R;e

    SectionA.3.3.5Table STRGEO 1.00 1.40 1

    F_WaterDRSafetyfactoronDrivingWaterpressures(appliedin A G SectionA.3.1 STRGEO 1.30 1.00 1

    F_WaterRESSafetyfactoronResistingwaterpressures(appliedinBeamAnalysistoaction)

    A G TableA.3.pg130 STRGEO 1.00 1.00

    F_HYDgDSTHydraulicCheckdestabilizationfactor A G;dst SectionA.5 HYD 1.35

    F_HYDgSTABSafetyfactoronHydrauliccheckstabilizingaction A G;stb

    TableA.17.pg136

    HYD 0.90

    F_gDSTABFactorforUNFAVORABLEpermanentDESTABILIZINGACTION

    UPL G;dst SectionA.4 UPL 1.10

    F_gSTABFactorforfavorablepermanentSTABILIZINGaction

    UPL G;stb TableA.15.pg136 UPL 0.90

    F_DriveEarthmultiplicationfactorappliedtodrivingearthpressures A Gonactions TableA.3 STRGEO 1.30 1.00 1

    F_Wall Safetyfactorforwallcapacity STR Modelfactorforwallcapacity 1.00 1.00 1

    TableA.4pg.130

    ITALIAN,NTC2008 CodeCase

    Note: F_WallisnotdefinedinEC7.TheseparameterscanbeusedinanLRFDapproachconsistentwithUSAcodes.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|31

    Table2.3:ListofsafetyfactorsforstrengthdesignapproachGreekdesigncode2007

    InternalSWParameter Description

    Type EurocodeParameter

    EurocodeReference

    EurocodeChecks

    Case1DA2*:

    A1+M1+R2

    Case2DA3:A1A2+M2+R1

    EQU:M2+R1

    F_Fr SafetyfactorontanFR M M SectionA.3.2 STRGEO 1.00 1.25 1.25F_C Safetyfactorc' M M STRGEO 1.00 1.25 1.25F_Su SafetyfactoronSu M M STRGEO 1.00 1.40 1.40

    F_LVSafetyfactorforvariablesurcharges(unfavorable) A Q

    SectionA.3.1

    STRGEO 1.50 1.50 1.00

    F_LPSafetyfactorforpermanentsurcharges(unfavorable) A G

    TableA.3.pg130

    STRGEO 1.35 1.35 1.00

    F_LvfavorSafetyfactorforvariablesurcharges(favorable) A Q

    SectionA.3.1

    STRGEO 0.00 0.00 0.00

    F_LpfavorSafetyfactorforpermanentsurcharges(favorable) A G

    TableA.3.pg130

    STRGEO 1.00 1.00 1.00

    F_EQSafetyfactorforseismicpressures

    A 0.00 1.00 1.00

    F_ANCH_T Safetyfactorfortemporaryanchors

    R a;t SectionA.3.3.4

    STRGEO 1.10 1.10 1.10

    F_ANCH_PSafetyfactorforpermanentanchors

    R a;p TableA.12.pg134 STRGEO 1.10 1.10 1.10

    F_RESSafetyfactorearthresistancei.e.Kp R R;e

    SectionA.3.3.5TableA.13pg.135

    STRGEO 1.40 1.00 1.00

    F_WaterDRSafetyfactoronDrivingWaterpressures(appliedinBeamANALYSISONLYtoaction)

    A G SectionA.3.1 STRGEO 1.35 1.35 1.00

    F_WaterRESSafetyfactoronResistingwaterpressures(appliedinBeamAnalysistoaction)

    A G TableA.3.pg130 STRGEO 1.00 1.00 1.00

    F_HYDgDSTHydraulicCheckdestabilizationfactor A G;dst SectionA.5 HYD 1.35 1.00 1.00

    F_HYDgSTABSafetyfactoronHydrauliccheckstabilizingaction A G;stb

    TableA.17.pg136 HYD 0.90 0.90 0.90

    F_gDSTABFactorforUNFAVORABLEpermanentDESTABILIZINGACTION

    UPL G;dst SectionA.4 UPL 1.10 1.10 1.10

    F_gSTABFactorforfavorablepermanentSTABILIZINGaction UPL G;stb

    TableA.15.pg136 UPL 0.90 0.90 0.90

    F_DriveEarthmultiplicationfactorappliedtodrivingearthpressures A Gonactions TableA.3 STRGEO 1.35 1.35 1.00

    F_DriveActive N/A N/A N/A

    F_DriveAtRest N/A N/A N/A

    F_Wall Safetyfactorforwallcapacity STR Modelfactorforwallcapacity 1.00 1.00 1.00

    EUROCODE7,GREEK2007 CodeCase

    TableA.4pg.130

    Note:ForslopestabilitythedesignapproachisequivalenttoEQU

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|32

    Table2.4:PartialsafetyfactorsforstrengthdesignapproachwithFrenchcodesXP240andXP220

    Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case812a

    (stand)2b

    (sens)12a

    (stand)2b

    (sens)12a

    (stand)2b

    (sens)12a

    (stand)2b

    (sens)

    F_Fr SafetyfactorontanFR M M SectionA.3.2 STRGEO 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25F_C Safetyfactorc' M M STRGEO 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25F_Su SafetyfactoronSu M M STRGEO 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40

    F_LVSafetyfactorforvariablesurcharges(unfavorable) A Q

    SectionA.3.1

    STRGEO 1.33 1.33 1.00 1.00 1.33 1.33 0.00 0.00

    F_LPSafetyfactorforpermanentsurcharges(unfavorable) A G

    TableA.3.pg130

    STRGEO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_LvfavorSafetyfactorforvariablesurcharges(favorable) A Q

    SectionA.3.1

    STRGEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

    F_LpfavorSafetyfactorforpermanentsurcharges(favorable) A G

    TableA.3.pg130

    STRGEO 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

    F_EQ Safetyfactorforseismicpressures

    A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_ANCH_T Safetyfactorfortemporaryanchors

    R a;t SectionA.3.3.4 STRGEO 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

    F_ANCH_PSafetyfactorforpermanentanchors

    R a;p TableA.12.pg134 STRGEO 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

    F_RESSafetyfactorearthresistancei.e.Kp R R;e

    SectionA.3.3.5TableA.13pg.135

    STRGEO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_WaterDRSafetyfactoronDrivingWaterpressures(appliedinBeamANALYSISONLYtoaction)

    A G SectionA.3.1 STRGEO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_WaterRESSafetyfactoronResistingwaterpressures(appliedinBeamAnalysistoaction)

    A G TableA.3.pg130 STRGEO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_HYDgDSTHydraulicCheckdestabilizationfactor

    A G;dst SectionA.5 HYD 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35

    F_HYDgSTABSafetyfactoronHydrauliccheckstabilizingaction A G;stb

    TableA.17.pg136 HYD 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

    F_gDSTABFactorforUNFAVORABLEpermanentDESTABILIZINGACTION

    UPL G;dst SectionA.4 UPL 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

    F_gSTABFactorforfavorablepermanentSTABILIZINGaction UPL G;stb

    TableA.15.pg136 UPL 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

    F_DriveEarthmultiplicationfactorappliedtodrivingearthpressures A GonactionsTableA.3 STRGEO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_DriveActive N/A N/A N/A N/A N/A N/A N/A N/A

    F_DriveAtRest N/A N/A N/A N/A N/A N/A N/A N/A

    F_Wall Safetyfactorforwallcapacity STR Modelfactorforwallcapacity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    Fundamental Accidental

    TableA.4pg.130

    EUROCODE7,FRENCH2007 CodeCase

    InternalSWParameter Description

    TypeEurocodeParameter

    EurocodeReference

    EurocodeChecks

    XP240 XP220Fundamental Accidental

    Note:Frenchcodestandardsareparticularlyimportantforsoilnailingwalls.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|33

    Table2.5:PartialsafetyfactorsforstrengthdesignapproachwithGermanDIN2005

    InternalSWParameter Description

    Type EurocodeParameter

    EurocodeReference

    EurocodeChecks

    Case1GZ2(SLS)

    Case2GZ1B(LC1)

    Case3GZ1B(LC2)

    Case4GZ1B(LC3)

    Case5GZ1C(LC1)

    Case6GZ1C(LC2)

    Case7GZ1C(LC3)

    F_Fr SafetyfactorontanFR M M SectionA.3.2 STRGEO 1.00 1.00 1.00 1.00 1.25 1.15 1.10F_C Safetyfactorc' M M STRGEO 1.00 1.25 1.15 1.10 1.25 1.15 1.10F_Su SafetyfactoronSu M M STRGEO 1.00 1.25 1.15 1.10 1.25 1.15 1.10F_LV Safetyfactorforvariablesurcharges

    (unfavorable)A Q SectionA.3.1 STRGEO 1.00 1.50 1.30 1.00 1.30 1.20 1.00

    F_LPSafetyfactorforpermanentsurcharges(unfavorable) A G

    TableA.3.pg130 STRGEO 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_LvfavorSafetyfactorforvariablesurcharges(favorable)

    A Q SectionA.3.1 STRGEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

    F_LpfavorSafetyfactorforpermanentsurcharges(favorable) A G

    TableA.3.pg130 STRGEO 1.00 0.90 0.90 0.90 0.90 0.90 0.90

    F_EQ Safetyfactorforseismicpressures A 1.00 0.00 0.00 0.00 1.00 1.00 1.00

    F_ANCH_T Safetyfactorfortemporaryanchors R a;t SectionA.3.3.4 STRGEO 1.00 1.10 1.10 1.10 1.10 1.10 1.10

    F_ANCH_P Safetyfactorforpermanentanchors R a;p TableA.12.pg134 STRGEO 1.00 1.10 1.10 1.10 1.10 1.10 1.10

    F_RES Safetyfactorearthresistancei.e.Kp R R;eSectionA.3.3.5

    TableA.13STRGEO 1.00 1.40 1.30 1.20 1.40 1.00 1.00

    F_WaterDRSafetyfactoronDrivingWaterpressures(appliedinBeamANALYSISONLYtoaction)

    A G SectionA.3.1 STRGEO 1.00 1.35 1.00 1.20 1.00 1.00 1.00

    F_WaterRESSafetyfactoronResistingwaterpressures(appliedinBeamAnalysistoaction)

    A G TableA.3.pg130 STRGEO 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_HYDgDSTHydraulicCheckdestabilizationfactor

    A G;dst SectionA.5 HYD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_HYDgSTABSafetyfactoronHydrauliccheckstabilizingaction A G;stb

    TableA.17.pg136 HYD 1.00 0.90 0.95 0.90 0.90 0.95 0.90

    F_gDSTABFactorforUNFAVORABLEpermanentDESTABILIZINGACTION UPL G;dst

    SectionA.4

    UPL 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    F_gSTAB FactorforfavorablepermanentSTABILIZINGaction UPL G;stb

    TableA.15.pg136 UPL 1.00 0.90 0.95 0.90 0.90 0.95 0.90

    F_DriveEarthmultiplicationfactorappliedtodrivingearthpressures A Gonactions TableA.3 STRGEO 1.00 1.35 1.20 1.00 1.00 1.00 1.00

    F_DriveActive N/A N/A N/A N/A N/A N/A N/A

    F_DriveAtRest N/A 1.20 1.10 N/A N/A N/A N/A

    F_Wall Safetyfactorforwallcapacity STR Modelfactorforwallcapacity 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    EUROCODE7,GERMAN2005

    TableA.4pg.130

    CodeCase

    Note: 1.Case5,6,and7areonlyusedinslopestabilityanalysisinconjunctionwithcases1,2,and3respectively. 2.Atrestearthpressurefactorisusedinmultiplyingearthpressuresonlyinlimitequilibriumanalyses.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|34

    Table2.6:PartialsafetyfactorsforstrengthdesignapproachwithAASHTOLRFD5thedition2010

    InternalSWParameter Description Type

    EurocodeParameter

    EurocodeReference

    EurocodeChecks

    ServiceI

    StrengthIa

    StrengthIb

    StrengthII

    ExtremeI

    F_Fr SafetyfactorontanFR M M SectionA.3.2 STRGEO 1.00 1.00 1.00 1.00 1.00F_C Safetyfactorc' M M STRGEO 1.00 1.00 1.00 1.00 1.00F_Su SafetyfactoronSu M M STRGEO 1.00 1.00 1.00 1.00 1.00F_LV

    Safetyfactorforvariablesurcharges(unfavorable) A Q SectionA.3.1 STRGEO 1.00 1.75 1.75 1.35 0.50

    F_LPSafetyfactorforpermanentsurcharges(unfavorable) A G TableA.3.pg130 STRGEO 1.00 1.00 1.35 1.35 1.35

    F_LvfavorSafetyfactorforvariablesurcharges(favorable) A Q SectionA.3.1 STRGEO 1.00 0.00 0.00 0.00 0.00

    F_LpfavorSafetyfactorforpermanentsurcharges(favorable) A G TableA.3.pg130 STRGEO 1.00 0.90 1.00 1.00 1.00

    F_EQSafetyfactorforseismicpressures

    A 1.00 1.00 1.00 1.00 1.00

    F_ANCH_TSafetyfactorfortemporaryanchors

    R a;t SectionA.3.3.4 STRGEO 1.00 1.00 1.00 1.00 1.00

    F_ANCH_PSafetyfactorforpermanentanchors

    R a;p TableA.12.pg134 STRGEO 1.00 1.11 1.11 1.11 1.11

    F_RESSafetyfactorearthresistancei.e.Kp R R;e

    SectionA.3.3.5TableA.13pg.

    135STRGEO 1.00 1.33 1.33 1.33 1.00

    F_WaterDRSafetyfactoronDrivingWaterpressures(appliedinBeamANALYSISONLYtoaction)

    A G SectionA.3.1 STRGEO 1.00 1.00 1.00 1.00 1.00

    F_WaterRESSafetyfactoronResistingwaterpressures(appliedinBeamAnalysistoaction)

    A G TableA.3.pg130 STRGEO 1.00 1.00 1.00 1.00 1.00

    F_HYDgDSTHydraulicCheckdestabilizationfactor A G;dst SectionA.5 HYD 1.00 1.00 1.00 1.00 1.00

    F_HYDgSTABSafetyfactoronHydrauliccheckstabilizingaction A G;stb

    TableA.17.pg136

    HYD 1.00 1.00 1.00 1.00 1.00

    F_gDSTABFactorforUNFAVORABLEpermanentDESTABILIZINGACTION

    UPL G;dst SectionA.4 UPL 1.00 1.00 1.00 1.00 1.00

    F_gSTABFactorforfavorablepermanentSTABILIZINGaction UPL G;stb

    TableA.15.pg136

    UPL 11.00 1.00 1.00 1.00 1.00

    F_DriveEarthmultiplicationfactorappliedtodrivingearthpressures A Gonactions TableA.3 STRGEO 1.00 1,35 1.35 1.35 1.35

    F_DriveActive N/A 1.50 1.50 1.50 1.50F_DriveAtRest N/A 1.35 1.35 1.35 1.35

    F_Wall Safetyfactorforwallcapacity STR Modelfactorforwallcapacity 1.00 1.00 1.00 1.00 1.00

    AASHTOLRFD(2010)5thEdition CodeCase

    TableA.4pg.130

    Note: 1. AASHTOrecommendsthatslopestabilityanalysisisperformedonlywiththeServiceI combination. 2. Atrestandactiveearthpressurefactorsareusedinmultiplyingearthpressuresonlyinlimitequilibrium analyseswhentheuserhasselectedarelevantmethod.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|35

    6.2 Automatic generation of active and passive lateral earth pressure factors in EC7 typeapproaches.Figure3outlinesthecalculationlogicfordeterminingtheactiveandpassivelateralearthpressurecoefficients. In conventional analyses, the resistance factor is applied by dividing the resistinglateralearthpressureswithasafetyfactor.

    1:GetBasesoilstrengthparameters(Slope,wallfriction,etc)

    2.Modifysoilpropertiesaccordingtothecode'M"case

    3:DeterminebaseKa&KpaccordingSection5.1forConventionalAnalysis

    Section5.2forParatieAnalysis

    4.Multiply/DivideKaandKpbyAppropriateFactor4.1PARATIEANALYSIS

    Kp.BaseF_RES

    InDA11thesoftwareusesinternallyFS_DriveEarth=1andstandardizestheexternalloadsbyFS_DriveEarth.Then,attheendoftheanalysis,wallmoments,shearforces,andsupportreactionsaremultipliedbyFS_DriveEarthandtheultimatedesignvaluesareobtained:

    WallmomentMULT=MCALCxFS_DriveEarthWallShearVULT=VCALCxFS_DriveEarthSupportReactionRULT=RCALCxFS_DriveEarth

    4.2CONVENTIONALANALYSISKa.used=Ka.BaseKp.used=Kp.BaseDetermineInitialDrivingandResistingLateralEarthPressures

    4.2.a: FinalDrivingLateralEarthPressures=InitialxFS_DriveEarth(FS_DriveEarth=1EC7,DM08)

    4.2.b: FinalResistingLateralEarthPressures=Initial/F_RES

    Kp.used=Ka.used= Ka.BasexFS_DriveEarth

    Figure3:CalculationlogicfordeterminingKaandKpanddrivingandresistinglateralearthpressures.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|36

    6.3 Determination of Water Pressures & Net Water Pressure Actions in the new software

    (ConventionalLimitEquilibriumAnalysis)ThesoftwareprogramofferstwopossibilitiesfordeterminingwateractionsonawallwhenEC7isemployed.Inthecurrentapproach,theactualwaterpressuresorwaterlevelsarenotmodified.Option1(Default):NetwaterpressuremethodInthedefaultoption,theprogramdeterminesthenetwaterpressuresonthewall.Subsequently,the net water pressures aremultiplied by F_WaterDR and then the net water pressures areappliedonthebeamaction.Thenetwaterpressureresultsarethenstoredforreferencechecks.Hence,thismethodcanbeoutlinedwiththefollowingequation:

    Wnet=(WdriveWresist)xF_WaterDROption 2: Water pressures multiplied on driving and resisting sides (This Option is not yetenabled.)Inthisoption,theprogramfirstdeterminesinitialnetwaterpressuresonthewall.Subsequently,thenetwaterpressuresaredeterminedbymultiplyingthedrivingwaterpressuresbyF_WaterDRandbymultiplyingtheresistingwaterpressures.Thenetwaterpressureresultsarethenstoredforreferencechecks.Hence,thismethodcanbeoutlinedwiththefollowingequation:

    Wnet=WdrivexF_WaterDRWresistxF_WaterRES

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|37

    6.4 Surcharges

    Thenewsoftwareenablestheusertouseanumberofdifferentsurchargetypes.SomeofthesesurchargesarecommonwithPARATIE,however,mostsurchargetypesarenotcurrentlyincludedintheParatieEngine.Table3liststheavailabletypesofsurcharges.

    Table3:Availablesurchargetypes

    SurchargeTypePermanent/Temporary

    (P/T)ExistsinParatieEngine

    ExistsinConventional

    AnalysisConventionalAnalysis

    CommentsSurfaceLineload P&T No Yes

    Theoryofelasticity.CanincludebothHorizontalandVerticalcomponents.

    Lineload P&T No Yes SameasaboveWallLineLoad P&T No Yes SameasaboveSurfaceStripSurcharge P&T Yes Yes SameasaboveWallstripSurcharge P&T Yes Yes Sameasabove

    ArbitraryStripSurcharge P&T No Yes

    Theoryofelasticity.VerticalDirectiononly.

    Footing(3D) P No YesBuilding(3D) P No Yes3DPointLoad P&T No YesVehicle(3D) T No Yes

    AreaLoad(3D) P&T No YesMoment/Rotation Yes No WhenEC7(orDM08)isutilized,thefollowingitemsareworthnoting:a) In the PARATIE module: In the default option the program does not use the Default

    ParatieEngine fordeterminingsurchargeactions,butcalculatesallsurchargesaccordingtotheconventionalmethods.IftheParatieSimplifiedLoadOptionsareenabled(Figure4.1),thenallconventionalloadsareignored.OnlyloadsthatmatchtheParatieenginecriteriaareutilized.

    b) UnfavorablePermanent loadsaremultipliedbyF_LPwhile favorablepermanent loadsaremultipliedby1.0.

    c) UnfavorableTemporary loadsaremultipliedbyF_LVwhile favorable temporary loadsaremultipliedby0.

    Thesoftwareoffersgreatversatilityforcalculatingsurchargeloadsonawall.Surchargesthataredirectlyonthewallarealwaysaddeddirectlytothewall.Inthedefaultsetting,externalloadsthatarenotdirectlylocatedonthewallarealwayscalculatedusingtheoryofelasticityequations.Mostformulasusedaretrulyapplicableforcertaincaseswheregroundisflatortheloadiswithinaninfiniteelasticmass.However,theformulasprovidereasonableapproximationstootherwise

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|38

    extremelycomplicatedelasticsolutions.WhenPoison'sratioisusedthesoftwarefindsandusestheapplicablePoissonratioofvateachelevation.

    Figure4.1:SimplifiedParatieloadoptions Figure4.2:Elasticitysurchargeoptions

    6.5 LineLoadSurcharges

    Lineloadsaredefinedwithtwocomponents:a)averticalPy,andb)ahorizontalPx.Itisimportanttonotethatthemanyoftheequationslistedbeloware,onlybythemselves,applicableforaloadinaninfinitesoilmass.Forthisreason,thesoftwaremultipliestheobtainedsurchargebyafactormthataccountsforwallrigidity.Thesoftwareassumesadefaultvaluem=2thataccountsforfullsurchargereflectionfromarigidbehavior.However,avaluem=1.5mightbeareasonably lessconservativeassumptionthatcanaccountforlimitedwalldisplacement.For line loads thatare locatedon the surface (or theverticalcomponentstrip loads,sincestriploadsarefoundbyintegratingwithlineloadcalculations),equationsthatincludefullwallrigiditycan be included. This behavior can be selected from the Loads/Supports tab as Figure 4.2illustrates.Inthiscase,thecalculatedloadsarenotmultipliedbythemfactor.Forverticallineloadsonthesurface:WhentheUseEquationswithWallRigidityoptionisnotselected,thesoftwareusestheBoussinesqequationlistedinPoulosandDavis,1974,Equation2.7a

    HorizontalSurcharge

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|39

    Foraverticalsurfacelineload,whentheUseEquationswithWallRigidityoptionisselected,thesoftwareusestheBoussinesqequationasmodifiedbyexperimentforridigwalls(Terzaghi,1954).

    Forverticallineloadswithinthesoilmass:ThesoftwareusestheMelansequationlistedinPoulosandDavis,1974,Equation2.10bpg.27

    andm=(1v)/vHorizontalSurcharge

    Forthehorizontalcomponentofasurfacelineload:ThesoftwareusestheintegratedCerrutiproblemfromPoulosandDavisEquation2.9b

    HorizontalSurcharge

    Forthehorizontalcomponentofalineloadwithinthesoilmass:ThesoftwareusesMelansproblemEquation2.11bpg.27,fromPoulos&Davis

    HorizontalSurcharge

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|40

    6.6 StripSurchargesStrip loads inthenewsoftwarecanbedefinedwith linearlyvaryingmagnitudes inbothverticaland horizontal directions.Hence, complicated surcharge patterns can be simulated. Surchargepressuresarecalculatedbydividingthestriploadintoincrementswhereanequivalentlineloadisconsidered.Thenthelineloadsolutionsareemployedandnumericallyintegratedtogivethetotalsurchargeat thedesiredelevation.The software subdivideseach strip load into50 incrementswhere it performs the integration of both horizontal and vertical loads.On surface loads, theverticalloadiscalculatedfromintegrationalongxandnotalongthesurfaceline.

    6.7 Other3DsurchargeloadsThesoftwareoffersthepossibilitytoincludeother3dimensionalsurcharges.Inessence,alltheseloadsareextensions/integrationsofthe3Dpointverticalloadsolution.For3Dfootings,thesurchargeonthewallcanbecalculatedintwoways:a) Byintegratingthefootingbearingpressureoversmallersegmentsonthefootingfootprint.In

    thiscasethefootingissubdividedintoanumberofsegmentsandthesurchargecalculationsareslightlymoretimeconsuming.

    b) Byassumingthatthefootingloadactsasa3Dpointloadatthefootingcentercoordinates.Forloadsthatarelocatedonthesurface:ThesoftwareprogramusestheBoussinesqequation.Resultsfromthefollowingequationsaremultipliedbytheelasticloadadjustmentfactormaspreviouslydescribed.

    Theradialstressincrementisthencalculatedas:

    Thehoopstressisdefinedas:

    Withtheanglesdefinedas:

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|41

    Then,thehorizontalcomponentsurchargeis:

    Forverticalpointloadswithinthesoilmass:ThesoftwareusestheMindlinsolutionasoutlinedbyPoulosandDavis,1974equations2.4.a,and2.4.g

    6.8 LoadbehaviorandfactorswhenadesignapproachisusedWhenananalysisusesdesignapproachsuchasEC7,eachexternal loadmustbecategorizedasfavorableorunfavorable. In thedefaultmodewhenno loadcombination isused, the softwareprogramautomaticallycategorizes loadsasfavorableorunfavorablebasedontheir locationanddirection relative to thewall and the excavation.Hence, loads thatpush thewall towards theexcavationaretreatedasunfavorable,whileloadsthatpushthewalltowardstheretainedsoilaretreatedasfavorable. Inalldesignapproachmethods,favorablevariable loadsare ignored intheanalysiswhilefavorablepermanentloadsaremultipliedbyasafetyfactorequalto1.Unfavorableloadsgettypicallymultipliedwithfactorsrangingfrom1to1.5dependingontheexamineddesignapproachandtheloadnature(permanentvs.variable).Whenaloadcombinationisused,theuserhastheoptiontomanuallyselectthebehaviorofeachload.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|42

    7. AnalysisExamplewithEC7

    Asimplifiedanalysisexample ispresented inthissectionforthepurposeof illustratinguseofEC7methods.Theexample involves theanalysisofsteelsheetpilewallsupportedbyasingle leveloftiebackswiththefollowingassumptions: Retainedgroundsurfacelevel(uphillside)El.+200 Maximumexcavationlevel(downhillside)El.+191 WaterlevelonretainedsideEl.+195 WaterlevelonexcavatedsideEl.+191 Waterdensity WATER=10kN/m3 Soilproperties: TOTAL=20kN/m3,DRY=19kN/m3,c=3kPa,=32deg,

    Exponentialsoilmodel:Eload=15000kPa,Ereload=45000kPa,ah=1,av=0KpBase=3.225(Rankine),KaBase=0.307(Rankine)UltimateTiebackbondcapacityqult=150kPaUserspecifiedsafetyonbondvaluesFSGeo=1.5

    TiebackData: ElevationEl.+197,Horizontalspacing=2mAngle=30degfromhorizontalPrestress=400kN(i.e.200kN/m)StructuralProperties:4strands/1.375cmdiametereach,

    Thus ASTEEL = 5.94cm2 Steelyieldstrength Fy = 1862MPa

    FixedbodylengthLFIX = 9m FixedbodyDiameterDFIX = 0.15m

    WallData: SteelSheetpileAZ36,Fy=355MPa

    Walltop.El.+200Walllength18mMomentofInertiaIxx=82795.6cm4/mSectionModulusSxx=3600cm3/m

    Surcharge: VariabletriangularsurchargeonwallPressure5kPaatEl.+200(topofwall)Pressure0kPaatEl.+195

    The construction sequence is illustrated in Figures 4.1 through 4.4. For the classical analysis thefollowingassumptionswillbemade:RankinepassivepressuresonresistingsideCantileverexcavation: Activepressures(Freeearthanalysis)

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|43

    Finalstage: Apparentearthpressuresfromactivex1.3,redistributedtopfrom0kPaatwalltoptofullpressureat25%ofHexc.,Activepressuresbeneathsubgrade.

    Freeearthanalysisforsingleleveloftiebackanalysis.Waterpressures: Simplifiedflow

    Figure5.1:InitialStage(Stage0,DistortedScales)

    Figure5.2:Stage1,cantileverexcavationtoEl.+196.5(tiebackisinactive)

    Figure5.3:Stage2,activateandprestressgroundanchoratEl.+197

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|44

    Figure5.4:Stage3,excavatetofinalsubgradeatEl.+191

    ThefirststepwillbetoevaluatetheactiveandpassiveearthpressuresfortheservicecaseasillustratedinFigure5.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|45

    Top triangular pressure height= 0.25 Hexc = 2.25 m Hexc= 9 mApparent Earth Pressure Factor: 1.3 (times active)

    Eurocode Safety factors 1 1 1SOIL UNIT

    WEIGHTDRY UNIT WEIGHT

    WATER UNIT WEIGHT

    WATER TABLE ELEV. Ka Kp c'

    (kPa) (kPa) (kPa) (m) (deg) (kPa) (m) m m/m32 0.307 3.255 3 195 22 0.1818

    20 19 10 195 32.00 0.307 3.255 3.000

    ELEV.

    TOTAL VERTICAL STRESS

    WATER PRESSURE

    EFFECTIVE VERTICAL STRESS

    Acive LATERAL

    SOIL STRESS

    Apparent Earth

    Pressures

    TOTAL LATERAL STRESS

    TOTAL VERTICAL STRESS

    WATER PRESSURE

    EFFECTIVE VERTICAL STRESS

    LATERAL SOIL

    STRESS

    TOTAL LATERAL STRESS NET

    (m) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

    200 0 0 0 0 0.00 0.00 0.00

    199.43 10.82 0.00 10.82 0.00 -7.93 -7.93 -7.93

    197.75 42.75 0.00 42.75 -9.81 -31.33 -31.33 -31.33

    195 95 0 95 -25.86 -31.33 -31.33 -31.33

    191 175 -32.7 142.3 -40.39 -31.33 -64.06 -64.06

    191 175 -32.7 142.3 -40.39 -40.39 -73.12 0 0 0 10.82 10.82429 -62.3

    182 355 -106.4 248.64 -73.07 -73.07 -179.43 180 106.4 73.64 250.48 356.84 177.4

    Total active earth force above subgrade:Fx

    From El. 200.00 to El. 199.43 0.0 kN/mFrom El. 199.43 to El. 197.75 8.2 kN/mFrom El. 197.75 to El. 195.00 49.1 kN/mFrom El. 195.00 to El. 191.00 132.5 kN/m

    Sum= 189.8 kN/mFactored Forc 246.7

    Max. Apparent Earth Pressure= 31.3 kPa

    LEFT EXCAVATION SIDE PRESSURES RIGHT SIDE PRESSURES (PASSIVE)

    Modified for calculation/Strength Reductions

    Hydraulic travel length

    Hydraulic loss gradient i

    WATER TABLE ELEV.

    180

    182

    184

    186

    188

    190

    192

    194

    196

    198

    200

    202

    -200 -100 0 100 200 300 400

    ELEV

    ATIO

    N (m

    )

    LATERAL STRESS (kPa)

    LEFT LAT SOILLEFT WATERLEFT TOTALRIGHT LAT SOILRIGHT WATERRIGHT TOTALNET

    Figure6:Calculationoflateralearthandwaterpressuresforservicecase

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|46

    AsFigure6shows,thecalculatedmaximumapparentearthpressureis31.3kPawhichisveryclosetothe31.4kPaapparentearthpressureenvelopecalculatedfromthesoftware(Figure7.1).Allotherpressurecalculationsarealsoverywellconfirmed(withinroundingerroraccuracy).

    Figure7.1:Apparentlateralearthpressuresfromconventionalanalysis

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|47

    Figure7.2:Simplifiedflowgroundwaterpressuresfromconventionalanalysis

    Figure7.3:Simplifiedflownetgroundwaterpressuresfromconventionalanalysis

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|48

    Figure7.4:Wallsurchargepressures(unfactored)

    Figure7.5:Walldisplacementsfromconventionalanalysis(laststage)

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|49

    Figure7.6:Shearandmomentdiagramswithsupportreactionandstresschecksdrawn(redlineson

    momentdiagramshowwallcapacity).

    Figure7.7:Shearandmomentdiagramenvelopes(forcurrentdesignsectiononly)

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|50

    Next,theEC7combinationDA3approachwillbeexaminedindetail.However,allEC7designapproacheswillbeanalyzedsimultaneously.Themodelislinkedtothebasedesignsection.

    Figure8.1:GeneralmodelforEC7DA3Approach

    Thecorrespondingsafetyfactorsare:

    FS(tan())= 1.25FS(c)= 1.25FS(Su)= 1.5(thisisalsousedfortheultimatebondresistance)FS(Actionstemp)= 1.3FS(Anchors)= 1.1FS(WaterDrive)= 1.0FS(Drive_Earth)= 1.0

    Nexttheactiveandpassiveearthpressures,aswellasthenetwaterpressuresfortheDA3approachwillbecalculatedasillustratedinFigure8.2.AsFigures8.3through8.4demonstrate,thesoftwarecalculatesessentiallythesamelateralearthpressuresasthespreadsheetshowninFigure8.2.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|51

    Top triangular pressure height= 0.25 Hexc = 2.25 m Hexc= 9 m

    Apparent Earth Pressure Factor: 1.3 (times active)

    Eurocode Safety factors 1.25 1 1.25SOIL UNIT

    WEIGHTDRY UNIT WEIGHT

    WATER UNIT WEIGHT

    WATER TABLE ELEV. Ka Kp c'

    (kPa) (kPa) (kPa) (m) (deg) (kPa) (m) m m/m32 0.307 3.255 3 195 22 0.1818 1 1 1

    20 19 10 195 26.56 0.382 2.618 2.400

    ELEV.

    TOTAL VERTICAL STRESS

    UNFACTORED WATER

    PRESSURE

    EFFECTIVE VERTICAL STRESS

    Acive LATERAL

    SOIL STRESS

    Apparent Earth

    Pressures

    TOTAL LATERAL STRESS (factored

    earth)

    TOTAL VERTICAL STRESS

    WATER PRESSURE

    EFFECTIVE VERTICAL STRESS

    LATERAL SOIL

    STRESS

    TOTAL LATERAL STRESS

    Net water pressure (factored) NET

    (m) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

    200 0 0 0 0 0.00 0.00 0 0.00

    199.59 7.77 0.00 7.77 0.00 -7.37 -7.37 0 -7.37

    197.75 42.75 0.00 42.75 -13.37 -40.60 -40.60 0 -40.60

    195 95 0 95 -33.33 -40.60 -40.60 0 -40.60

    191 175 -32.7 142.3 -51.39 -40.60 -73.33 -32.73 -73.3

    191 175 -32.7 142.3 -51.39 -51.39 -84.11 0 0 0 7.77 7.765837 -32.73 -76.3

    182 355 -106.4 248.64 -92.02 -92.02 -198.39 180 106.4 73.64 200.51 306.88 0.00 108.5

    Total active earth force above subgrade:Fx

    From El. 200.00 to El. 199.59 0.0 kN/mFrom El. 199.59 to El. 197.75 12.3 kN/mFrom El. 197.75 to El. 195.00 64.2 kN/mFrom El. 195.00 to El. 191.00 169.4 kN/m

    Sum= 245.9 kN/mFactored Forc 319.7

    Max. Apparent Earth Pressure= 40.60 kPa

    Modified for calculation/Strength Reductions

    LEFT EXCAVATION SIDE PRESSURES RIGHT SIDE PRESSURES (PASSIVE)

    WATER TABLE ELEV.

    Hydraulic travel length

    Hydraulic loss gradient i

    Safety factor on net water pressures

    Safety factor on

    earth pressures

    Safety factor on Passive

    Resistance

    180

    182

    184

    186

    188

    190

    192

    194

    196

    198

    200

    202

    -300 -200 -100 0 100 200 300 400

    ELEV

    ATIO

    N (m

    )

    LATERAL STRESS (kPa)

    LEFT LAT SOILLEFT WATERLEFT TOTALRIGHT LAT SOILRIGHT WATERRIGHT TOTALNET WaterNet

    Figure8.2:CalculationoflateralearthandwaterpressuresforDA3Approach

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|52

    Figure8.2:ApparentlateralearthpressuresforDA3Approach(40.7kPapressureverifiedspreadsheet

    calculations)

    Figure8.3:FactoredlateralsurchargepressuresforDA3Approach(7.5kPapressure=5kPax1.5)

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|53

    Figure8.4:NetFactoredwaterpressuresforDA3Approach

    32.73kPapressure=32.73kPax1.0 ,32.7kPafromFigure6.3Spreadsheetcalculation32.7kPa

    Figure8.5:WallshearandmomentforDA3Approach

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|54

    NextweexaminethecaseofDA11whereearthandwaterpressuresaremultipliedbysafetyfactorswhilethesoilstrengthparametersaremaintained.

    Top triangular pressure height= 0.25 Hexc = 2.25 m Hexc= 9 mApparent Earth Pressure Factor: 1.3 (times active)

    Eurocode Safety factors 1 1 1SOIL UNIT

    WEIGHTDRY UNIT WEIGHT

    WATER UNIT WEIGHT

    WATER TABLE ELEV. Ka Kp c'

    (kPa) (kPa) (kPa) (m) (deg) (kPa) (m) m m/m32 0.307 3.255 3 195 22 0.1818 1.35 1.35 1

    20 19 10 195 32.00 0.307 3.255 3.000

    ELEV.

    TOTAL VERTICAL STRESS

    UNFACTORED WATER

    PRESSURE

    EFFECTIVE VERTICAL STRESS

    Acive LATERAL

    SOIL STRESS

    Apparent Earth

    Pressures

    TOTAL LATERAL STRESS (factored

    earth)

    TOTAL VERTICAL STRESS

    WATER PRESSURE

    EFFECTIVE VERTICAL STRESS

    LATERAL SOIL

    STRESS

    TOTAL LATERAL STRESS

    Net water pressure (factored) NET

    (m) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

    200 0 0 0 0 0.00 0.00 0 0.00

    199.43 10.82 0.00 10.82 0.00 -7.93 -10.71 0 -10.71

    197.75 42.75 0.00 42.75 -9.81 -31.33 -42.30 0 -42.30

    195 95 0 95 -25.86 -31.33 -42.30 0 -42.30

    191 175 -32.7 142.3 -40.39 -31.33 -75.02 -44.18 -86.5

    191 175 -32.7 142.3 -40.39 -40.39 -87.25 0 0 0 10.82 10.82429 -44.18 -87.9

    182 355 -106.4 248.64 -73.07 -73.07 -205.01 180 106.4 73.64 250.48 356.84 0.00 151.8

    Total active earth force above subgrade:Fx

    From El. 200.00 to El. 199.43 0.0 kN/mFrom El. 199.43 to El. 197.75 8.2 kN/mFrom El. 197.75 to El. 195.00 49.1 kN/mFrom El. 195.00 to El. 191.00 132.5 kN/m

    Sum= 189.8 kN/mFactored Forc 246.7

    Max. Apparent Earth Pressure= 31.33 kPa

    Safety factor on

    earth pressures

    Safety factor on Passive

    Resistance

    WATER TABLE ELEV.

    Hydraulic travel length

    Hydraulic loss gradient i

    Modified for calculation/Strength Reductions

    LEFT EXCAVATION SIDE PRESSURES RIGHT SIDE PRESSURES (PASSIVE)

    Safety factor on net water pressures

    180

    182

    184

    186

    188

    190

    192

    194

    196

    198

    200

    202

    -300 -200 -100 0 100 200 300 400

    ELEV

    ATIO

    N (m

    )

    LATERAL STRESS (kPa)

    LEFT LAT SOILLEFT WATERLEFT TOTALRIGHT LAT SOILRIGHT WATERRIGHT TOTALNET WaterNet

    Figure8.6:CalculationoflateralearthandwaterpressuresforDA11Approach

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|55

    Figure8.7:ApparentlateralearthpressuresforDA11Approach(42.4kPapressureverified

    spreadsheetcalculations)

    Figure8.8:NetFactoredwaterpressuresforDA11Approach

    44.18kPapressure=32.73kPax1.35 ,32.7kPafromFigure6.3Spreadsheetcalculation44.18kPa

    Inthefollowingpages,thenonlinearsolutiontothesameproblemisbrieflypresented.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|56

    Figure9.1:WallbendingmomentsandshearforcesforParatieSolutionforservicecase.

    Figure9.2:WallbendingmomentsandshearforcesforParatieSolutionforDA3case.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|57

    Figure9.3:NetwaterpressuresforParatieSolutionforDA3case(notyetfactored)

    Figure9.4:WallbendingmomentsandshearforcesforParatieSolutionforDA11case.

    IMPORTANTForDA11:InParatiewhenWaterUnfavorableorEarthUnfavorablearegreaterthan1,wallbending,wallshear,and support reaction results are obtained from an equivalent service analysis approach. In thisapproach, all surcharge magnitudes are standardized by Earth Unfavorable (1.35 in DA11), thus,unfavorablevariableloadswillbemultipliedby1.5/1.35=1.111whilepermanentloadsby1.35/1.35=1.Whentheanalysisiscompletedthewallmoment,wallshear,andsupportreactionresultsaremultipliedx1.35.Thedisplacementshoweverarenotmultiplied.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|58

    ThetiebackSTR&GEOcapacitycalculationswillbeperformedforCaseDA11:

    R = 1.1(temporarytieback)SU = 1(Shearstrengthalsousedforbondvalues)FSGeo= 1.0Userspecifiedsafetyfactorinthisexample,

    recommendedvalue1.35inotherconditions.

    FixedbodylengthLFIX = 9m FixedbodyDiameterDFIX = 0.15m

    UltimateSkinfrictionqULT = 150kPaThentheultimategeotechnicalcapacityis:

    RULT.GEO=LFIXxxDFIXxqULT/R)RULT.GEO=578.33kNpergroundanchor

    Thedesigngeotechnicalcapacity(forstresscheckratios)iscalculatedas:RDES.GEO=LFIXxxDFIXxqULT/RxSUxFSGeo)=578.33kN

    TheUltimateStructuralcapacitycanbecalculatedas:RULT.STR=AFIX.STEELxFy/M)

    Notethat1/M=intheEC=0.87RULT.STR=0.87AFIX.STEELxFy

    RULT.STR=0.87x5.94cm2x1862MPa=961.8kNTheseresultsareverifiedbythesoftwareprogram:

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|59

    Figure9.6:Individualsupportreactions/capacity

    ThetiebackGEOcapacitycalculationsforCaseDA12:

    R = 1.1(temporarytieback)SU = 1.4(Shearstrengthalsousedforbondvalues)FSGeo = 1.0InM2casesthisfactorisautomaticallysetto1.0in

    ordertoproduceconsistentcapacitieswithavailabledesignchartsforbondresistanceofgroundanchors(whereanFS=2.0).

    FixedbodylengthLFIX = 9m FixedbodyDiameterDFIX = 0.15m

    UltimateSkinfrictionqULT = 150kPaThentheultimategeotechnicalcapacityis:

    RULT.GEO=LFIXxxDFIXxqULT/RxSUxFSGeo)RULT.GEO=578.33kNpergroundanchor

    Thedesigngeotechnicalcapacity(forstresscheckratios)iscalculatedas:RDES.GEO=LFIXxxDFIXxqULT/RxSUxFSGeo)=413.1kN

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|60

    Figure9.7:Individualsupportreactions/capacityforDA12

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|61

    8. Groundanchorandhelicalanchorcapacitycalculations8.1 GroundAnchorCapacityCalculations

    A ground anchor has two forms of capacity, a geotechnical and a structural resistance. ThestructuralresistanceofthetendonsisdefinedbyECsteelstandardswhilethebondedzonehasto be examined for its pullout capacity (geotechnical check). The new software includes anumberofgroundanchor(tieback)sections.Hence,agroundanchorsectioncanbereusedoverand over inmany different support levels and inmany different design sections (the sameapproachisalsoutilizedforsteelstruts,rakers(inclinedstruts),andconcreteslabs).Thetiebackcapacities(ultimateandpermissible)canbecalculatedusingthefollowingequations:a) Ultimategeotechnicalcapacityusedforthegeotechnicalyieldingis:

    RULT.GEO=LFIXxxDFIXxqULT/R)b) Thedesigngeotechnicalcapacity(forstresscheckratios)iscalculatedas:

    RDES.GEO=LFIXxxDFIXxqULT/RxSUxFSGeo)Where:

    qULT = UltimateSkinfriction(optionsavailable)LFIX = Fixedbodylength

    DFIX = Fixedbodydiameter(0.09mto0.15mtypically)FSGeo = 1.0to2.0userspecifiedsafetyfactor.

    FSGeo=1.0inM2designapproachmethods.R = 1to1.2ResistancefactorgeotechnicalcapacitySU = 1to1.4(Shearstrength,usedforbondvalues)

    Note that Rand SUarebydefault1,but takeEurocodeorDM08 specified valueswhenadesignapproachisused.c) TheultimateanddesignStructuralcapacitycanbecalculatedas:

    PULT.STR=ULT.CODEx(AreaofTendons)xFyULT.CODE=Materialstrengthreductionfactortypically0.9

    PDES.STR=DESx(AreaofTendons)xFy

    DES=Materialstrengthreductionfactor0.6to0.9Theultimatecapacity isusedtodeterminethestructuralyieldingoftheelementwhilethepermissible isused for thestresschecks.ULT.CODE isalwayspickedup from thestructuralcode that isused.DEScanbespecifiedby theuserorcanbesetautomaticallywhen thesome code settings are specified.When Eurocodes are used ALL should be the same asULT.CODE.

    Notethat=1/M

    InthedefaultsettingduringaParatieanalysis,thenewsoftwaremodelsatiebackautomaticallyasayieldingelement (Wirewithyieldingproperties)with itsyielding forcedeterminedas the

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|62

    minimum STRorGEO capacity.Agroundanchor canalsobemodeledasanonyieldingwireelement by selecting the appropriate option in the Advanced Tab of the Tieback dialog.However,itisfeltthatduetolegalreasonsitisbettertoincludeatiebackasyieldingelementbydefault.Figure10.1showsthemaintiebacksectiondialog.Themainparametersofinterestarethesteelmaterial,thecrosssectionalareaofthesteeltendons,andthefixedbodydiameter(Dfix).

    Figure10.1:Maintiebacksectiondialog(ElasticWirecommandinRed)

    The geotechnical capacity represents the capacity of the soil to resist the tensile forcestransferredby the steel strands to the groutedbody.Thenew software subdivides the fixedbodyintoanumberofelementsweresoilresistanceiscomputed.Aspreviouslymentioned,thegeotechnicaltiebackcapacityisevaluatedforeverystage.WithinthecurrentParatieengine,itiscurrentlypossibletochangetheyield limitofanELPLspringfromstagetostage. Initially, inthe Paratiemode the software uses the capacity at the stage of installation. The capacity isadjustedateachstageandthefinalsupportcheckisperformedfortheactualcapacityforeachstage.Anumberofoptionsexistfordefiningthegeotechnicalcapacityofatieback:

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|63

    a) Soil resistance is computed from frictional and cohesive components. For the frictionalcomponent,DeepXcavuses theaverageof theverticaland lateralatreststress times thetangentofthefrictionangle.Forthecohesivecomponent,adhesionfactorscanbeapplied.Furthermore,individualdensificationfactorscanbeappliedseparatelytothefrictionalandcohesivecomponentstosimulatetheeffectofpressuregrouting.Endbearingatthestartofthe grouted body is ignored. These calculations should be considered as a first orderestimate.Hence,inthiscasetheultimateskinfrictioncanbedefinedas:

    tULT=F1x0.5x(V+HKo)xtan()+F2xx(corSU)

    In an undrained analysis the software will use SU and =0. For a drained analysis theprogramwilluseandc.Where:

    F1= Frictionaldensificationfactor(default1)F2= Cohesionaldensificationfactor(default1)= Adhesion factor (default =1), but program also offers a dynamic trilinear

    approachfordefiningthisparameterbasedoncorSu.Inthisapproach: =Value1=0.8ifcorSu=Climit2=LinearinterpolationforcorSubetweenClim1andClim2.

    b) Userdefinedgeotechnicalcapacity(andstructural)definedfromtheadvancedtiebacktab.

    Figure10.2:Advancedtiebackdialogtab

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|64

    c) Ultimatespecificbondresistancefortiebacksection.tULT=qULTinGeotechnicaltaboftiebacksection

    Figure10.3:Geotechnicaltiebackdialogtab(WirecommandinRed)

    d) Ultimatebondresistancedeterminedfromintegratingsoilultimateskinfrictionresistances

    overthefixedlength.tULT=qULTfromSoiltype(BondTab)

    In this case, the skin friction canbedetermined from theBustamantedesign charts (Fig.10.5.1,10.5.2)whenpressuremetertestdataareavailable.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|65

    Figure10.4:BondtabinSoiltypedialog(>buttonoffersabilitytoestimatefrom

    Pressuremetertests).

    e) WhenaEurocodedesignapproachisappliedultimatepulloutresistanceiscalculatedfrombondvaluesbyapplyingthesamesafetyfactor(incombinationwithallothersafetyfactors)asfortheundrainedshearstrengthSu.However, incertaincases liketheM2theprogramdoesnotapply theUserSpecifiedFS_geo inorder toproduceconsistentcapacity results.Thus,whenEurocode7orNTCsettingsareapplied,theuserspecifiedFS_GeoisonlyusedincaseswhereM1factorsareapplied.When the pullout resistance is calculated from soil cohesion and friction, then the skinfriction iscalculateddirectly from theadjusted frictionangleandshearstrength/cohesionvaluesaccordingtheMsafetyfactors.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|66

    Figure10.5.1:EstimationofbondresistancefortiebacksfromTA95accordingtoBustamante.

    Figure10.5.2:EstimationofbondresistancefortiebacksfromPressuremetertestsFHWAand

    Frenchrecommendations.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|67

    8.2 HelicalanchorcapacitycalculationsAhelicalanchor/pileconsistsofoneormorehelixshapedbearingplatesattachedtoacentralshaft,whichisinstalledbyrotatingor"torqueing"intotheground.Eachhelixisattachednearthetip,isgenerallycircularinplan,andformedintoahelixwithadefinedpitch.Helicalanchors/pilesderivetheirloadcarryingcapacitythroughbothendbearingonthehelixplatesandskinfrictionontheshaft(Figure10.6.1).

    Figure10.6.1:Typicalhelicalanchordetailandgeotechnicalcapacitybehavior

    AccordingtoIBC2009,theallowableaxialdesignload,Pa,ofhelicalpilesshallbedeterminedasfollows:

    Pa=0.5Pu (IBC2009Equation184)WherePuistheleastvalueof:

    1.Sumoftheareasofthehelicalbearingplatestimestheultimatebearingcapacityofthesoilorrockcomprisingthebearingstratum.2.Ultimatecapacitydeterminedfromwelldocumentedcorrelationswithinstallationtorque.3.Ultimatecapacitydeterminedfromloadtests.4.Ultimateaxialcapacityofpileshaft.5.Ultimatecapacityofpileshaftcouplings.6.Sumoftheultimateaxialcapacityofhelicalbearingplatesaffixedtopile.

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|68

    AnexplanationandsummaryofeachofthesixdesigncriterionsrequiredpertheIBCforhelicalpiledesignhavebeenlistedbelowtobetterexplainthedesignprocessandintentofthecode.Item1isin reference to the IndividualBearingMethod. Thismethod requiresprior knowledgeof the soilpropertiesatthesiteviaasoilsreportorboringlogs.Pleasenotethatmostsoilreportsonlyreporttheallowablebearing capacityofa soilor stratum.Thisallowable capacitynormallyhasa safetyfactoroftwoorthreeapplied.Item1 is inreference to the IndividualBearingMethod.Thismethodrequirespriorknowledgeofthesoilpropertiesatthesiteviaasoilsreportorboringlogs.Pleasenotethatmostsoilreportsonlyreport theallowablebearingcapacityofa soilor stratum.Thisallowablecapacitynormallyhasasafetyfactoroftwoorthreeapplied.ApplyinganotherfactorofsafetyoftwopertheIBCwouldbeextremelyconservative.Typicalhelicalplatesizesare8,10,12,14and16indiameter.Themaximumnumberofhelicalplates placed on a single pile is normally set at six (6). The central area of the shaft is typicallyomittedfromtheeffectiveareaofthehelicalplatewhenusingtheIndividualBearingMethod.Thetotalcapacityoftheanchorcanbecalculatedas:

    Qult=Qshaft+Qhwhere:Qult=TotalMultihelixAnchor/PileUltimateCapacityQh=IndividualHelixUltimateCapacity

    Qh=Ah(Ncc+DNq)Qh.strQh=Ah(9c+DNq)Qh.str

    where:Ah= ProjectedeffectiveareaofhelixNc= 9forratiooftophelixdepthtohelixdia.>5(programassumesvalue=9)D= DepthofhelixplatebelowgroundlineNq= BearingcapacityfactorforsandQh.str= UppermechanicallimitdeterminedbyhelixstrengthQshaft= Geotechnical shaft resistance can be also included. Within the program, the shaft

    resistance is calculatedonlywithin from the startingpointof the fixed lengthof theanchor to the first encountered helical plate. Inmost cases, the shaft resistance isconservativelyignored.

    ThesoftwareprogramreplacestheaboveDtermwiththeverticaleffectivestressateachhelix.Accordingtoastandardpractice(ABChancecorporationpresentation),NqcanbecalculatedasadaptedfromG.G.MeyerhofFactorsforDrivenPilesinhispaperBearingCapacityandSettlementofPileFoundations,1976Equation:

    Nq=0.5(12*)/54Withafewexceptions,theshaftresistancecanbecalculatedinasimilarmannerasthegeotechnicalcapacity of ground anchors. When the capacity is calculated with side frictional methods, adistinctioncanbemadebetweenagroutedanongroutedshaft(i.e.agroutedshafthasfrictionofcementgroutwithsoilwhileanongroutedshaftbetweensteelandsoil).

  • DeepXcav theory manual: Developed by Ce.A.S. srl, Italy and Deep Excavation LLC, U.S.A.

    Page|69

    Item 2 is in reference to the Torque CorrelationMethod. The Torque CorrelationMethod is anempiricalmethod thatdistinguishes the relationshipbetweenhelicalpilecapacityand installationtorqueandhasbeenwidelyusedsincethe1960s.Theprocessofahelicalplateshearingthroughthesoilorweatheredbedrock inacircularmotion isequivalenttoaplatepenetrometertest.ThemethodgainednotorietybasedonthestudyperformedbyHoytandClemence(1989).Theirstudyanalyzed91helicalpile loadtestsat24differentsiteswithinvarioussoiltypesrangingfromsand,siltan