there’s plenty of room at the bottom ‐and at the toptking/presentations/kingliu_sfba… ·...

39
There’s Plenty of Room at the Bottom ‐ and at the Top Tsu‐Jae King Liu Department of Electrical Engineering and Computer Sciences University of California, Berkeley August 16, 2016 SFBA Nano Seminar 14 nm chip X‐SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark‐bohr‐2014‐idf‐presentation.pdf

Upload: others

Post on 07-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

There’s Plenty of Room at the Bottom‐ and at the Top

Tsu‐Jae King LiuDepartment of Electrical Engineering and Computer Sciences

University of California, Berkeley

August 16, 2016SFBA Nano Seminar 

14 nm chip X‐SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark‐bohr‐2014‐idf‐presentation.pdf

Page 2: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Outline

• Introduction– Transistor scaling limit

• Extending the Era of Moore’s Law

• Beyond Moore: Mechanical Computing Redux

• Summary

2

Page 3: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

MOSFET Operation: Gate Control

Current flowing between Source & Drain is controlled by the Gate voltage.

Desired characteristics:• High ON current• Low OFF current

Electron Energy Band Profile

increa

sing

 E

distance

n(E)  exp (‐E/kT)

SourceDrain

VDD

ION

IOFF

Inverse slope is subthreshold swing, S[mV/dec]

log ID

increasingVGS VTH

GATE VOLTAGE0

3

Metal‐Oxide‐Semiconductor (MOS)Field‐Effect Transistor (FET)

Gate length, LG

Page 4: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

CMOS Circuits

0 1

1 0

STATIC MEMORY (SRAM) CELL

DS

G

DS

G

CIRCUIT SYMBOLSN-channelMOSFET

P-channelMOSFET

GND

VDD

CMOS INVERTER CIRCUIT

VIN VOUT

S

S

DD

VOUT

VIN0 VDD

VDD

INVERTERLOGIC SYMBOL

BIT LINE

WORD LINE

BIT LINE

CMOS NAND GATE

NOT AND (NAND)TRUTH TABLE

or or

ON

OFF

4

Page 5: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Improving ION/IOFFlog ID

VGSVDD

ION

• The greater the capacitive coupling between Gate and channel, the better control the Gate has over the channel potential.

Body

Gate

Drain

CoxCdep

higher ION/IOFF for fixed VDD, or lower VDD to achieve target ION/IOFFreduced short‐channel effect and drain‐induced barrier lowering:

Source

SourceDraindecreasing LG, 

or increasing VDS

ox

total

CCS

log ID

VGS

decreasing LGor increasing VDS IOFF

5

Page 6: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Source

DrainGate

LG

FinFET/Tri‐Gate Transistor

• Superior gate control higher ION/IOFF or lower VDD

Wfin

Hfin

GATE

SOURCE

DRAIN20 nm

10 nm

Y.‐K. Choi et al., (UC Berkeley)  IEDM 2001

15nm Lg FinFET

D. Hisamoto et al.         (UC Berkeley), IEDM 1998

Intel Corp., May 2011

log ID

VGS

ION

VDD

• Multiple fins can be connected in parallel to achieve higher drive current.

6

Page 7: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Foundry Technology Node: 14 nm 10 nm 7 nmGate length, LG 25 nm 20 nm 15 nmFin width, Wfin ~10 nm ~8 nm ~6 nmEquivalent oxide thickness 0.9 nm 0.85 nm 0.8 nm

C. Auth et al. (Intel Corp.)VLSI Symp. 2012

X‐SEM Images

Si

SiO2 SiO2

Gate

Intel Technology Node 22 nm 14 nm 10 nm2012 2014 2017

2015

Gate

Si SiSiO2

S. Natarajan et al. (Intel Corp.)IEDM 2014

Year:

Year:

3‐D Transistor Technology Roadmap

7

Page 8: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

MOSFET Evolution32 nmplanar

P. Packan et al. (Intel), IEDM 2009

beyond 7 nmstacked nanowires?

C. Dupré et al. (CEA‐LETI)IEDM 2008

Stacked gate‐all‐around (GAA) FETs achieve the highest layout efficiency.

22 nmthin body

Intel Corp.

FinFET:

FD‐SOI:

K. Cheng et al. (IBM), VLSI Symp. 2011

8

Page 9: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

J. Wang et al., IEDM Technical Digest, pp. 707‐710, 2002

Channel‐Length Scaling Limit• Quantum mechanical tunneling sets a fundamental scaling 

limit for the channel length (LC).

SOURCE DRAIN

EC

EC

If electrons can easily tunnel through the source potential barrier, the gate cannot shut off the transistor.nMOSFET Energy Band Diagram(OFF state)

9

Page 10: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Ultimately Scaled MOSFETsM. Luisier et al., IEDM 2011

LG = 5 nm

10

Page 11: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Outline

• Introduction

• Extending the Era of Moore’s Law

• Beyond Moore: Mechanical Computing Redux

• Summary

11

Page 12: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

12Sang Wan Kim02/25/2016

Samsung, EUVL Symposium 2009ASML, SPIE Advanced Lithography 2012

SingleExposure

LELE SingleSpacer

DoubleSpacer

0

1

2

3

4

5

Nor

mal

ized

Cos

t and

Ste

ps

Cost Steps

Multiple‐patterning techniques have extended Moore’s Law beyond the lithographic resolution limit  at increasing cost

“The sheer cost and complexity of this lithographic solution could dissuade chipmakers from jumping to future nodes, thereby stunting the growth rates of the IC industry.”

‐ Semiconductor Engineering, April 17th, 2014

12

Page 13: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Tilted ion implantation (TII) Approach• A sub‐lithographic damage region can be achieved by tilted 

ion implantation (TII) + photoresist/hard mask– self‐aligned to pre‐existing mask features on surface

13

Page 14: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Impact of TII on SiO2 Etch Rate

0 10 20 30 40 500.0

0.3

0.6

0.9

1.2

1.5

Etch

rate

[Å/s

ec]

SiO2 Depth [Å]

2E14

3E14

0.4

0.8

1.2

1.6

2.0

2.4

no implant

2E14D

amage [x10

22/cm3]

3E14

~9X~6X

Ar+ implant conditions: 15° tilt; 1.5 keV; dose = 0, 2 or 3 x 1014/cm2

Symbols & solid lines: etch rate in 200:1 DHF

Dotted lines: damage profile (SRIM)

14

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

Page 15: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Double‐Patterning by TII

Si

Silicon

αα

Wtrench

θ

x x

yhard mask

SiO2

• Thermal SiO2: masking layer• Formation of linear a-Si hard-mask

features by spacer patterning

• First implant: positive tilt anglex ≅ Wtrench – y(tan(θ) – cot(α))

15

Page 16: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

hard mask

SiO2

• Thermal SiO2: masking layer• Formation of linear a-Si hard-mask

features by spacer patterning

• First implant: positive tilt anglex ≅ Wtrench – y(tan(θ) – cot(α))

• Second implant: negative tilt anglex ≅ Wtrench – y(tan(θ) – cot(α))

Double‐Patterning by TII

16

Page 17: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Si

Silicon

α

WfinWfinx xx x

yhard mask

SiO2

• Thermal SiO2: masking layer• Formation of linear a-Si hard-mask

features by spacer patterning

• First implant: positive tilt anglex ≅ Wtrench – y(tan(θ) – cot(α))

• Second implant: negative tilt anglex ≅ Wtrench – y(tan(θ) – cot(α))

• Selective removal of damaged SiO2• Si substrate dry etch

Wfin ≅ 2y(tan(θ) – cot(α)) – Wtrench

Double‐Patterning by TII

17

Page 18: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

remaining a-Si

Si substrate

etched a-Si15°

①②

Ar-ion implantation with θ = 15°

Si substrate

Proof of Concept: Single Implant

• Sub‐lithographic features (~45 nm) achieved by 15° tilt, 3.0 keV Ar+ implant into 10 nm‐thick SiO2 hard mask  dilute HF etch Si dry etch

Cross‐sectional Scanning Electron Micrographs

18

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

Page 19: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Self‐Aligned Nature of TII Patterning

• The TII‐defined edge closely tracks the HM edge

= a‐Si hard mask = un‐etched c‐Si  = etched c‐Si  19

P. Zheng et al. (UC Berkeley), to be published

Page 20: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Line‐Edge Roughess Comparison

• TII improves low‐ and mid‐frequency line‐edge roughness

36 samples, 2.74 µm long

20

P. Zheng et al. (UC Berkeley), to be published

Page 21: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

①②

a-Si

Si substrate

15°

LTO

Double Tilted Implant Results

• Local pitch‐halving achieved with ±15° tilt, 3.0 keV Ar+ implants• ~21 nm half‐pitch of the etched Si features

Cross-sectional SEM Plan-view SEM

21

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

Page 22: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

SiO2 (Oxidation)

Silicon

Hard mask (CVD)

SiO2 (Oxidation)

Silicon

SiO2 (Oxidation)

Silicon

Silicon Silicon

Tilted Ion Implantation (TII)Spacer lithography (SADP)

Double‐Patterning Approaches

22

Page 23: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Cost Comparison

• If photoresist is used as the mandrel layer, the cost of TII double‐patterning can be only ~50% of the cost of SADP.

Self-aligned Double Patterning TII Double Patterning Process Steps Cost Process Steps Cost

Process Description (a.u./wafer) Process Description (a.u./wafer) PECVD Etch stop layer 1.5 LPCVD Mask layer 2

CVD Mandrel layer 2 CVD Mandrel layer 2 Photolithography Patterning 30 Photolithography Patterning 30

Dry etch Mandrel etch 10 Dry etch Mandrel etch 10 ALD Spacer deposition 3 Ion implantation Double implants 1.7

Dry etch Spacer etch 16 Wet etch Selective mask etch 1 Mandrel pull Dry etch Mandrel removal 16 Wet clean Clean 1 Pattern transfer

Dry etch Pattern transfer 16 Wet etch Mask removal 1 Pattern transfer

Wet etch Spacer removal 1 Wet etch Etch stopper strip 1

Total: 81.5 Total: 63.7

P. Zheng et al. (UC Berkeley), to be published

23

Page 24: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Outline

• Introduction

• Extending the Era of Moore’s Law

• Beyond Moore: Mechanical Computing Redux

• Summary

24

Page 25: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Impact of Moore’s Law

Source: Morgan Stanley Research

# DEV

ICES

YEAR

1011

1010

109

108

107

106

1960 1970 1980 1990 2000 2010 20302020

MarketGrowth

Investment 

TransistorScaling

Lower Cost/ComponentHigher Performance

Mobile Internet

Desktop Internet

PC

Minicomputer

Mainframe

Internet of Things (IoT)

25

Page 26: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

The Cloud(millions)

The Swarm(trillions)

A Vision of the Future

Mobile devices(billions)

Source: J. Rabaey, ASPDAC 2008

Ultra‐low‐power ‐chips required!

26

Page 27: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Micro‐Electro‐Mechanical Switch

Source Drain

Measured I‐VCharacteristic

Gate

ON State:

Felec

Fspring

OFF State:

Fadhesion

• Zero off‐state leakage  Zero passive energy consumption

Three‐Terminal Switch

• Abrupt switching behavior  Low VDD (low active energy)

27

Vmin

Page 28: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Surface Micromachining Process

sacrificial layerstructural film

Cross‐sectional View

Si wafer substrate • Structures are freed by selective removal of sacrificial layer(s)

• Mechanical structures can be made using conventional microfabrication techniques

28

Page 29: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

IC Technology Advancement

Time

D. C. Edelstein, 214th ECS Meeting, Abstract #2073, 2008

S. Natarajan et al. (Intel), IEDM 2014

Intel’s 14nm CMOS technology

• Advanced back‐end‐of‐line (BEOL) processes have air‐gapped interconnects 

can be adapted for fabrication of compact NEMS!29

Page 30: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

• A relay can be implemented using multiple metal layersVias can be used for electrical connection and as torsional elements for lower keff

• Actuation electrodes on opposite sides of movable electrode structure 2 stable states                        (contacting D0 or D1)

• Low‐voltage (<1 V) operation can be achieved with small footprint (< 0.1 m2).

courtesy of Dr. Kimihiko Kato (UC Berkeley)

INPUT

D0D1

VDDGND

VDDGND

VDD

GND M2

M3

M4

M5

BEOL NEM SwitchN. Xu et al. (UC Berkeley), 2014 IEEE International Electron Devices Meeting

30

Page 31: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

• A bi‐stable NEM switch is projected to operate with much less energy and delay than other non‐volatile switching devicescan be used to continually shadow the information stored in an SRAM cell

Non‐Volatile Device Comparison

31

N. Xu et al. (UC Berkeley), 2014 IEEE International Electron Devices Meeting

Page 32: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

In‐Memory Computing• NV‐NEMory cell array for memory‐based super‐parallel data searching 

Data11100

DL0

DL1

DL0

DL1

DL0

Data21101

Data31000

Data4Not programmed

WL1

WL2

WL3

WL4

BL1 BL2 BL3 BL4

A A A A

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31‐34, 2016

32

Page 33: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Year 2015 2017 2019 2021 2023 2025

Half pitch, F (nm) 25.3 20.1 15.9 12.6 10.0 7.09

DL1DL0

AL1

AL0

Beam

BL

WL

Diffusion

Deformedbeam

VprogFloat

GND

AL0

AL1

DL0

DL1

BL

FFFF

F F

Deformationdirection

DL1 / AL1

DL0 / AL0

8F2

Metal: Al (Young’s modulus: 70 GPa)Gap: Air

Non‐Volatile NEMory Cell StructureK. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31‐34, 2016

33

Page 34: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Data Search Step 1: Match “0”Reference Data: 1100

Data11100

DL 0

DL 1

DL 0

DL 1

DL 0

Data21101

Data31000

Data4Not programed

BL1

BL2

BL3

BL4

BL1 BL2 BL3 BL4

A A A A

a) Activate DL1 lines

b)Access rows for 0 bits in reference

c) Zero BL current Matched 0s

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31‐34, 2016

34

Page 35: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Data Search Step 2: Match “1”Reference Data: 1100

Data11100

DL 0

DL 1

DL 0

DL 1

DL 0

Data21101

Data31000

Data4Not programed

WL1

WL2

WL3

WL4

BL1 BL2 BL3 BL4

A A A A

a) Activate DL0 lines

b)Access rows for 1 bits in reference

c) Zero BL current Matched 1s

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31‐34, 2016

35

Page 36: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Energy and Delay for Data Search

• The location of a data string can be found in <0.5 ns with less than 2.5 pJ.  For a die size of 42 mm2 (same as DDR4 DRAM) at F = 20 nm and cell 

density of 65% (similar to DRAM), a NV‐NEMory chip would have the capacity 8 Gb and would consume only 300 nJ to find a match on the whole chip. 

In comparison, it would take CPU+DRAM ~90 mJ, 80 ms for the same task. 

EnergyDelay

Cells involved: 1 column 1 row

1 column 256 rows

256 columns 256 rows

Program (Vprog = 2.5 V) 15 fJ 2.0 pJ N/A < 10 ns

Match “0” or Match “1” N/A N/A 1.2 pJ < 0.2 ns

256 × 256 NV‐NEMory Array

Relatively fast read speed & low power consumption make NV‐NEMorytechnology well‐suited for real‐time data searching applications!

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31‐34, 2016

36

Page 37: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Outline

• Introduction

• Extending the Era of Moore’s Law

• Beyond Moore: Mechanical Computing Redux

• Summary

37

Page 38: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Summary

• Tilted ion implantation (TII) is an effective sub‐lithographic patterning and pitch‐halving technique – features are self‐aligned to pre‐existing mask – process flow is much simpler (lower cost) than SADP

shows promise for extending Moore’s Law!• Electronic devices which enable more energy‐efficient computation and data storage, at ever lower cost per function, will be required for ubiquitous computing.• BEOL NEM devices show promise in this regard

38

Page 39: There’s Plenty of Room at the Bottom ‐and at the Toptking/presentations/KingLiu_SFBA… · There’s Plenty of Room at the Bottom ‐and at the Top Tsu‐Jae King Liu Department

Acknowledgements• TII‐Enhanced Lithography:

– Dr. Sang Wan Kim (UC Berkeley)– Dr. Peng Zheng (now with Intel Corporation)– Dr. Leonard Rubin (Axcelis Technologies)– UC Berkeley Marvell Nanofabrication Laboratory– Funding from Applied Materials, Lam Research

• BEOL NEM Relays Technology:– Dr. Nuo Xu (now with Samsung Semiconductor, Inc.)– Dr. Kimihiko Kato (now at University of Tokyo)– Prof. Vladimir Stojanović (UC Berkeley)– Funding from National Science Foundation

• Center for Energy Efficient Electronics Science39