tlc5904 led driver - ti.com · 2011. 8. 6. · tlc5904 led driver slls391 – november 1999 6 post...

28
TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 1 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 Drive Capability and Output Counts 80 mA (Current Sink) x 16 Bits 120 mA (Current Sink) x 8 Bits Constant Current Output Range 5 to 80 mA/10 to 120mA (Selectable by MODE Terminal) (Current Value Setting for All Output Terminals Using External Resistor and Internal Brightness Control Register) Constant Current Accuracy ± 4% (Maximum Error Between Bits) Voltage Applied to Constant Current Output Terminals Minimum 0.4 V (Output Current 5 mA to 40 mA) Minimum 0.7 V (Output Current 40 to 80 mA) 256 Gray Scale Display Pulse Width Control 256 Steps Brightness Adjustment Output Current Adjustment for 32 Steps (Adjustment for Brightness Deviation Between LED Modules) 8 Steps Brightness Control by 8 Times Speed Gray Scale Control Clock (Brightness Adjustment for Panel) Error Output Signal Check Check Error Output Signal Line Such as Protection Circuit When Operating Data Output Timing Selectable Select Data Output Timing for Shift Register Relative to Clock OVM (Output Voltage Monitor) Monitor Voltage on Constant Current Output Terminals (Detect LED Disconnection and Short Circuit) WDT (Watchdog Timer) Turn Output Off When Scan Signal Stopped TSD (Thermal ShutDown) Turn Output Off When Junction Temperature Exceeds Limit Data Input Clock Synchronized 8 Bit Parallel Input (Schmitt-Triggered Input) Data Output Clock Synchronized 8 Bit Parallel Output (3-State Output) Input Signal Level . . . CMOS Level Power Supply Voltage . . . 4.5 V to 5.5 V Maximum Output Voltage . . . 17 V (Max) Data Transfer Rate . . . 15 MHz (Max) Gray Scale Clock Frequency 8 MHz (Max) Operating Free-Air Temperature Range –20 C to 85 C 100-Pin HTQFP Package (P D =4.7 W, T A = 25°C) description The TLC5904 is a constant current driver incorporating shift register, data latch, and constant current circuitry with current value adjustable and a 256 gray scale display using pulse width control. The output current can be selected as maximum 80 mA with 16 bits or 120 mA with 8 bits, and the current value of constant current output can be set by one external resistor. After this device is mounted on a PCB, the brightness deviation between LED modules (ICs) can be adjusted by external data input, and the brightness control for the panel can be accomplished by the brightness adjustment circuitry. Also, the device incorporates the output voltage monitor (OVM) used for LED open detection (LOD) by monitoring the constant current output. Moreover, the device incorporates watchdog time (WDT) circuitry, which turns the constant current output off when a scan signal is stopped at the dynamic scanning operation, and thermal shutdown (TSD) circuitry, which turns the constant current output off when the junction temperature exceeds the limit. Copyright 1998, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Upload: others

Post on 16-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Drive Capability and Output Counts– 80 mA (Current Sink) x 16 Bits– 120 mA (Current Sink) x 8 Bits

Constant Current Output Range– 5 to 80 mA/10 to 120mA (Selectable by

MODE Terminal) (Current Value Setting forAll Output Terminals Using ExternalResistor and Internal Brightness ControlRegister)

Constant Current Accuracy– ±4% (Maximum Error Between Bits)

Voltage Applied to Constant Current OutputTerminals– Minimum 0.4 V (Output Current 5 mA to

40 mA)– Minimum 0.7 V (Output Current 40 to

80 mA)

256 Gray Scale Display– Pulse Width Control 256 Steps

Brightness Adjustment– Output Current Adjustment for 32 Steps

(Adjustment for Brightness DeviationBetween LED Modules)

– 8 Steps Brightness Control by 8 TimesSpeed Gray Scale Control Clock(Brightness Adjustment for Panel)

Error Output Signal Check– Check Error Output Signal Line Such as

Protection Circuit When Operating

Data Output Timing Selectable– Select Data Output Timing for Shift

Register Relative to Clock

OVM (Output Voltage Monitor)– Monitor Voltage on Constant Current

Output Terminals (Detect LEDDisconnection and Short Circuit)

WDT (Watchdog Timer)– Turn Output Off When Scan Signal

Stopped

TSD (Thermal ShutDown)– Turn Output Off When Junction

Temperature Exceeds Limit

Data Input– Clock Synchronized 8 Bit Parallel Input

(Schmitt-Triggered Input)

Data Output– Clock Synchronized 8 Bit Parallel Output

(3-State Output)

Input Signal Level . . . CMOS Level

Power Supply Voltage . . . 4.5 V to 5.5 V

Maximum Output Voltage . . . 17 V (Max)

Data Transfer Rate . . . 15 MHz (Max)

Gray Scale Clock Frequency 8 MHz (Max)

Operating Free-Air Temperature Range –20C to 85C

100-Pin HTQFP Package (P D=4.7 W, TA = 25°C)

description

The TLC5904 is a constant current driver incorporating shift register, data latch, and constant current circuitrywith current value adjustable and a 256 gray scale display using pulse width control. The output current can beselected as maximum 80 mA with 16 bits or 120 mA with 8 bits, and the current value of constant current outputcan be set by one external resistor. After this device is mounted on a PCB, the brightness deviation betweenLED modules (ICs) can be adjusted by external data input, and the brightness control for the panel can beaccomplished by the brightness adjustment circuitry. Also, the device incorporates the output voltage monitor(OVM) used for LED open detection (LOD) by monitoring the constant current output. Moreover, the deviceincorporates watchdog time (WDT) circuitry, which turns the constant current output off when a scan signal isstopped at the dynamic scanning operation, and thermal shutdown (TSD) circuitry, which turns the constantcurrent output off when the junction temperature exceeds the limit.

Copyright 1998, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Page 2: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

12345678910111213141516171819202122232425

767778798081828384858687888990919293949596979899100

75747372717069686766656463626160595857565554535251

50494847464544434241403938373635343332313029282726

OUT7

PZP PACKAGE(TOP VIEW)

TEST2DOMODEDIN3DIN2DIN1DIN0GSCLKBLANKRSEL1RSEL0DCLKXENABLEXOEWDTRGXLATCHXDOWN1XDOWN2TEST1BOUTGSOUTDOUT0DOUT1DOUT2DOUT3DOUT4

OUT8NC

GNDLEDNC

OUT9OUT10

NCGNDLED

NCOUT11

NCNCNC

NCGNDLED

NCOUT6OUT5

NCGNDLED

NCOUT4

NCNC

OU

T3

OU

T12

NC

NC

NC

GN

DLE

DN

CO

UT

2O

UT

1N

CN

CG

ND

LED

NC

NC

OU

T0

NC

BC

EN

AG

ND

LOG

MO

DE

NC

VC

CLO

GT

SE

NA

DIN

7D

IN6

DIN

5D

IN4

NC

NC

GN

DLE

DN

CN

CO

UT

13O

UT

14 NC

NC

GN

DLE

DN

CN

CO

UT

15IR

EF

VC

CLE

DW

DC

AP

GN

DA

NA

NC

VC

CA

NA

MC

EN

AD

OU

T7

DO

UT

6D

OU

T5

NC

Page 3: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

functional block diagram

LATCHCurrent Reference

Circuit

OUT0 OUT15

16 bitsConstant Current Driver

TSD

8 bitsGray Scale

Counter

DCLKController

Brightness ControlShift Register

Data Latch

16 x 8 bitsComparator

DOUT<0:7>

GSOUT

MCENA

WDT

Gray Scale ControlShift Register

Data Latch

Shift Register and Data Latch

BCENA

RSEL0

RSEL1

DIN<0:7>

XENABLE

DCLK

DOMODE

XOE

XLATCH

MODE

8

DELEYGSCLK

BLANK

TSENA

WDTRG

WDCAP

IREF

16 bitsOVM Comp

8

DELEY BOUT

XDOWN1

XDOWN2

OVMShift Register

Data Latch

NOTE: All the input terminals are with Schmitt-triggered inverter except IREF and WDCAP.

Page 4: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

functional block diagram for shift register and data latch

88

1 bitS/R

Brightness Control Shift Register(1 x 8 bit)

OVM Data Latch(1 x 8 bit)

OVM Shift Register(1 x 8 bit)

Brightness Control Data Latch(1 x 8 bit)

DCLKController

Gray Scale Control Shift Register(16 x 8 bit / 8 x 8 bit)

16 bit OVM ComparatorXDOWN1, 2 Output Driver

Constant Current Driver ControlGray Scale Clock Counter

16 x 8 bit Data ComparatorGray Scale Control Data Latch

(16 x 8 bit)

MCENA

BCENA

DIN<0:7>

XENABLE

XLATCH 8

8

8

DCLK

MODE

RSEL<0:1>

DOMODE

XOE

DOUT<0:7>

8

8

Note: Enclosed in () is dependenton MODE pin selection.

Page 5: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

equivalent input and output schematic diagrams

VCCLOGInput

INPUT

GNDLOG

DOUT0–7, GSOUT, BOUT

VCCLOG

OUTPUT

GNDLOG

XDOWN1, XDOWN2

GNDLOG

XDOWN1, XDOWN2

OUTn

GNDLED

OUTn

Page 6: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Terminal Functions

TERMINALI/O DESCRIPTION

NAME NO.I/O DESCRIPTION

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BCENA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

85

ÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Brightness control enable. When BCENA is low, the brightness control latch is set to thedefault value. The output current value in this status is 100% of the setting value by anexternal resistor. The frequency division ratio of GSCLK is1/1. When BCENA is high,writing to brightness control latch is enabled.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BLANK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

68

ÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Blank(light off). When BLANK is high, all the output of the constant current driver is turnedoff. The constant current output, which the gray scale data is not zero, is turned on (LEDon) synchronizing to the falling edge of GSCLK after the next rising edge of GSCLK whenBLANK goes from high to low.

ÁÁÁÁÁÁÁÁÁÁÁÁ

BOUT ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

57 ÁÁÁÁ

OÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Blank signal delay. BOUT is the output with addition of delay time to BLANK.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DCLK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

65

ÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock input for data transfer. The input data is from DIN. All data on the shift register isselected by RSEL0 and RSEL1, and output data at DOUT is shifted by 1 bit synchronizingto DCLK. The data except for DOUT is synchronized to the rising edge, and the edge fordata from DOUT is determined by the level of DOMODE.

ÁÁÁÁÁÁÁÁÁÁÁÁ

DIN0 – DIN7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

70,71,72,73,76,77,78,79

ÁÁÁÁ

IÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input for 8 bit parallel data. These terminals are inputs to the shift register for gray scaledata, brightness control, and OVM. The register selected is determined by RSEL0, 1.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DOMODE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

74

ÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Timing select for data output. When DOMODE is low, DOUT0–7 is changed synchronizingto the rising edge of DCLK. When DOMODE is high, DOUT0–7 is changed synchronizingto the falling edge of DCLK.ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DOUT0 – DOUT7

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

55,54,53,52,51,49,48,47

ÁÁÁÁÁÁÁÁ

O

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Output for 8 bit parallel data with 3-state. These terminals are outputs to the shift registerfor gray scale data, brightness control, and OVM. The register selected is determined byRSEL0, 1.

ÁÁÁÁÁÁÁÁÁÁÁÁ

GNDANA ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

43 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Analog ground (internally connected to GNDLOG and GNDLED)

ÁÁÁÁÁÁGNDLOG ÁÁÁÁÁÁÁ84 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLogic ground (internally connected to GNDANA and GNDLED)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GNDLED

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5,10,15,20,29,36,90,96

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LED driver ground (internally connected to GNDANA and GNDLOG)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GSCLKÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

69ÁÁÁÁÁÁ

IÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock input for gray scale. The gray scale display is accomplished by lighting LEDs untilthe number of GSCLK counted is equal to data latched.

ÁÁÁÁÁÁÁÁÁÁÁÁ

GSOUT ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

56 ÁÁÁÁ

OÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock delay for gray scale. GSOUT is the output with the addition of delay time to GSCLK.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IREFÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

40ÁÁÁÁÁÁ

I/OÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Constant current value setting. LED current is set to the desired value by connecting anexternal resistor between IREF and GND. The 37 times current compares current acrossthe external resistor sink on the output terminal.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCENAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

46ÁÁÁÁÁÁ

IÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OVM enable. When MCENA is low, the OVM latch is set to the default value. Thecomparison voltage in this status is 0.3V. When MCENA is high, writing to the OVM latchis enabled.

ÁÁÁÁÁÁÁÁÁÁÁÁ

MODEÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

83ÁÁÁÁ

IÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8/16 bits select. When MODE is high, 16 bits output is selected. When MODE is low, 8 bitsoutput is selected.ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NC

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1,2,4,6,9,11,14,16,19,21,23,24,25,27,28,30,31,34,35,37,38,44,50,82,86,88,89,91,92,95,97,98,

99

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

No internal connection

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OUT0 – OUT15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

87,93,94,100,3,7,8,12,13,17,18,22,26,

32,33,39

ÁÁÁÁÁÁ

OÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Constant current output

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSEL0RSEL1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6667

ÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Shift register data latch switching. When RSEL1 is low, gray scale data shift register latchis selected at RSEL0 low, and the brightness control register latch is selected at RSEL0high. When RSEL1 is high, the OVM register latch is selected at RSEL0 low, and noregister latch is selected at RSEL0 high.

Page 7: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Terminal Functions (Continued)

TERMINALI/O DESCRIPTION

NAME NO.I/O DESCRIPTION

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TSENA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

80

ÁÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TSD(thermal shutdown) enable. When TSENA is high, TSD is enabled. When TSENA islow, TSD is disabled.

ÁÁÁÁÁÁÁÁÁÁÁÁ

TEST1TEST2

ÁÁÁÁÁÁÁÁÁÁÁÁ

5875

ÁÁÁÁÁÁ

IÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TEST. Factory test terminal. TEST1 and TEST2 should be connected to GND for normaloperation.ÁÁÁÁÁÁ

ÁÁÁÁÁÁTHERMAL PADÁÁÁÁÁÁÁÁÁÁÁÁpackage bottom

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHeat sink pad. This pad is connected to the lowest potential IC or thermal layer.ÁÁÁÁÁÁ

ÁÁÁÁÁÁVCCANAÁÁÁÁÁÁÁÁÁÁÁÁ45

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAnalog power supply voltageÁÁÁÁÁÁ

ÁÁÁÁÁÁVCCLOG

ÁÁÁÁÁÁÁÁÁÁÁÁ

81ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logic power supply voltageÁÁÁÁÁÁÁÁÁÁÁÁ

VCCLED ÁÁÁÁÁÁÁÁÁÁÁÁ

41 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LED driver power supply voltageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WDTRG

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

62

ÁÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WDT (watchdog timer) trigger input. By applying a scan signal to this terminal, the scansignal can be monitored by turning the constant current output off to protect the LED fromdamage if the scan signal stops during the constant period designed.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WDCAP

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

42

ÁÁÁÁÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WDT (watchdog timer) detection time adjustment. WDT detection time is adjusted byconnecting a capacitor between WDCAP and GND. When WDCAP is directly connectedto GND, WDT function is disabled. In this case, WDTRG should be tied to a high or a lowlevel.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XDOWN1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

60ÁÁÁÁÁÁÁÁÁ

OÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Shutdown. XDOWN1 is configured as open collector. It goes low when constant currentoutput is shut down by WDT or TSD function.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XDOWN2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

59ÁÁÁÁÁÁÁÁÁ

OÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OVM comparator output. XDOWN2 is configured as an open collector. It monitors terminalvoltage when constant current output is turned on. XDOWN2 goes low when this voltageis lower than the level selected by OVM latch. When BLANK is set high, the previous levelis held.ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XENABLE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

64

ÁÁÁÁÁÁÁÁÁÁÁÁ

I

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DCLK enable. When XENABLE is low, data transfer is enabled. Data transfer starts on therising edge of DCLK after XENABLE goes low. During XENABLE high, no data istransferred.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XLATCHÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

61ÁÁÁÁÁÁÁÁÁ

IÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Latch. When XLATCH is high, data on the shift register goes through latch. When XLATCHis low, data is latched. Accordingly, if data on the shift register is changed during XLATCHhigh, this new value is latched (level latch).

ÁÁÁÁÁÁÁÁÁÁÁÁ

XOEÁÁÁÁÁÁÁÁÁÁÁÁ

63ÁÁÁÁÁÁ

IÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data output enable. When XOE is low, DOUT0–7 terminals are drived. When XOE is high,DOUT0–7 terminals go to a high-impedance state.

absolute maximum ratings (see Note 1) †

Logic supply voltage, VCC(LOG) – 0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply voltage for constant current circuit, VCC(LED) – 0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog supply voltage, VCCANA – 0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current (dc), IO(LC) 90 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage range – 0.3 V to VCCLOG + 0.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output voltage range, VO(DOUTn), VO(BOUT) and VO(GSOUT) – 0.3 V to VCCLOG + 0.3 V. . . . . . . . . . . . . . Output voltage range, VO(OUTn) and VO(DOWNn) – 0.3 V to 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage temperature range, Tstg –55°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous total power dissipation at (or below) TA = 25°C 4.7 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power dissipation rating at (or above) TA = 25°C 38.2m W/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the GNDLOG terminal.

Page 8: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

recommended operating conditions

dc characteristicsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PARAMETER ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TEST CONDITIONS ÁÁÁÁÁÁÁÁÁÁ

MIN ÁÁÁÁÁÁ

NOMÁÁÁÁÁÁÁÁÁÁ

MAX ÁÁÁÁÁÁ

UNIT

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logic supply voltage, VCCLOG ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

4.5ÁÁÁÁÁÁ

5ÁÁÁÁÁÁÁÁÁÁ

5.5ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Supply voltage for constant currentcircuit, VCCLED

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

4.5ÁÁÁÁÁÁ

5ÁÁÁÁÁÁÁÁÁÁ

5.5ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Analog power supply, VCCANAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

4.5ÁÁÁÁÁÁ

5ÁÁÁÁÁÁÁÁÁÁ

5.5ÁÁÁÁÁÁ

VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage between VCC, VDIFF1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VDIFF1 = VCCLOG – VCCANAVCCLOG – VCCLED, VCCANA – VCCLED

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

– 0.3ÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0.3ÁÁÁÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage between GND, VDIFF2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VDIFF2 = GNDLOG – GNDANAGNDLOG – GNDLED, GNDANA – GNDLED

ÁÁÁÁÁÁÁÁÁÁ

– 0.3ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁ

0.3ÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage applied to constant currentoutput, VOUTn

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OUT0 to OUT15 offÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

17ÁÁÁÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

High-level input voltage, VIH ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

0.8 VCCLOGÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCLOGÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low-level input voltage, VIL ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

GNDLOGÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0.2 VCCLOGÁÁÁÁÁÁ

V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

High-level output current, IOH ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCLOG = 4.5V, DOUT0 to DOUT7,BOUT, GSOUT

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

– 1ÁÁÁÁÁÁmAÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low-level output current, IOL

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCLOG = 4.5V, DOUT0 to DOUT7,BOUT, GSOUT

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

, OL

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCLOG = 4.5V, XDOWN1, XDOWN2 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5ÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁÁÁÁConstant output current, IO(LC) ÁÁÁÁÁÁÁÁÁÁÁÁOUT0 to OUT15 ÁÁÁÁÁ5ÁÁÁÁÁÁÁÁ80ÁÁÁmAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOperating free-air temperature range, TA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ– 20

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ85

ÁÁÁÁÁÁ°C

ac characteristics, VCCLOG = VCCANA = VCCLED = 4.5 V to 5.5 V, TA = – 20 to 85°C (unless otherwise noted)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PARAMETER ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TEST CONDITIONS ÁÁÁÁÁÁ

MINÁÁÁÁÁÁ

TYPÁÁÁÁÁÁ

MAXÁÁÁÁÁÁ

UNIT

ÁÁÁÁÁÁÁÁ

fDCLKÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DCLK clock frequencyÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

At single operation ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15ÁÁÁÁÁÁ

MHzÁÁÁÁÁÁÁÁ

fDCLKÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DCLK clock frequencyÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

At cascade operation (DOMODE = L)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

10ÁÁÁÁÁÁ

MHz

ÁÁÁÁtwh/twlÁÁÁÁÁÁÁÁÁÁÁÁÁÁDCLK pulse duration (high or low level) ÁÁÁÁÁÁÁÁÁÁÁÁÁ20ÁÁÁÁÁÁÁÁÁnsÁÁÁÁÁÁÁÁfGSCLK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGSCLK clock frequency

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFrequency division ratio 1/1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ8ÁÁÁÁÁÁMHzÁÁÁÁ

ÁÁÁÁtwh/twlÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGSCLK pulse duration (high or low level)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ40ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁnsÁÁÁÁ

ÁÁÁÁfWDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WDTRG clock frequencyÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8ÁÁÁÁÁÁ

MHzÁÁÁÁÁÁÁÁ

twh/twlÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WDTRG pulse duration (high or low level) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

40ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

nsÁÁÁÁÁÁÁÁ

twh ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XLATCH pulse duration (high) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

50ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ns

ÁÁÁÁÁÁÁÁ

tr/tf ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rise/fall time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

100ÁÁÁÁÁÁ

ns

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DINn – DCLK ÁÁÁÁÁÁ

10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BLANK – GSCLK ÁÁÁÁÁÁ

20ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁXENABLE – DCLK ÁÁÁ15ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁtsuÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSetup time

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁXLATCH – DCLK

ÁÁÁÁÁÁ15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁnsÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XLATCH – GSCLKÁÁÁÁÁÁ

15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSEL – DCLK↑ ÁÁÁÁÁÁ

10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSEL – XLATCH ÁÁÁÁÁÁ

20ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DINn – DCLK ÁÁÁÁÁÁ

15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XENABLE – DCLK ÁÁÁÁÁÁ

20ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁth ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hold time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XLATCH – DCLK ÁÁÁÁÁÁ

30ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ns

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSEL – DCLK↓ ÁÁÁÁÁÁ

20ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSEL – XLATCH ÁÁÁÁÁÁ

20ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Page 9: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

electrical characteristics, MIN/MAX: VCCLOG= VCCANA = VCCLED = 4.5 V to 5.5 V, TA = – 20 to 85°CTYP: VCCLOG = VCCANA = VCCLED = 5 V, TA = 25°C (unless otherwise noted)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PARAMETER ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TEST CONDITIONS ÁÁÁÁÁÁÁÁ

MINÁÁÁÁÁÁ

TYPÁÁÁÁÁÁ

MAXÁÁÁÁÁÁ

UNIT

ÁÁÁÁÁÁÁÁ

VOHÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

High-level output voltageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DOUTn, GSOUT, BOUT,IOH = – 1.0mA

ÁÁÁÁÁÁÁÁ

VCCLOG– 0.5ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VÁÁÁÁÁÁÁÁÁÁÁÁ

VOL

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low-level output voltage

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DOUTn, GSOUT, BOUT,IOL = 1.0mA,

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

0.5

ÁÁÁÁÁÁÁÁÁ

VÁÁÁÁÁÁÁÁ

OLÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

gÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XDOWN1, XDOWN2, IOL = 5 mA ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

0.5ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁII ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁInput current ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁVIN = VCCLOG or GNDLOG ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

±1ÁÁÁÁÁÁ

µA

ÁÁÁÁÁÁÁÁILOG

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSupply current (logic)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input signal is static,T SENA = H,WDCAP = OPEN

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁÁÁÁÁ

ILOG ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Supply current (logic) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data transfer,D CLK = 15 MHz,GSCLK = 8 MHz

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

18

ÁÁÁÁÁÁÁÁÁ

30

ÁÁÁÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁ

IANAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Supply current (analog)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LED turnon, RIREF = 590 ΩÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

3ÁÁÁÁÁÁ

5ÁÁÁÁÁÁ

mAÁÁÁÁÁÁÁÁ

IANA ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Supply current (analog)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LED turnoff RIREF = 590 ΩÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

3ÁÁÁÁÁÁ

5ÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLED turnoff, RIREF = 1180 ΩÁÁÁÁÁÁÁ15ÁÁÁ20ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLED turnoff, RIREF =590 Ω

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ30ÁÁÁÁÁÁ40ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ILED

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Supply current (constant current driver)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VOUT = 1 V. RIREF = 1180 ΩAll output bits turn on

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

25

ÁÁÁÁÁÁÁÁÁ

35

ÁÁÁÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VOUT = 1, RIREF = 590 ΩAll output bits turn on

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

50ÁÁÁÁÁÁ

70ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

IOLC1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Constant output current (includes errorbetween bits)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VOUT = 1 V, RIREF = 1180 Ω

ÁÁÁÁÁÁÁÁÁÁÁÁ

35

ÁÁÁÁÁÁÁÁÁ

40

ÁÁÁÁÁÁÁÁÁ

45

ÁÁÁÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁÁÁÁÁ

IOLC2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Constant output current (includes errorbetween bits)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VOUT = 1 V, RIREF = 590 ΩÁÁÁÁÁÁÁÁÁÁÁÁ

70ÁÁÁÁÁÁÁÁÁ

80ÁÁÁÁÁÁÁÁÁ

90ÁÁÁÁÁÁÁÁÁ

mA

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OUT0 to OUT15 (VOUTn = 15 V) ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

0.1ÁÁÁÁÁÁ

µAÁÁÁÁÁÁÁÁIOLK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁConstant output leakage current

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁXDOWN1,2 (VXDOWNn = 15 V)

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁµAÁÁÁÁ

ÁÁÁÁÁÁÁÁ

IOLK ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Constant out ut leakage current ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DOUTn,(VOUTn = VCCLOG or GND)

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ

µA

ÁÁÁÁÁÁÁÁÁÁÁÁ

∆IOLC

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Constant output current error between bitÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCLOG=VCCANA=VCCLED=5 V,VOUT = 1 V, RIREF = 590 ΩAll output bits turn on

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

±1%ÁÁÁÁÁÁÁÁÁ

±4%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

I∆OLC1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Changes in constant output current dependon supply voltage

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VOUT = 1 V, RIREF = 1180 Ω,VIREF = 1.24 V, 1 bit output turn on

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

±1ÁÁÁÁÁÁÁÁÁ

±4ÁÁÁÁÁÁÁÁÁ

%/V

ÁÁÁÁÁÁÁÁ

I∆OLC2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Changes in constant output current dependon output voltage

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VOUT = 1 V to 3 V, RIREF = 1180 Ω,VIREF = 1.24 V, 1 bit output turn on

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

±1ÁÁÁÁÁÁ

±2ÁÁÁÁÁÁ

%/V

ÁÁÁÁÁÁÁÁ

TtsdÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TSD detection temperatureÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Junction temperatureÁÁÁÁÁÁÁÁ

150ÁÁÁÁÁÁ

160ÁÁÁÁÁÁ

170ÁÁÁÁÁÁ

°CÁÁÁÁÁÁÁÁ

TwdtÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

WDT detection temperatureÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

No external capacitorÁÁÁÁÁÁÁÁ

5ÁÁÁÁÁÁ

10ÁÁÁÁÁÁ

15ÁÁÁÁÁÁ

msÁÁÁÁÁÁÁÁ

VIREFÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage reference ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BCENA = L, RIREF = 590 ΩÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

1.24ÁÁÁÁÁÁÁÁÁÁÁÁ

V

Page 10: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

switching characteristics, C L = 15pF, MIN/MAX: VCCLOG= VCCANA = VCCLED = 4.5 V to 5.5, TA = –20 to 85°CTYP: VCCLOG = VCCANA = VCCLED = 5 V, TA = 25°C (unless otherwise noted)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PARAMETERÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TEST CONDITIONSÁÁÁÁÁÁ

MINÁÁÁÁÁÁ

TYPÁÁÁÁÁÁ

MAXÁÁÁÁÁÁ

UNITÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DOUTnÁÁÁÁÁÁÁÁÁÁÁÁ

12ÁÁÁÁÁÁ

30ÁÁÁÁÁÁÁÁÁ

ÁÁÁtrÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rise time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GSOUT, BOUT ÁÁÁÁÁÁÁÁÁÁÁÁ

13ÁÁÁÁÁÁ

30ÁÁÁÁÁÁ

ns

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OUTn (see Figure 1) ÁÁÁÁÁÁÁÁÁÁÁÁ

250ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DOUTn ÁÁÁÁÁÁÁÁÁÁÁÁ

8ÁÁÁÁÁÁ

20ÁÁÁÁÁÁÁÁÁ

ÁÁÁtf ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Fall time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GSOUT, BOUT ÁÁÁÁÁÁÁÁÁÁÁÁ

10ÁÁÁÁÁÁ

25ÁÁÁÁÁÁ

ns

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOUTn (see Figure 1) ÁÁÁÁÁÁ200ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOUTn+1 – OUTn

ÁÁÁÁÁÁÁÁÁÁÁÁ35ÁÁÁÁÁÁ60ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BLANK↑ – OUT0ÁÁÁÁÁÁÁÁÁÁÁÁ

350ÁÁÁÁÁÁ

500ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BLANK – BOUTÁÁÁÁÁÁ

20ÁÁÁÁÁÁ

40ÁÁÁÁÁÁ

70ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GSCLK↓ – OUT0 ÁÁÁÁÁÁÁÁÁÁÁÁ

350ÁÁÁÁÁÁ

500ÁÁÁÁÁÁÁÁÁ

ÁÁÁtdÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Propagation delay time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GSCLK – GSOUT ÁÁÁÁÁÁ

20ÁÁÁÁÁÁ

40ÁÁÁÁÁÁ

70ÁÁÁÁÁÁ

ns

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DCLK – DOUTn ÁÁÁÁÁÁ

15ÁÁÁÁÁÁ

30ÁÁÁÁÁÁ

50ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XOE↓ – DOUTn (see Note 2) ÁÁÁÁÁÁ

10ÁÁÁÁÁÁ

20ÁÁÁÁÁÁ

35ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁXOE↑ – DOUTn (see Note 2) ÁÁÁ10ÁÁÁ15ÁÁÁ25ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGSCLK – XDOWN2 (∆0.1 V)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ5000ÁÁÁÁÁÁ

NOTE 2: Until DOUT will be turned on (drive) or turned off (Hi-Z).

Page 11: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

11POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

VCC

IREF OUTn

GND

VCC

51 Ω

15 pF590 Ω

Figure 1. Rise Time and Fall Time Test Circuit for OUTn

tf

50%

tr

90%

10%

VIH

VIL

100%

0%

VIH or VOH

VIL or VOL

50%

100%

0%

VIH or VOH

VIL or VOL

td

twh twl

50%

100%

0%

VIH

VIL

Figure 2. Timing Requirements

Page 12: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

constant current output selection by user (80 mA × 16 bits or 120 mA × 8 bits)

When the MODE terminal is set to high, output is selected as 80 mA × 16 bits. When the MODE terminal is setto low, output is selected as 120 mA × 8 bits. By this setting, the shift register latch for gray scale data is changedto the configuration corresponding to the bit selected. Note that two constant output terminals should be tiedto an LED such as OUT0-to-OUT1 and OUT2-to-OUT3 because they operate in a pair when the 8 bits outputmode is selected. Also, in this case, the current value of the constant current output is the same as the 16 bitsoutput mode. Therefore, when an output current of 120 mA is desired, the resister connected to the IREFterminal should be selected to the same value as the output current of 60 mA.

Table 1. Operation Mode Selection

ÁÁÁÁÁÁÁÁÁÁ

MODE ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OUTPUT

ÁÁÁÁÁÁÁÁÁÁ

H ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

80 mA × 16 bits

ÁÁÁÁÁÁÁÁÁÁ

L ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

120 mA × 8 bits

On the constant current output terminals (OUT0–15), approximately 37 times the current which flows throughexternal resistor, RIREF (connected between IREF and GND), can flow. The external resistor value is calculatedusing the following equation:

RIREF (Ω) ≅ 37 × 1.24 (V)/IO(LC)(A) where BCENA is low.

Note that more current flows if IREF is connect to GND directly.

constant output current operation

The constant current output turns on the sink constant current if all the gray scale data in the gray scale latchis not zero on the falling edge of the gray scale clock after the next rising edge of the gray scale clock whenBLANK goes from high to low. After that, the number of the falling edge is counted by the 8-bit gray scale counter.Then, the output counted corresponding to gray scale data is turned off (stop to sink constant current). If theshift register for gray scale is updated during XLATCH high, data on the gray scale data latch is also updatedaffecting the constant current output number of the gray scale. Accordingly, during the on-state of constantcurrent output, the XLATCH should be kept to a low level and the gray scale data latch should be held. If thereare constant current output terminals unconnected (includes LED disconnection), the LED should be turned onafter writing zero to the gray scale data latch corresponding to output unconnected. Unless this action is taken,the supply current on the constant current driver will increase resulting in the influence of the current value forthe constant current output light on.

shift register latch

The device provides three kinds of shift register latchs including the gray scale data, brightness control, andOVM. To write data into a shift register, DCLK and DIN are utilized. The selection of a shift register will be doneby RSEL0 and RSEL1 as shown in below table. Note that RSEL0 and RSEL1 should be changed when bothDCLK and XLATCH are low.

Table 2. Shift Register Latch Selection

ÁÁÁÁÁÁÁÁÁÁÁÁ

RSEL0 ÁÁÁÁÁÁÁÁÁÁ

RSEL1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SHIFT REGISTER LATCH SELECTED

ÁÁÁÁÁÁÁÁÁÁÁÁ

L ÁÁÁÁÁÁÁÁÁÁ

L ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Shift register latch for gray scale data

ÁÁÁÁÁÁÁÁÁÁÁÁ

L ÁÁÁÁÁÁÁÁÁÁ

H ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Shift register latch for brightness control

ÁÁÁÁÁÁH ÁÁÁÁÁL ÁÁÁÁÁÁÁÁÁÁÁÁShift register latch for OVMÁÁÁÁÁÁÁÁÁÁÁÁH

ÁÁÁÁÁÁÁÁÁÁH

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁN/A (DOUTn is tied to low level)

Page 13: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

13POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

shift register latch for gray scale data

The shift register latch for the gray scale data is set as an 8 × 1 byte configuration at the 8 bit mode, and as a16 × 1 byte configuration at the 16 bit mode. The gray scale data, configured as 8 bits, represents the time whenconstant current output is being turned on, and the data range is 0 to 255 (00h to FFh). When the gray scaledata is 0, the time is shortest, and the output is not turned on(light off). On the other hand, when the gray scaledata is 255, the time is longest, and it turns on during the time of the 255 clocks from GSCLK. The configurationof the shift register and latch for gray scale data is shown below.

(8 bits)

OUT15DataXLATCH

(8 bits)

OUT14Data

(8 bits)

OUT1Data

(8 bits)

OUT0Data

Latch for Gray Scale Data

16th byte

DIN7 MSB

DIN0 LSB

DOUT0 to 7

Shift Register for Gray Scale Data

15th byte

DIN7 MSB

DIN0 LSB

2nd byte

DIN7 MSB

DIN0 LSB

1st byte

DIN7 MSB

DIN0 LSB DIN0 to 7

DCLK

16 Bit Mode (MODE=H, RSEL0 and RSEL1=L)

(8 bits)

OUT15, 14DataXLATCH

(8 bits)

OUT13, 12Data

(8 bits)

OUT3, 2Data

(8 bits)

OUT1, 0Data

Latch for Gray Scale Data

8th byte

DIN7 MSB

DIN0 LSB

DOUT0 to 7

Shift Register for Gray Scale Data

7th byte

DIN7 MSB

DIN0 LSB

2nd byte

DIN7 MSB

DIN0 LSB

1st byte

DIN7 MSB

DIN0 LSB DIN0 to 7

DCLK

8 Bit Mode (MODE=L, RSEL0 and RSEL1=L)

Figure 3. Relationship Between Shift Register and Latch for Gray Scale Data

Page 14: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

shift register latch for brightness control and OVM

The shift register latch for both brightness control and OVM (Output Voltage Monitor) is configured with a1 x 1 byte. In the shift register latch for brightness control, the division ratio of GSCLK can be set and the outputcurrent value on the constant current output can be adjusted. In the shift register latch for OVM, the comparisonvoltage at OVM comparator on the constant current output terminals (OUT0 to OUT15) can be set and the outputsignal for both XDOWN1 and XDOWN2 can be forced to low level. When power up, the latch data isindeterminate and the shift register is not initialized. Data should be written to the shift register latch prior toturning the constant current output on (BLANK=L) when these functions are used. Also, it is inhibited to rewritethe latch value for brightness control when the constant current output is turned on. When these functions arenot used, the latch value can be set to the default value setting BCENA or MCENA to low level (tied to GND).The configuration of the shift register and the latch for brightness control and monitor control is shown in below.

XLATCH

Latch for Brightness Control

DOUT0 to 7DIN0 to 7

DCLK

GSCLK Division Ratio Data Set

0 0 0 1 1 1 1 1

MSB LSB MSB LSB

Shift Register for Brightness Control

DIN7

DATA

DIN6

DATA

DIN5

DATA

DIN4

DATA

DIN3

DATA

DIN2

DATA

DIN1

DATA

DIN0

DATA

(Note A)

GSCLK Division Ratio Data Set Current Data Adjusted On Constant Current Output

XLATCHN/A 0 0 0 1

MSB LSB

(Note B)

Latch for OVM

Monitor Control Data

Note A: Indicates default value at the BCENA terminal = 0 if the brightness control latch = 1

DOUT0 to 7DIN0 to 7

DCLK

Shift Register for OVM

DIN7

DATA

DIN6

DATA

DIN5

DATA

DIN4

DATA

DIN3

DATA

DIN2

DATA

DIN1

DATA

DIN0

DATA

Note B: Indicates default value at the MCENA terminal = 0 if the OVM latch =1

Figure 4. Relationship Between Shift Register and Latch for Brightness Control and OVM

write data to shift register latch

The shift register latch written to is selected using the RSEL0 and RSEL1 terminals. The data is applied to theDIN data input terminal and is clocked into the shift register synchronizing to the rising edge of DCLK afterXENABLE is pulled low. The shift register for the gray scale data is 8 bits length at 8 bit mode resulting in eighttimes DCLK, and 16 bit length at 16 bit mode resulting in sixteen times DCLK, and as for the brigtness controland monitor control resulting one times DCLK input. At the number of DCLK input for each case, data can bewritten into the shift register. In this condition, when XLATCH is pulled high, data in the shift register is clockedinto the latch (data through), and when XLATCH is pulled low, the data is held (latch).

Page 15: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

15POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

brightness control function

By writting data into the brightness control latch, the current on all constant current outputs can be adjusted tocontrol the variation of brightness between ICs and the division ratio for the gray scale clock can be set to controlthe variation of brigtness for the total panel system.

output current adjustment on all constant current outputs – brightness adjustment between ICs

By using the lower 5 bits of the brightness control latch, the output current can be adjusted to 32 steps. 1 stepis 1.6% of the current ratio between 100% and 51.6% when the set output current is 100% by an external resistor.By using this function, the brightness control between modules (ICs) can be adjusted sending desired dataexternally even if ICs are mounted on print-circuit board. When BCENA is pulled low, output current is set to100%.

Table 3. Relative Current Ratio For Total Constant Current OutputÁÁÁÁÁÁÁÁÁÁÁÁÁÁCODE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCURRENT RATIO (%)

ÁÁÁÁÁÁÁÁ20 (mA)

ÁÁÁÁÁÁÁÁ80 (mA)

ÁÁÁÁÁÁÁÁÁÁVIREF (TYP)ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁMSB 00000 LSB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

51.6ÁÁÁÁÁÁÁÁ

10.3ÁÁÁÁÁÁÁÁ

41.3ÁÁÁÁÁÁÁÁÁÁ

0.63ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

11110 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

98.4 ÁÁÁÁÁÁÁÁ

19.7 ÁÁÁÁÁÁÁÁ

78.7 ÁÁÁÁÁÁÁÁÁÁ

1.22

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

11111† ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

100 ÁÁÁÁÁÁÁÁ

20.0 ÁÁÁÁÁÁÁÁ

80.0 ÁÁÁÁÁÁÁÁÁÁ

1.24

† BCENA is low.

frequency division ratio setting for gray scale clock – panel brightness adjustment

By using the upper 3 bits of the brightness control latch, the gray scale clock can be divided into a frequencydivision ratio of 1/1 to 1/8. If the gray scale clock is set to 8 times the speed (256x8=2048) of frequency duringhorizontal scanning time, the brightness can be adjusted to 8 steps selecting the frequency division ratio. Byusing this function, the total panel brightness can be adjusted at once, and it applies to the brightness of dayor night circumstances. When BCENA is pulled low, the gray scale clock is not divided. When BCENA is pulledhigh, the brightness can be adjusted (see Table 4).

Table 4. Relative Brightness Ratio For Total Constant Current OutputÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CODE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

FREQUENCYDIVISION RATIO

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RELATIVE BRIGHTNESS RATIO(%)

ÁÁÁÁÁÁÁÁÁÁÁÁ

MSB 000 LSB†ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1/1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

12.5

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

.

ÁÁÁÁÁÁÁÁÁÁÁÁ

110 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1/7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

87.5

ÁÁÁÁÁÁ111 ÁÁÁÁÁÁÁ1/8 ÁÁÁÁÁÁÁÁÁÁ100

† BCENA is low.

OVM (output voltage monitor) function

By writing data into the OVM latch, the comparison voltage for the voltage comparator of OUT0 to OUT15 canbe set, and the output signal for XDOWN1 and XDOWN2 can be checked.

Page 16: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

OVM comparator

The OVM comparator compares the voltage on the constant current output terminal during turnon withcomparison voltage set by the OVM latch. When the voltage on the constant current output terminal is lower,XDOWN2 goes low. As shown in Figure 5, the comparator is provided in every output portion, and thecomparison result corresponding to the output to be turned on appears in the XDOWN2 terminal. Since theXDOWN2 terminal is an open-collector output, outputs of multiple ICs are brought together.

The output terminal for comparison result is only XDOWN2. The voltage on all the constant current output canbe checked to monitor XDOWN2 turning output on in turn. The voltage on the constant current output, whenturned on, can be also measured changing the comparison voltage set by the OVM latch. Using this function,sensing (LOD function) an LED disconnection (output voltage is below 0.3 V) and short circuit (output voltageis extremely high) can be detected and specifies which LED encountered this failure. Also, by monitoring theoutput voltage and controlling the voltage across anode of the LED to minimize the voltage on the constantcurrent output (approximately 0.7 V at IO = 80 mA), the temperature rising of the chip can be minimized.Furthermore, by setting BLANK to low during LED on, the comparison result immediately before can be held.Thus, synchronizing timing to check XDOWN2 from the system to the LED lighting timing is not required. Notethat the gray scale data being turned on should be a minimum of 5 µs since XDOWN2 output is requiredapproximately 5 µs after the constant current output is turned on. The comparison result is also requiredapproximately 5 µs after the changed latch data.

D

+–

+–

+–

+–

LATCH

Q

XDOWN2

OUT0

Internal OUT0Turn ON Signal

OUT1

OUT14

OUT15

Internal OUT1Turn ON Signal

Internal OUT014Turn ON Signal

Internal OUT015Turn ON Signal

Comparison Voltage

BLANK

When BLANK is high, hold the dataWhen BLANK is low, data is out.

Figure 5. OVM functional diagram

Page 17: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

17POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

output signal check for XDOWN1, XDOWN2

XDOWN1 or XDOWN2 can be forced to low level by setting the appropriate latch value for OVM. This allowsthe investigation of the correct connection of XDOWN1 or XDOWN2 to the external system.

OVM comparator setting

Setting the OVM latch is shown in Table 5. Note that the comparison voltage is set to the default value of 0.3V when MCENA is tied to the low level.

Table 5. OVM SettingÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MONITOR CONTROLDATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

COMPARISONVOLTAGE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XDOWN1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XDOWN2ÁÁÁÁÁÁÁÁ

MSB ÁÁÁÁÁÁÁÁÁÁ

LSB ÁÁÁÁÁÁÁÁÁÁÁÁ

VOLTAGE ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ0000 ÁÁÁÁÁÁ

ÁÁÁÁÁÁNO COMPARISONÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁDEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁHI–Z

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0001† ÁÁÁÁÁÁÁÁÁÁÁÁ

0.3 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATOR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0010 ÁÁÁÁÁÁÁÁÁÁÁÁ

0.4 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATOR

ÁÁÁÁÁÁÁÁ0011 ÁÁÁÁÁÁ0.5 V ÁÁÁÁÁÁÁÁDEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁDEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0100

ÁÁÁÁÁÁÁÁÁÁÁÁ0.6 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDEPEND ON TSD/WDT

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ0101

ÁÁÁÁÁÁÁÁÁÁÁÁ

0.7 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0110ÁÁÁÁÁÁÁÁÁÁÁÁ

0.8 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0111 ÁÁÁÁÁÁÁÁÁÁÁÁ

0.9 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1000 ÁÁÁÁÁÁÁÁÁÁÁÁ

1.0 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATOR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1001 ÁÁÁÁÁÁÁÁÁÁÁÁ

1.1 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATOR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1010 ÁÁÁÁÁÁÁÁÁÁÁÁ

1.2 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATOR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1011 ÁÁÁÁÁÁÁÁÁÁÁÁ

1/3 × VCCANA ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON OVM COMPARATOR

ÁÁÁÁÁÁÁÁ1100 ÁÁÁÁÁÁ1/2 × VCCANA ÁÁÁÁÁÁÁÁDEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁDEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1101

ÁÁÁÁÁÁÁÁÁÁÁÁ2/3 × VCCANA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDEPEND ON TSD/WDT

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ1110ÁÁÁÁÁÁÁÁÁÁÁÁ0.3 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁL

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDEPEND ON OVM COMPARATORÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ1111

ÁÁÁÁÁÁÁÁÁÁÁÁ

0.3 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DEPEND ON TSD/WDTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

L

† MCENA is low.

DOUT output timing selection

The timing for the DOUT output change can be switched by selecting the DOMODE level. When DOMODE islow, the DOUT is changed synchronizing to the rising edge of DCLK. When DOMODE is high, the DOUT ischanged synchronizing to the falling edge of DCLK. When the shift operation with DOMODE is high, data canbe protected from a shift error even if the DCLK signal is buffered externally in serial. In this case, when ICs areconnected in cascade, the maximum data transfer speed at will be slower than the case of DOMODE low.

Page 18: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

protection

This device incorporates WDT and TSD functions. If WDT or TSD functions, constant current output is stoppedand XDOWN1 goes low. Therefore, by monitoring the XDOWN1 terminal, these failures can be detectedimmediately. Since the XDOWN1 output is configured as an open collector, outputs of multiple ICs are broughttogether.

WDT (watchdog timer)

The constant current output is forced to turn off and XDOWN1 goes low when the fixed period elapsed after thesignal applied to WDTRG has not been changed. Therefore, by connecting a scan signal (signal to control linedisplayed) to WDTRG, the stop of the scan signal can be detected and the constant current output is turnedoff. This prevents the LED from burning and damage caused by continuous LED turnon at the dynamic scanningoperation. The detection time can be set using an external capacitor, Cext. The typical value is approximately10 ms without a capacitor, 160 ms with a 1000 pF capacitor and 1500 ms with a 0.01 µF capacitor. During staticoperation, the WDT function is disabled connecting WDCAP to GND (high or low level should be applied toWDTRG). Note that normal operations will resume changing the WDTRG level when WDT functions.

WDT operational time: T (ms) ≅ 10 + 0.15 × Cext (pF)

0 0.001 0.01

Cext – External Capacitor – µF

1500

160

10

TLC5904

WDTRG

WDCAP

Scan Signal

Cext

t – T

ime

– m

s

Figure 6. WDT Operational Time and Usage Example

TSD (thermal shutdown)

When the junction temperature exceeds the limit, TSD starts to function and turns the constant current outputoff, and XDOWN1 goes low. When TSD is used, TSENA should be pulled high. When TSD is not used, TSENAshould be pulled low. To recover from the constant current output off-state to normal operations, the powersupply should be turned off or TSENA should be pulled low once.

Page 19: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

19POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

noise reduction

concurrent switching noise reduction

The concurrent switching noise has a potential to occur when multiple outputs turn on or off at the same time.To prevent this noise, the device has delay output terminals such as XGSOUT and BOUT for GSCLK (gray scaleclock) and BLANK (blanking signal) respectively. By connecting these outputs to the GSCLK and BLANKterminals of next stage IC, it allows differences in the switching time between ICs. When GSCLK is output toGSOUT through the device, duty will be changed between input and output, and the number of stages to beconnected will be limited depending on frequency.

output slope

When the output current is 80 mA, the time to change constant current output to turnon and turnoff isapproximately 150 ns and 250 ns respectively. This allows reduced concurrent switching noise when multipleoutputs turn on or off at the same time.

delay between constant current output

The constant current output has a delay time of approximately 30 ns between outputs. This meansapproximately 450 ns delay time exists between OUT0 and OUT15. This time differences by delay allowsreduced concurrent switching noise as well as the output slope previously described. This delay time has thesame value at the 8 bits or 16 bits operation mode.

power supply

The followings should be taken into consideration:

1) VCCLOG, VCCANA, and VCCLED should be supplied by a single power supply to minimize voltagedifferences between these terminals.

2) The bypass capacitor should be located between the power supply and GND to eliminate the variation ofpower supply voltage.

GND

Although GNDLOG, GNDANA, and GNDLED are internally tied together, these terminals should be externallyconnected to reduce noise influence.

thermal pad

The thermal pad should be connected to GND to eliminate the noise influence when it is connected to the bottomside of IC chip. Also, the desired thermal effect will be obtained by connecting this pad to the PCB pattern withbetter thermal conductivity.

Page 20: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

power rating – free-air temperature

2.4

4.7

TA – Free–Air Temperature – °C

0 25 85–20

1.48

3.2

0 0

PD

– To

tal P

ower

Dis

sipa

tion

– W

Out

put V

olta

ge (

Con

stan

t Cur

rent

) –

V†

† VCCLOG=VCCANA=VCCLED=5.0V, IOLC = 80 mA, ICC is typical value.NOTES: A. IC is mounted on PCB. PCB size: 102 x 76 × 1.6 [mm3], four layers with the internal two layer being plane. The thermal pad is soldered

to the PCB pattern of 10 × 10 [mm2]. For operation above 25°C free-air temperature, derate linearly at the rate of 38.2 mW/°C.B. The thermal impedance will be varied depending on mounting conditions. Since the PZP package established low thermal

impedance by radiating heat from the thermal pad, the thermal pad should be soldered to the pattern with low a thermal impedance.C. Consider thermal characteristics when selecting the material for the PCB, since the temperature will rise around the thermal pad.

Figure 7. Power Rating

Page 21: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

21POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

constant output current

0

RIREF – kΩ

10.01.0

10

20

30

40

50

60

70

80

0.1

90

I OLC

– m

A

NOTE: Conditions: VOUT = 1.0V, VIREF = 1.24V

IOLC(mA)VIREF(V)

RIREF(k) 37≅

RIREF (k) 47IOLC(mA)

NOTE: Shows the output current at the 16 bit mode. and at the 8 bit mode (MODE=L). Output current is the sum of both outputs. This sum currentshould be set from 10 mA to 120 mA. The resistor, RIREF, should be located as close to the IREF terminal as possible to avoid the noiseinfluence.

Figure 8. Current on Constant Current Output vs External Resistor

Page 22: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVERS

LLS391 – N

OV

EM

BE

R 1999

Template R

elease Date: 7–11–94

22P

OS

T O

FF

ICE

BO

X 655303 D

ALLA

S, T

EX

AS

75265•

D70_A D71_A D72_A D7F_A D70_B D7D_B D7E_B D7F_B D70_C D71_CD7E_A

RSEL1

RSEL0

XOE

tsu (XENABLE–DCLK)

DIN0

DCLK

DIN7

XLATCH

DOUT0

DOUT7

1/fDCLK th (XENABLE–DCLK)

th (XLATCH–DCLK)

twl (DCLK) twh (DCLK)

D00_A D01_A D02_A D0F_A D00_B D0D_B D0E_B D0F_B D00_C D01_CD0E_A

XENABLE

tsu (DIN–DCLK)

tsu (XLATCH–DCLK)th (DIN–DCLK)

twh (XLATCH)

D00_A D01_A D0E_A D0F_A D00_BHI–Z

D70_A D71_A D7E_A D7F_A D70_BHI–Z

td (XOE↓–DOUT) td (DCLK–DOUT) td (XOE↑–DOUT)

Figure 9. Timing Diagram (Shift Register for Gray Scale Data)

NOTE: MODE = H

Page 23: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NO

VEMBER

1999

PO

ST

OF

FIC

E B

OX

655303 DA

LLAS

, TE

XA

S 75265

•23

D0_FD0_A D0_C

D7_A D7_C D7_J D7_K D7_L D7_M D7_N D7_OD7_B

RSEL0

MCENA

XOE

DCLK

XLATCH

DOUT0

DOUT7

th (XLATCH–DCLK)

Figure 10. Timing Diagram (Shift Register for Monitor Control)

MCL_0

twh (XLATCH)

D0_E D0_G D0_H D0_I

td (XOE↓–DOUT) td (DCLK–DOUT) td (XOE↑–DOUT)

RSEL1

DIN0

DIN7

MCL_1–3

XENABLE

tsu (RSEL–DCLK)

Default Value “1”

Default Value “0”

tsu (RSEL–XLATCH) th (RSEL–XLATCH)

tsu (RSEL–DCLK)

D0_A D0_C D0_J D0_K D0_L D0_M D0_N D0_OD0_B

Default Value “1”

Default Value “0”

D<0>_A

D<1:3>_A

D7_FD7_A D7_C D7_E D7_G D7_H D7_I

HI–Z

(Monitor Control Latch Internal Signal)

HI–Z

Page 24: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVERS

LLS391 – N

OV

EM

BE

R 1999

Template R

elease Date: 7–11–94

24P

OS

T O

FF

ICE

BO

X 655303 D

ALLA

S, T

EX

AS

75265•

D0_FD0_A D0_C

D7_A D7_C D7_J D7_K D7_L D7_M D7_N D7_OD7_B

RSEL0

BCENA

XOE

DCLK

XLATCH

DOUT0

DOUT7

th (XLATCH–DCLK)

Figure 11. Timing Diagram (Shift Register for Brightness Control)

BCL_0–4

twh (XLATCH)

D0_E D0_G D0_H D0_I

td (XOE↓–DOUT) td (DCLK–DOUT) td (XOE↑–DOUT)

RSEL1

DIN0

DIN7

BCL_5–7

XENABLE

tsu (RSEL–DCLK)

Default Value “1”

Default Value “0”

tsu (RSEL–XLATCH) th (RSEL–XLATCH)

tsu (RSEL–DCLK)

D0_A D0_C D0_J D0_K D0_L D0_M D0_N D0_OD0_B

Default Value “1”

Default Value “0”

D<0:4>_A

D<5:7>_A

D7_FD7_A D7_C D7_E D7_G D7_H D7_I

HI–Z

(Brightness Control Latch Internal Signal)

HI–Z

Page 25: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NO

VEMBER

1999

PO

ST

OF

FIC

E B

OX

655303 DA

LLAS

, TE

XA

S 75265

•25

(Note A)

(Note A) (Note A)

(Note A)OFF

GSCLK

BLANK

WDTRG

XDOWN1

XLATCH

1/fGSCLK

twl (GSCLK)

twh (GSCLK)

tsu (BLANK–GSCLK)

OUT1

OUT15

twdt

1/fWDT

twl (WDTRG)

td (BLANK–BOUT)BOUT

GSOUT

tsu (XLATCH–GSCLK)

OFF OFF

OFF OFF OFF

Figure 12. Timing Diagram (Constant Current Output)

ON(Note A)

ON(Note A)

NOTE A: ON or OFF, or ON time is varied dpend on the gray scale data and BLANK.

(Note A) (Note A)OFFOUT0 OFF OFFON(Note A)

......

XDOWN2

td (BLANK–OUT0)td (GSCLK–OUT0)

td (BLANK–OUT0)

td (GSCLK–OUT0)

td (OUTn+1–OUTn)

td (GSCLK–GSOUT)

(Note B) (Note B)

NOTE B: LED disconnection

td (OUTn+1–OUTn)

twh (WDTRG)

td (GSCLK–XDOWN2)

HI–Z

Page 26: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

TLC5904LED DRIVER

SLLS391 – NOVEMBER 1999

26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MECHANICAL DATAPZP (S-PQFP-G100) PowerPAD PLASTIC QUAD FLATPACK

0,13 NOM

50

26

Thermal Pad(see Note D)

0,750,45

0,25

Seating Plane

4146929/A 04/99

Gage Plane

0,27

75

0,17

76

100

SQ

SQ

1

15,8016,20

14,2013,80

12,00 TYP

1,050,95

1,20 MAX

51

25

0,50 M0,08

0,08

0°–7°0,150,05

NOTES: A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion.D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.

This pad is electrically and thermally connected to the backside of the die and possibly selected leads. The demensions of the thermalpad are 5 mm x 5 mm. The pad is centered on the bottom of the package.

E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments Incorporated.

Page 27: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

PACKAGING INFORMATION

Orderable Device Status (1) PackageType

PackageDrawing

Pins PackageQty

Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

TLC5904PZP ACTIVE HTQFP PZP 100 90 Green (RoHS &no Sb/Br)

CU NIPDAU Level-3-260C-168 HR

TLC5904PZPG4 ACTIVE HTQFP PZP 100 90 Green (RoHS &no Sb/Br)

CU NIPDAU Level-3-260C-168 HR

(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part ina new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please checkhttp://www.ti.com/productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirementsfor all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be solderedat high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die andpackage, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHScompatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flameretardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak soldertemperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it isprovided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to theaccuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to takereasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis onincoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limitedinformation may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TIto Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 6-Dec-2006

Addendum-Page 1

Page 28: TLC5904 LED DRIVER - TI.com · 2011. 8. 6. · TLC5904 LED DRIVER SLLS391 – NOVEMBER 1999 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Terminal Functions TERMINAL I/O DESCRIPTION

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,enhancements, improvements, and other changes to its products and services at any time and to discontinueany product or service without notice. Customers should obtain the latest relevant information before placingorders and should verify that such information is current and complete. All products are sold subject to TI’s termsand conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TIdeems necessary to support this warranty. Except where mandated by government requirements, testing of allparameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible fortheir products and applications using TI components. To minimize the risks associated with customer productsand applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or processin which TI products or services are used. Information published by TI regarding third-party products or servicesdoes not constitute a license from TI to use such products or services or a warranty or endorsement thereof.Use of such information may require a license from a third party under the patents or other intellectual propertyof the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is withoutalteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproductionof this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable forsuch altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for thatproduct or service voids all express and any implied warranties for the associated TI product or service andis an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and applicationsolutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2006, Texas Instruments Incorporated