thermodynamic and kinetic modeling to predict the lifetime

17
Thermodynamic and Kinetic Modeling to Predict the Lifetime of Thermal Barrier Coating on Superalloys High Temperature Thermochemistry Laboratory & Korea Institute of Materials Science Date: 13th April 2021 Yeon Woo Yoo

Upload: others

Post on 03-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermodynamic and Kinetic Modeling to Predict the Lifetime

Thermodynamic and Kinetic Modeling to Predict the Lifetime of Thermal Barrier Coating

on Superalloys

High Temperature Thermochemistry Laboratory&

Korea Institute of Materials ScienceDate: 13th April 2021

Yeon Woo Yoo

Page 2: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

2Contents

I. Introduction about Thermal Barrier Coatings

II. Kinetic Modeling

III. Thermodynamic Modeling

Page 3: Thermodynamic and Kinetic Modeling to Predict the Lifetime

3

I. Introduction about Thermal Barrier Coatings

Page 4: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

4Introduction

- Thermal Barrier Coatings

β€’ Top coating- Yttria stabilized zirconia (8YSZ), GZO(Gd2Zr2O7), LZO(La2Zr2O7)

- Thermal insulation from high temperature environment

- Low thermal conductivity and porous microstructure

β€’ Bond coating- MCrAlX M= Ni and/or Co , X = Y, Ta, Hf, and/or Si, other minor

elements

- Intermediate thermal expansion coefficient between top coating and

bottom Ni based superalloys

- Directly related to the thermal lifetime of thermal barrier coatings

β€’ Ni based superalloys- Maintain excellent mechanical strength at high temperature

(Ξ³ and Ξ³` phase)

Page 5: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

5Introduction

- Failure of Thermal Barrier Coatings

Thermal strain caused by CTE mismatch

πœ€πœ€ = βˆ’ 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 βˆ’ 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇 βˆ’ 𝑇𝑇0 = βˆ’Ξ”π›Όπ›ΌΞ”π‘‡π‘‡

Repeating heating and cooling in TBCs as the gas turbine operation

Thermal stress caused by CTE mismatch between bond coating and top coatingFailure

Page 6: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

6Introduction

- Thermodynamics and Kinetics in Thermal Barrier Coatings

Con

cent

ratio

nTop coat Bond coat SuperalloyTGO

O

O

Al

Al

Ni, Cr, Co

Al

Al

Al

Al

O Cr, Co

Al

Al

Other Elements

NiNi

Al

Al

AlCo, Cr

Co, Cr

Distance

Outer Beta Depletion Zone

Inner Beta Depletion Zone

SecondaryReaction Zone

Page 7: Thermodynamic and Kinetic Modeling to Predict the Lifetime

7

II. Kinetic Modeling

Page 8: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

8Diffusion Equation

𝐽𝐽𝑖𝑖 = βˆ’π·π·π‘–π‘–π‘‘π‘‘πΆπΆπ‘–π‘–π‘‘π‘‘π‘‘π‘‘

- Fick’s first law

- Fick’s second law

𝑑𝑑𝐢𝐢𝑖𝑖𝑑𝑑𝑑𝑑

= 𝐷𝐷𝑖𝑖𝑑𝑑2𝐢𝐢𝑖𝑖𝑑𝑑𝑑𝑑2

𝐢𝐢𝐻𝐻 𝐢𝐢𝐿𝐿

𝐢𝐢𝐻𝐻

𝐢𝐢𝐿𝐿

𝐢𝐢

For multi-components,

πœ•πœ•πΆπΆπ‘–π‘–πœ•πœ•π‘‘π‘‘

= 𝐷𝐷𝑖𝑖,π‘–π‘–πœ•πœ•2πΆπΆπ‘–π‘–πœ•πœ•π‘‘π‘‘2

+πœ•πœ•π·π·π‘–π‘–,π‘–π‘–πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•πΆπΆπ‘–π‘–πœ•πœ•π‘‘π‘‘

+πœ•πœ•π·π·π‘–π‘–,π‘–π‘–πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•πΆπΆπ‘—π‘—πœ•πœ•π‘‘π‘‘

+πœ•πœ•π·π·π‘–π‘–,π‘–π‘–πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•πΆπΆπ‘˜π‘˜πœ•πœ•π‘‘π‘‘

πœ•πœ•πΆπΆπ‘–π‘–πœ•πœ•π‘‘π‘‘

+ 𝐷𝐷𝑖𝑖,π‘—π‘—πœ•πœ•2πΆπΆπ‘—π‘—πœ•πœ•π‘‘π‘‘2

+πœ•πœ•π·π·π‘–π‘–,π‘—π‘—πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•πΆπΆπ‘–π‘–πœ•πœ•π‘‘π‘‘

+πœ•πœ•π·π·π‘–π‘–,π‘—π‘—πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•πΆπΆπ‘—π‘—πœ•πœ•π‘‘π‘‘

+πœ•πœ•π·π·π‘–π‘–,π‘—π‘—πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•πΆπΆπ‘˜π‘˜πœ•πœ•π‘‘π‘‘

πœ•πœ•πΆπΆπ‘—π‘—πœ•πœ•π‘‘π‘‘

+𝐷𝐷𝑖𝑖,π‘˜π‘˜πœ•πœ•2πΆπΆπ‘˜π‘˜πœ•πœ•π‘‘π‘‘2

+πœ•πœ•π·π·π‘–π‘–,π‘˜π‘˜πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•πΆπΆπ‘–π‘–πœ•πœ•π‘‘π‘‘

+πœ•πœ•π·π·π‘–π‘–,π‘˜π‘˜πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•πΆπΆπ‘—π‘—πœ•πœ•π‘‘π‘‘

+πœ•πœ•π·π·π‘–π‘–,π‘˜π‘˜πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•πΆπΆπ‘˜π‘˜πœ•πœ•π‘‘π‘‘

πœ•πœ•πΆπΆπ‘˜π‘˜πœ•πœ•π‘‘π‘‘

Page 9: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

9Finite Difference Method

- Finite Difference Method

βˆ†π‘‹π‘‹

𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛+1𝐹𝐹0 𝐹𝐹1

πœ•πœ•πΉπΉπœ•πœ•π‘‹π‘‹

=𝐹𝐹𝑛𝑛+1 βˆ’ πΉπΉπ‘›π‘›βˆ’1

2βˆ†π‘‹π‘‹

πΉπΉπ‘›π‘›βˆ’1

πœ•πœ•πΉπΉπœ•πœ•π‘‹π‘‹

=𝐹𝐹𝑛𝑛+1 βˆ’ 𝐹𝐹𝑛𝑛

βˆ†π‘‹π‘‹

πœ•πœ•πΉπΉπœ•πœ•π‘‹π‘‹

=𝐹𝐹𝑛𝑛 βˆ’ πΉπΉπ‘›π‘›βˆ’1

βˆ†π‘‹π‘‹

: Forwardπœ•πœ•2πΉπΉπœ•πœ•π‘‹π‘‹2

=𝐹𝐹𝑛𝑛+2 βˆ’ 2𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛

(βˆ†π‘‹π‘‹)2

πœ•πœ•2πΉπΉπœ•πœ•π‘‹π‘‹2

=𝐹𝐹𝑛𝑛 βˆ’ 2πΉπΉπ‘›π‘›βˆ’1 + πΉπΉπ‘›π‘›βˆ’2

(βˆ†π‘‹π‘‹)2

πœ•πœ•2πΉπΉπœ•πœ•π‘‹π‘‹2

=𝐹𝐹𝑛𝑛+1 βˆ’ 2𝐹𝐹𝑛𝑛 + πΉπΉπ‘›π‘›βˆ’1

(βˆ†π‘‹π‘‹)2

: Backward

: Central

Page 10: Thermodynamic and Kinetic Modeling to Predict the Lifetime

10

III. Thermodynamic Modeling

Page 11: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

11Gibb’s Free Energy & Phase Diagram

G = H βˆ’ TS

- Gibb’s free energy

- Gibb’s free energy and phase diagram

- At temperature T, the phase which has lowest G is the most stable

Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed. CHAMAN & HALL (1992)

Page 12: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

12Gibb’s Free Energy of Solution

- Gibb’s free energy of solution

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 + 𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 + 𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴 ln𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 + 𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 + Ω𝑋𝑋𝐴𝐴𝑋𝑋𝐡𝐡 + 𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴 ln𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 + 𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 + �𝑖𝑖,𝑗𝑗β‰₯1

πœ”πœ”π΄π΄π΅π΅π‘–π‘–π‘—π‘— 𝑋𝑋𝐴𝐴𝑖𝑖𝑋𝑋𝐡𝐡

𝑗𝑗 + 𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴 ln𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡

: Ideal solution

: Regular solution

: General solution

βˆ†π»π»π‘šπ‘šπ‘–π‘–π‘šπ‘š = 0

βˆ†π»π»π‘šπ‘šπ‘–π‘–π‘šπ‘š = Ω𝑋𝑋𝐴𝐴𝑋𝑋𝐡𝐡

βˆ†π‘†π‘†π‘šπ‘šπ‘–π‘–π‘šπ‘š = 𝑅𝑅(𝑋𝑋𝐴𝐴 ln𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡)

βˆ†π‘†π‘†π‘šπ‘šπ‘–π‘–π‘šπ‘š = 𝑅𝑅(𝑋𝑋𝐴𝐴 ln𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡)

Page 13: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

13Solution Mixing Model

- Random Mixing Model

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 + 𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 + 𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴 ln𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡 + 𝑍𝑍�𝑔𝑔𝐴𝐴𝐡𝐡𝑖𝑖𝑗𝑗 𝑋𝑋𝐴𝐴𝑖𝑖𝑋𝑋𝐡𝐡

𝑗𝑗

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 + 𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 βˆ’ π‘‡π‘‡βˆ†π‘†π‘†π‘π‘π‘π‘π‘›π‘›π‘π‘ + 𝑛𝑛𝐴𝐴𝐡𝐡(βˆ†π‘”π‘”π΄π΄π΅π΅/2)

βˆ†π‘†π‘†π‘π‘π‘π‘π‘›π‘›π‘π‘ = βˆ’π‘…π‘… 𝑛𝑛𝐴𝐴 ln𝑋𝑋𝐴𝐴 + 𝑛𝑛𝐡𝐡 ln𝑋𝑋𝐡𝐡 βˆ’ 𝑅𝑅 𝑛𝑛𝐴𝐴𝐴𝐴 ln(π‘‹π‘‹π΄π΄π΄π΄π‘Œπ‘Œπ΄π΄2

) + 𝑛𝑛𝐡𝐡𝐡𝐡 ln(π‘‹π‘‹π΅π΅π΅π΅π‘Œπ‘Œπ΅π΅2

) + 𝑛𝑛𝐴𝐴𝐡𝐡 ln(𝑋𝑋𝐴𝐴𝐡𝐡2π‘Œπ‘Œπ΄π΄π‘Œπ‘Œπ΅π΅

)

π‘Œπ‘Œπ‘–π‘– =𝑍𝑍𝑖𝑖𝑋𝑋𝑖𝑖

𝑍𝑍𝑖𝑖𝑋𝑋𝑖𝑖 + 𝑍𝑍𝑗𝑗𝑋𝑋𝑗𝑗�𝑋𝑋𝐴𝐴𝐡𝐡2 𝑋𝑋𝐴𝐴𝐴𝐴𝑋𝑋𝐡𝐡𝐡𝐡 = 4 exp(βˆ’ ⁄Δ𝑔𝑔𝐴𝐴𝐡𝐡 𝑅𝑅𝑇𝑇)

βˆ†π‘”π‘”π΄π΄π΅π΅ = 𝑓𝑓 𝑑𝑑,𝑇𝑇 = πœ”πœ”π΄π΄π΅π΅Β° βˆ’ πœ‚πœ‚π΄π΄π΅π΅Β° 𝑇𝑇 + οΏ½(𝑖𝑖+𝑗𝑗β‰₯1)

(πœ”πœ”π΄π΄π΅π΅π‘–π‘–π‘—π‘— βˆ’ πœ‚πœ‚π΄π΄π΅π΅

𝑖𝑖𝑗𝑗 𝑇𝑇)π‘Œπ‘Œπ΄π΄π‘–π‘–π‘Œπ‘Œπ΅π΅π‘—π‘—

- Modified Quasichemical Model(MQM)

- Random mixing model : βˆ†π‘†π‘†π‘ π‘ π‘π‘π‘ π‘ π‘›π‘› = Δ𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠

- Quasichemical model : βˆ†π‘†π‘†π‘ π‘ π‘π‘π‘ π‘ π‘›π‘› β‰  Δ𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠, varied with A-B interaction energy

Page 14: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

14Thermodynamic Modeling

Thermodynamic modeling is optimization of parameters related to all solutions

I.H. Jung, et al, CALPHAD, 2007, vol. 31 (2), pp. 192-200

Page 15: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

15Application of Thermodynamic Calculation

FCC#1

FCC#1

BCC#1

BCC2#1

L12#1

HCP#1

Liquid

Co + Ni + Cr + Al + Y

Temperature [ oC ]

Wei

ght p

erce

nt [

% ]

600 700 800 900 1000 1100 1200 1300 1400 15000

10

20

30

40

50

60

70

80

90

100

1500

Hf2Ni7

Liquid

FCC#1

FCC#1

BCC#1

SIGMA

BCC2#1

BCC2#1L12#1

L12#1

Ni + Co + Cr + Al + Y + Hf + Si

Temperature [ oC ]

Wei

ght p

erce

nt [

% ]

600 700 800 900 1000 1100 1200 1300 14000

10

20

30

40

50

60

70

80

90

100

FCC#1

FCC#1

BCC#1

SIGMA

BCC2#1

BCC2#1L12#1

Liquid

Ni + Co + Cr + Al + Y

Temperature [ oC ]

Wei

ght p

erce

nt [

% ]

600 700 800 900 1000 1100 1200 1300 1400 15000

10

20

30

40

50

60

70

80

90

100

FCC#1

BCC#1

BCC2#1

L12#1

IN792 - NiCoCrAlY1000 oC

Wei

ght p

erce

nt [

% ]

IN792 NiCoCrAlY0

10

20

30

40

50

60

70

80

90

100

β€’ Phase fractions of MCrAlY bond coats as function of a temperature

FCC#1

BCC2#1

IN792 - CoNiCrAlY1000 oC

Wei

ght p

erce

nt [

% ]

IN792 CoNiCrAlY0

10

20

30

40

50

60

70

80

90

100

β€’ Secondary reaction expectation in interface between MCrAlY bond coats and Ni superalloys

Substrate SRZ Bondcoat

Ni, Ta, Re, etc.

Al, Cr, Co, Y

Page 16: Thermodynamic and Kinetic Modeling to Predict the Lifetime

High Temperature Thermochemistry Laboratory

16Summary

1. Lifetime prediction of thermal barrier coatings were required due to the difficulty of real parts experiment and long time experiment.

2. Thermodynamics and kinetics should be considered to predict lifetime of thermal barrier coatings.

3. Kinetic modeling of multicomponent diffusion could be solved by finite difference method.

4. Thermodynamic modeling can be used to predict stable phase at high temperature and reaction between bond coat and superalloys.

Page 17: Thermodynamic and Kinetic Modeling to Predict the Lifetime

Thank you for

your attention!