tle202x-ep, tle202xa-ep excalibur high-speed low-power precision operational · pdf...

49
TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SGLS235DFEBRUARY 2004 REVISED SEPTEMBER 2010 1 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 D Controlled Baseline One Assembly/Test Site, One Fabrication Site D Extended Temperature Performance of 40°C to 125°C D Also Available in 55°C to 125°C D Enhanced Diminishing Manufacturing Sources (DMS) Support D Enhanced Product-Change Notification D Qualification Pedigree D Supply Current . . . 300 μA Max Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits. D High Unity-Gain Bandwidth . . . 2 MHz Typ D High Slew Rate . . . 0.45 V/μs Min D Supply-Current Change Over Full Temp Range . . . 10 μA Typ at V CC ± = ± 15 V D Specified for Both 5-V Single-Supply and ±15-V Operation D Phase-Reversal Protection D High Open-Loop Gain . . . 6.5 V/μV (136 dB) Typ D Low Offset Voltage . . . 100 μV Max D Offset Voltage Drift With Time 0.005 μV/mo Typ D Low Input Bias Current . . . 50 nA Max D Low Noise Voltage . . . 19 nV/Hz Typ description The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth. The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use. This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. A variety of options are available in small-outline packaging for high-density systems applications. The Q-suffix devices are characterized for operation over the full automotive temperature range of 40°C to 125°C. Copyright © 2007 Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Upload: nguyenanh

Post on 26-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

� Controlled Baseline− One Assembly/Test Site, One Fabrication

Site

� Extended Temperature Performance of−40°C to 125°C

� Also Available in −55°C to 125°C� Enhanced Diminishing Manufacturing

Sources (DMS) Support

� Enhanced Product-Change Notification

� Qualification Pedigree†

� Supply Current . . . 300 μA Max† Component qualification in accordance with JEDEC and industry

standards to ensure reliable operation over an extendedtemperature range. This includes, but is not limited to, HighlyAccelerated Stress Test (HAST) or biased 85/85, temperaturecycle, autoclave or unbiased HAST, electromigration, bondintermetallic life, and mold compound life. Such qualificationtesting should not be viewed as justifying use of this componentbeyond specified performance and environmental limits.

� High Unity-Gain Bandwidth . . . 2 MHz Typ

� High Slew Rate . . . 0.45 V/μs Min

� Supply-Current Change Over Full TempRange . . . 10 μA Typ at VCC ± = ± 15 V

� Specified for Both 5-V Single-Supply and±15-V Operation

� Phase-Reversal Protection

� High Open-Loop Gain . . . 6.5 V/μV(136 dB) Typ

� Low Offset Voltage . . . 100 μV Max

� Offset Voltage Drift With Time0.005 μV/mo Typ

� Low Input Bias Current . . . 50 nA Max

� Low Noise Voltage . . . 19 nV/√Hz Typ

description

The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a newTexas Instruments Excalibur process. These devices combine the best features of the OP21 with highlyimproved slew rate and unity-gain bandwidth.

The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramaticimprovement in unity-gain bandwidth and slew rate over similar devices.

The addition of a bias circuit in conjunction with this process results in extremely stable parameters with bothtime and temperature. This means that a precision device remains a precision device even with changes intemperature and over years of use.

This combination of excellent dc performance with a common-mode input voltage range that includes thenegative rail makes these devices the ideal choice for low-level signal conditioning applications in eithersingle-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitrythat eliminates an unexpected change in output states when one of the inputs goes below the negative supplyrail.

A variety of options are available in small-outline packaging for high-density systems applications.

The Q-suffix devices are characterized for operation over the full automotive temperature range of −40°C to125°C.

Copyright © 2007 Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Page 2: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

ORDERING INFORMATION

TAVIOmaxAT 25°C PACKAGE† ORDERABLE

PART NUMBERTOP-SIDEMARKING

300 μV SOIC (D) Tape and reel TLE2021AQDREP 2021AE

500 μV SOIC (D) Tape and reel TLE2021QDREP 2021QE

40°C to 125°C300 μV SOIC (D) Tape and reel TLE2022AQDREP 2022AE

−40°C to 125°C500 μV SOIC (D) Tape and reel TLE2022QDREP 2022QE

750 μV SOP (DW) Tape and reel TLE2024AQDWREP 2024AE

1000 μV SOP (DW) Tape and reel TLE2024QDWREP 2024QE

−55°C to 125°C 500 μV SOIC (D) Tape and reel TLE2021MDREP 2021ME† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available

at www.ti.com/sc/package.

1

2

3

4

8

7

6

5

OFFSET N1IN−IN+

VCC − /GND

NCVCC+OUTOFFSET N2

TLE2021D PACKAGE(TOP VIEW)

1

2

3

4

8

7

6

5

1OUT1IN−1IN+

VCC − /GND

VCC+2OUT2IN−2IN+

TLE2022D PACKAGE(TOP VIEW)

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

1OUT1IN−1IN+VCC +2IN+2IN−

2OUTNC

4OUT4IN−4IN+VCC − /GND3IN+3IN−3OUTNC

TLE2024DW PACKAGE

(TOP VIEW)

NC − No internal connection

Page 3: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

equivalent schematic (each amplifier)

IN −Q23 Q25

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q24

Q26

Q27

Q28

Q29

Q30

Q31

Q32

Q33

Q34

Q35

Q36

Q37

Q38

Q39

Q40D1 D2

D3

D4IN +

OUT

OFFSET N1(see Note A)

VCC+

VCC− /GND

C1

R1

R2

R3

R4

R5

C2

R6

R7

C4

C3

OFFSET N2(see Note A)

ACTUAL DEVICE COMPONENT COUNT

COMPONENT TLE2021 TLE2022 TLE2024

Transistors 40 80 160

Resistors 7 14 28

Diodes 4 8 16

Capacitors 4 8 16

Page 4: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, VCC+ (see Note 1) 20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply voltage, VCC− (see Note 1) −20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input voltage, VID (see Note 2) ±0.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage range, VI (any input, see Note 1) ±VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current, II (each input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current, IO (each output): TLE2021 ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TLE2022 ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLE2024 ±40 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total current into VCC+ 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total current out of VCC− 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating free-air temperature range, TA: Q suffix −40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M suffix −55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package thermal impedance, RθJA (see Notes 4 and 5): D (8-pin) 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . .

DW (16-pin) 57°C/W. . . . . . . . . . . . . . . . . . . . . . . . . Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D package 300°C. . . . . . . . . . . . . . . . . . . . . .

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC− .2. Differential voltages are at IN+ with respect to IN−. Excessive current flows if a differential input voltage in excess of approximately

±600 mV is applied between the inputs unless some limiting resistance is used.3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded.4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable

ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability.5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

MIN MAX UNIT

Supply voltage, VCC ±2 ±20 V

Common mode input voltage VVCC = ± 5 V 0 3.2

VCommon-mode input voltage, VIC VCC ± = ±15 V −15 13.2V

Operating free air temperature TQ suffix −40 125

°COperating free-air temperature, TAM suffix −55 125

°C

Page 5: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2021-EP TLE2021A-EP

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

V Input offset voltage25°C 120 600 100 400

VVIO Input offset voltageFull range 800 550

μV

αVIO

Temperature coefficient of input offset voltage

Full range 2 2 μV/°C

Input offset voltagelong-term drift (see Note 4)

VIC = 0, RS = 50 Ω 25°C 0.005 0.005 μV/mo

I Input offset current25°C 0.2 6 0.2 6

nAIIO Input offset currentFull range 10 10

nA

I Input bias current25°C 25 70 25 70

nAIIB Input bias currentFull range 90 90

nA

VCommon-mode input

R 50 Ω

25°C0to

3.5

−0.3to4

0to

3.5

−0.3to4

VVICRCommon mode inputvoltage range RS = 50 Ω

Full range0to

3.2

0to

3.2

V

VHigh-level output 25°C 4 4.3 4 4.3

VVOHHigh level output voltage

R 10 kΩFull range 3.8 3.8

V

VLow-level output

RL = 10 kΩ25°C 0.7 0.8 0.7 0.8

VVOLLow level output voltage Full range 0.95 0.95

V

ALarge-signal differential V 1 4 V to 4 V R 10 kΩ

25°C 0.3 1.5 0.3 1.5V/ VAVD differential

voltage amplificationVO = 1.4 V to 4 V, RL = 10 kΩ

Full range 0.1 0.1V/μV

CMRRCommon-mode

V V min R 50 Ω25°C 85 110 85 110

dBCMRRCommon mode rejection ratio VIC = VICRmin, RS = 50 Ω

Full range 80 80dB

kSupply-voltage rejection ratio V 5 V to 30 V

25°C 105 120 105 120dBkSVR rejection ratio

(ΔVCC ± /ΔVIO)VCC = 5 V to 30 V

Full range 100 100dB

I Supply current25°C 170 300 170 300

AICC Supply currentFull range 300 300

μA

ΔICC

Supply currentchange over operatingtemperature range

VO = 2.5 V, No load

Full range 9 9 μA

† Full range is −40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 6: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2021MDREP

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAXUNIT

25°C 120 600V I t ff t lt

25°C 120 600VVIO Input offset voltage

25 C 120 600μVVIO Input offset voltage

Full range 850μV

αVIO Temperature coefficient of input offset voltage Full range 2 μV/°C

Input offset voltage long-term drift (see Note 4)VIC = 0 RS = 50 Ω 25°C 0.005 μV/mo

I Input offset current

VIC = 0, RS = 50 Ω25°C 0.2 6

nAIIO Input offset currentFull range 10

nA

I Input bias current25°C 25 70

nAIIB Input bias currentFull range 90

nA

V Common mode input voltage range R 50 Ω

25°C0to

3.5

−0.3to4

VVICR Common-mode input voltage range RS = 50 Ω

Full range0to

3.2

V

V High level output voltage25°C 4 4.3

VVOH High-level output voltage

R 10 kΩFull range 3.8

V

V Low level output voltage

RL = 10 kΩ25°C 0.7 0.8

VVOL Low-level output voltageFull range 0.95

V

A Large signal differential voltage amplification V 1 4 V to 4 V R 10 kΩ25°C 0.3 1.5

V/ VAVD Large-signal differential voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1

V/μV

CMRR Common mode rejection ratio V V min R 50 Ω25°C 85 110

dBCMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80

dB

k Supply voltage rejection ratio (ΔV /ΔV ) V 5 V to 30 V25°C 105 120

dBkSVR Supply-voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 VFull range 100

dB

I Supply current25°C 170 300

AICC Supply currentVO = 2 5 V No load

Full range 300μA

ΔICCSupply current change over operatingtemperature range

VO = 2.5 V, No load

Full range 9 μA

† Full range is −55°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 7: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2021-EP TLE2021A-EP

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

V Input offset voltage25°C 120 500 80 300

VVIO Input offset voltageFull range 700 450

μV

αVIO

Temperature coefficient of input offset voltage

Full range 2 2 μV/°C

Input offset voltagelong-term drift (see Note 4)

VIC = 0, RS = 50 Ω 25°C 0.006 0.006 μV/mo

I Input offset current25°C 0.2 6 0.2 6

nAIIO Input offset currentFull range 10 10

nA

I Input bias current25°C 25 70 25 70

nAIIB Input bias currentFull range 90 90

nA

VCommon-mode input

R 50 Ω

25°C−15

to13.5

−15.3to14

−15to

13.5

−15.3to14

VVICRCommon mode inputvoltage range RS = 50 Ω

Full range−15

to13.2

−15to

13.2

V

VMaximum positivepeak output voltage

25°C 14 14.3 14 14.3VVOM + peak output voltage

swingR 10 kΩ

Full range 13.8 13.8V

VMaximum negativepeak output voltage

RL = 10 kΩ25°C −13.7 −14.1 −13.7 −14.1

VVOM − peak output voltageswing Full range −13.6 −13.6

V

ALarge-signal differential voltage V ±0 V R 10 kΩ

25°C 1 6.5 1 6.5V/ VAVD differential voltage

amplificationVO = ±0 V, RL = 10 kΩ

Full range 0.5 0.5V/μV

CMRRCommon-mode

V V min R 50 Ω25°C 100 115 100 115

dBCMRRCommon mode rejection ratio VIC = VICRmin, RS = 50 Ω

Full range 96 96dB

kSupply-voltage rejection ratio V ± 2 5 V to ±15 V

25°C 105 120 105 120dBkSVR rejection ratio

(ΔVCC ± /ΔVIO)VCC ± = ± 2.5 V to ±15 V

Full range 100 100dB

I Supply current25°C 200 350 200 350

AICC Supply currentFull range 350 350

μA

ΔICC

Supply currentchange over operating temperaturerange

VO = 0, No load

Full range 10 10 μA

† Full range is −40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 8: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2021MDREP

PARAMETER TEST CONDITIONS TA†

MIN TYP MAX UNIT

25°C 120 500V I t ff t lt

25°C 120 500VVIO Input offset voltage

25 C 120 500μVVIO Input offset voltage

Full range 800μV

αVIO Temperature coefficient of input offset voltage Full range 2 μV/°C

Input offset voltage long-term drift (see Note 4)VIC = 0 RS = 50 Ω 25°C 0.006 μV/mo

I Input offset current

VIC = 0, RS = 50 Ω25°C 0.2 6

nAIIO Input offset currentFull range 10

nA

I Input bias current25°C 25 70

nAIIB Input bias currentFull range 90

nA

V Common mode input voltage range R 50 Ω

25°C−15

to13.5

−15.3to14

VVICR Common-mode input voltage range RS = 50 Ω

Full range−15

to13.5

V

V Maximum positive peak output voltage swing25°C 14 14.3

VVOM+ Maximum positive peak output voltage swing

R 10 kΩFull range 13.8

V

V Maximum negative peak output voltage swing

RL = 10 kΩ25°C −13.7 −14.1

VVOM− Maximum negative peak output voltage swingFull range −13.6

V

A Large signal differential voltage amplification V ±0 V R 10 kΩ25°C 1 6.5

V/ VAVD Large-signal differential voltage amplification VO = ±0 V, RL = 10 kΩFull range 0.5

V/μV

CMRR Common mode rejection ratio V V min R 50 Ω25°C 100 115

dBCMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 96

dB

k Supply voltage rejection ratio (ΔV /ΔV ) V ± 2 5 V to ±ℑ° V25°C 105 120

dBkSVR Supply-voltage rejection ratio (ΔVCC ± /ΔVIO) VCC± = 2.5 V to ±ℑ° VFull range 100

dB

I Supply current25°C 200 350

AICC Supply currentVO = 0 No load

Full range 350μA

ΔICCSupply current change over operatingtemperature range

VO = 0, No load

Full range 10 μA

† Full range is −55°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 9: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2022-EP TLE2022A-EP

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

V Input offset voltage25°C 600 400

VVIO Input offset voltageFull range 800 550

μV

Temperature coefficient ofFull range 2 2 V/°CαVIO

Temperature coefficient ofinput offset voltage Full range 2 2 μV/°C

Input offset voltageV 0 R 50 Ω 25°C 0 005 0 005 V/mo

Input offset voltagelong-term drift (see Note 4) VIC = 0, RS = 50 Ω 25°C 0.005 0.005 μV/mo

I Input offset current25°C 0.5 6 0.4 6

nAIIO Input offset currentFull range 10 10

nA

I Input bias current25°C 35 70 33 70

nAIIB Input bias currentFull range 90 90

nA

0 −0.3 0 −0.325°C

0to

−0.3to

0to

−0.3to

VCommon-mode input

R 50 Ω

25 C to3.5

to4

to3.5

to4

VVICRCommon mode inputvoltage range RS = 50 Ω

0 0V

voltage range

Full range0to

0toFull range to

3.2to

3.2

V High level output voltage25°C 4 4.3 4 4.3

VVOH High-level output voltage

R 10 kΩFull range 3.8 3.8

V

V Low level output voltage

RL = 10 kΩ25°C 0.7 0.8 0.7 0.8

VVOL Low-level output voltageFull range 0.95 0.95

V

ALarge-signal differential

V 1 4 V to 4 V R 10 kΩ25°C 0.3 1.5 0.4 1.5

V/ VAVDLarge signal differentialvoltage amplification VO = 1.4 V to 4 V, RL = 10 kΩ

Full range 0.1 0.1V/μV

CMRRCommon-mode rejection

V V min R 50 Ω25°C 85 100 87 102

dBCMRRCommon mode rejection ratio VIC = VICRmin, RS = 50 Ω

Full range 80 82dB

kSupply-voltage rejection

V 5 V to 30 V25°C 100 115 103 118

dBkSVRSupply voltage rejection ratio (ΔVCC ± /ΔVIO) VCC = 5 V to 30 V

Full range 95 98dB

I Supply current25°C 450 600 450 600

AICC Supply currentFull range 600 600

μA

ΔISupply current change overoperating temperature

VO = 2.5 V, No load

Full range 37 37 μAΔICC operating temperaturerange

Full range 37 37 μA

† Full range is −40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 10: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2022-EP TLE2022A-EP

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

V Input offset voltage25°C 150 500 120 300

VVIO Input offset voltageFull range 700 450

μV

αVIOTemperature coefficient

Full range 2 2 V/°CαVIOTemperature coefficientof input offset voltage Full range 2 2 μV/°C

Input offset voltagelong term drift V 0 R 50 Ω 25°C 0 006 0 006 V/molong-term drift(see Note 4)

VIC = 0, RS = 50 Ω 25°C 0.006 0.006 μV/mo

I Input offset current25°C 0.5 6 0.4 6

nAIIO Input offset currentFull range 10 10

nA

I Input bias current25°C 35 70 33 70

nAIIB Input bias currentFull range 90 90

nA

−15 −15.3 −15 −15.325°C

−15to

−15.3to

−15to

−15.3to

VCommon-mode input

R 50 Ω

25 C to13.5

to14

to13.5

to14

VVICRCommon mode inputvoltage range RS = 50 Ω

−15 −15Vvoltage range

Full range−15

to−15

toFull range to13.2

to13.2

VMaximum positive peak 25°C 14 14.3 14 14.3

VVOM +Maximum positive peakoutput voltage swing

R 10 kΩFull range 13.8 13.8

V

VMaximum negative peak

RL = 10 kΩ25°C −13.7 −14.1 −13.7 −14.1

VVOM−Maximum negative peakoutput voltage swing Full range −13.6 −13.6

V

ALarge-signal differential

V ±10 V R 10 kΩ25°C 0.8 4 1 7

V/ VAVDLarge signal differentialvoltage amplification VO = ±10 V, RL = 10 kΩ

Full range 0.8 1V/μV

CMRRCommon-mode rejection

V V min R 50 Ω25°C 95 106 97 109

dBCMRRCommon mode rejectionratio VIC = VICRmin, RS = 50 Ω

Full range 91 93dB

kSupply-voltage rejection

V ±2 5 V to ±15 V25°C 100 115 103 118

dBkSVRSupply voltage rejectionratio (ΔVCC ± /ΔVIO) VCC ± = ±2.5 V to ±15 V

Full range 95 98dB

I Supply current25°C 550 700 550 700

AICC Supply currentFull range 700 700

μA

ΔISupply current changeover operating

VO = 0, No load

Full range 60 60 μAΔICC over operating temperature range

Full range 60 60 μA

† Full range is −40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 11: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

11POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2024-EP TLE2024A-EP

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

V Input offset voltage25°C 1100 850

VVIO Input offset voltageFull range 1300 1050

μV

αVIOTemperature coefficientof input offset voltage

Full range 2 2 μV/°C

Input offset voltagelong-term drift (see Note 4)

VIC = 0, RS = 50 Ω 25°C 0.005 0.005 μV/mo

I Input offset current25°C 0.6 6 0.5 6

nAIIO Input offset currentFull range 10 10

nA

I Input bias current25°C 45 70 40 70

nAIIB Input bias currentFull range 90 90

nA

VCommon-mode input

R 50 Ω

25°C0to

3.5

−0.3to4

0to

3.5

−0.3to4

VVICRCommon mode inputvoltage range RS = 50 Ω

Full range0to

3.2

0to

3.2

V

V High level output voltage25°C 3.9 4.2 3.9 4.2

VVOH High-level output voltage

R 10 kΩFull range 3.7 3.7

V

V Low level output voltage

RL = 10 kΩ25°C 0.7 0.8 0.7 0.8

VVOL Low-level output voltageFull range 0.95 0.95

V

ALarge-signal differential

V 1 4 V to 4 V R 10 kΩ25°C 0.2 1.5 0.3 1.5

V/ VAVDLarge signal differentialvoltage amplification VO = 1.4 V to 4 V, RL = 10 kΩ

Full range 0.1 0.1V/μV

CMRRCommon-mode rejection

V V min R 50 Ω25°C 80 90 82 92

dBCMRRCommon mode rejectionratio VIC = VICRmin, RS = 50 Ω

Full range 80 82dB

kSVRSupply-voltage rejection

V ±2 5 V to ±15 V25°C 98 112 100 115

dBkSVRSupply voltage rejectionratio (ΔVCC± /ΔVIO) VCC ± = ±2.5 V to ±15 V

Full range 93 95dB

I Supply current25°C 800 1200 800 1200

AICC Supply currentFull range 1200 1200

μA

ΔICC

Supply current changeover operating temperature range

VO = 0, No load

Full range 50 50 μA

† Full range is −40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 12: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2024 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLE2024-EP TLE2024A-EP

UNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

V Input offset voltage25°C 1000 750

VVIO Input offset voltageFull range 1200 950

μV

αVIOTemperature coefficientof input offset voltage

Full range 2 2 μV/°C

Input offset voltagelong-term drift (see Note 4)

VIC = 0, RS = 50 Ω 25°C 0.006 0.006 μV/mo

I Input offset current25°C 0.6 6 0.2 6

nAIIO Input offset currentFull range 10 10

nA

I Input bias current25°C 50 70 45 70

nAIIB Input bias currentFull range 90 90

nA

VCommon-mode input

R 50 Ω

25°C−15

to13.5

−15.3to14

−15to

13.5

−15.3to14

VVICRCommon mode inputvoltage range RS = 50 Ω

Full range−15

to13.2

−15to

13.2

V

VMaximum positive peak 25°C 13.8 14.1 13.8 14.2

VVOM +Maximum positive peakoutput voltage swing

R 10 kΩFull range 13.7 13.7

V

VMaximum negative peak

RL = 10 kΩ25°C −13.7 −14.1 −13.7 −14.1

VVOM−Maximum negative peakoutput voltage swing Full range −13.6 −13.6

V

ALarge-signal differential

V ±10 V R 10 kΩ25°C 0.4 2 0.8 4

V/ VAVDLarge signal differential voltage amplification VO = ±10 V, RL = 10 kΩ

Full range 0.4 0.8V/μV

CMRRCommon-mode rejection

V V min R 50 Ω25°C 92 102 94 105

dBCMRRCommon mode rejectionratio VIC = VICRmin, RS = 50 Ω

Full range 88 90dB

kSupply-voltage rejection

V ±2 5 V to ±15 V25°C 98 112 100 115

dBkSVRSupply voltage rejectionratio (ΔVCC ± /ΔVIO) VCC ± = ±2.5 V to ±15 V

Full range 93 95dB

I Supply current25°C 1050 1400 1050 1400

AICC Supply currentFull range 1400 1400

μA

ΔISupply current changeover operating

VO = 0, No load

Full range 85 85 μAΔICC over operating temperature range

Full range 85 85 μA

† Full range is −40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 13: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

13POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2021 operating characteristics, VCC = 5 V, TA = 25°CPARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT

SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 25°C 0.5 V/μs

VEquivalent input noise voltage f = 10 Hz 25°C 21

nV/HzVnEquivalent input noise voltage(see Figure 2) f = 1 kHz 25°C 17

nV/Hz

VPeak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16

VVN(PP)Peak to peak equivalent inputnoise voltage f = 0.1 to 10 Hz 25°C 0.47

μV

In Equivalent input noise current 25°C 0.9 pA/Hz

B1 Unity-gain bandwidth See Figure 3 25°C 1.2 MHz

φm Phase margin at unity gain See Figure 3 25°C 42°

TLE2021 operating characteristics at specified free-air temperature, VCC = ±15 V

PARAMETER TEST CONDITIONS TA† MIN TYP MAX UNIT

SR Slew rate at unity gain V ±10 V See Figure 125°C 0.45 0.65

V/ sSR Slew rate at unity gain VO = ±10 V, See Figure 1Full range 0.4

V/μs

VEquivalent input noise voltage f = 10 Hz 25°C 19

nV/HzVnEquivalent input noise voltage(see Figure 2) f = 1 kHz 25°C 15

nV/Hz

VPeak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16

VVN(PP)Peak to peak equivalent inputnoise voltage f = 0.1 to 10 Hz 25°C 0.47

μV

In Equivalent input noise current 25°C 0.09 pA/Hz

B1 Unity-gain bandwidth See Figure 3 25°C 2 MHz

φm Phase margin at unity gain See Figure 3 25°C 46°† Full range is −40°C to 125°C for the Q-suffix devices.

TLE2022 operating characteristics, VCC = 5 V, TA = 25°CPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/μs

VEquivalent input noise voltage f = 10 Hz 21

nV/√HzVnEquivalent input noise voltage(see Figure 2) f = 1 kHz 17

nV/√Hz

V Peak to peak equivalent input noise voltagef = 0.1 to 1 Hz 0.16

VVN(PP) Peak-to-peak equivalent input noise voltagef = 0.1 to 10 Hz 0.47

μV

In Equivalent input noise current 0.1 pA/√Hz

B1 Unity-gain bandwidth See Figure 3 1.7 MHz

φm Phase margin at unity gain See Figure 3 47°

Page 14: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2022 operating characteristics at specified free-air temperature, VCC = ±15 VPARAMETER TEST CONDITIONS TA

† MIN TYP MAX UNIT

SR Slew rate at unity gain V ±10 V See Figure 125°C 0.45 0.65

V/ sSR Slew rate at unity gain VO = ±10 V, See Figure 1Full range 0.4

V/μs

VEquivalent input noise f = 10 Hz 25°C 19

nV/√HzVnEquivalent input noisevoltage (see Figure 2) f = 1 kHz 25°C 15

nV/√Hz

VPeak-to-peak equivalent f = 0.1 to 1 Hz 25°C 0.16

VVN(PP)Peak to peak equivalentinput noise voltage f = 0.1 to 10 Hz 25°C 0.47

μV

In Equivalent input noise current 25°C 0.1 pA/√Hz

B1 Unity-gain bandwidth See Figure 3 25°C 2.8 MHz

φm Phase margin at unity gain See Figure 3 25°C 52°† Full range is −40°C to 125°C.

TLE2024 operating characteristics, VCC = 5 V, TA = 25°CPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/μs

V Equivalent input noise voltage (see Figure 2)f = 10 Hz 21

nV/√HzVn Equivalent input noise voltage (see Figure 2)f = 1 kHz 17

nV/√Hz

V Peak to peak equivalent input noise voltagef = 0.1 to 1 Hz 0.16

VVN(PP) Peak-to-peak equivalent input noise voltagef = 0.1 to 10 Hz 0.47

μV

In Equivalent input noise current 0.1 pA/√Hz

B1 Unity-gain bandwidth See Figure 3 1.7 MHz

φm Phase margin at unity gain See Figure 3 47°

TLE2024 operating characteristics at specified free-air temperature, VCC = ±15 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA† MIN TYP MAX UNIT

SR Slew rate at unity gain V ±10 V See Figure 125°C 0.45 0.7

V/ sSR Slew rate at unity gain VO = ±10 V, See Figure 1Full range 0.4

V/μs

VEquivalent input noise voltage f = 10 Hz 25°C 19

nV/√HzVnEquivalent input noise voltage (see Figure 2) f = 1 kHz 25°C 15

nV/√Hz

V Peak to peak equivalent input noise voltagef = 0.1 to 1 Hz 25°C 0.16

VVN(PP) Peak-to-peak equivalent input noise voltagef = 0.1 to 10 Hz 25°C 0.47

μV

In Equivalent input noise current 25°C 0.1 pA/√Hz

B1 Unity-gain bandwidth See Figure 3 25°C 2.8 MHz

φm Phase margin at unity gain See Figure 3 25°C 52°† Full range is −40°C to 125°C.

Page 15: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

15POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

−15 V

15 V

20 kΩ

VI

20 kΩ

VO

20 kΩ

VI

30 pF(see Note A)

VO

5 V

20 kΩ

+

+

(a) SINGLE SUPPLY

NOTE A: CL includes fixture capacitance.

(b) SPLIT SUPPLY

30 pF(see Note A)

Figure 1. Slew-Rate Test Circuit

2.5 V

5 V

VO

2 kΩ

20 Ω

20 Ω20 Ω20Ω

VO

−15 V

15 V

2 kΩ

+

+

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 2. Noise-Voltage Test Circuit

2.5 V

+

+

VO

10 kΩ

15 V

−15 V

10 kΩ

100ΩVIVI

10 kΩ

VO

100 Ω

10 kΩ

5 V

(a) SINGLE SUPPLY

NOTE A: CL includes fixture capacitance.

(b) SPLIT SUPPLY

30 pF(see Note A)

30 pF(see Note A)

Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit

Page 16: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

10 kΩ0.1 μF

10 kΩ

+

VO

10 kΩ

VI

5 V

+

VO

10 kΩ

VI

15 V

− 15 V

(a) SINGLE SUPPLY

NOTE A: CL includes fixture capacitance.

(b) SPLIT SUPPLY

30 pF(see Note A)

30 pF(see Note A)

Figure 4. Small-Signal Pulse-Response Test Circuit

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

Page 17: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

17POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of Graphs

FIGURE

VIO Input offset voltage Distribution 5, 6, 7

IIB Input bias currentvs Common-mode input voltagevs Free-air temperature

8, 9, 1011, 12, 13

II Input current vs Differential input voltage 14

VOM Maximum peak output voltagevs Output currentvs Free-air temperature

15, 16, 1718

VOH High-level output voltagevs High-level output currentvs Free-air temperature

19, 2021

VOL Low-level output voltagevs Low-level output currentvs Free-air temperature

2223

VO(PP) Maximum peak-to-peak output voltage vs Frequency 24, 25

AVD Large-signal differential voltage amplificationvs Frequencyvs Free-air temperature

2627, 28, 29

IOS Short-circuit output currentvs Supply voltagevs Free-air temperature

30 − 3334 − 37

ICC Supply currentvs Supply voltagevs Free-air temperature

38, 39, 4041, 42, 43

CMRR Common-mode rejection ratio vs Frequency 44, 45, 46

SR Slew rate vs Free-air temperature 47, 48, 49

Voltage-follower small-signal pulse response 50, 51

Voltage-follower large-signal pulse response 52 − 57

VN(PP) Peak-to-peak equivalent input noise voltage0.1 to 1 Hz0.1 to 10 Hz

5859

Vn Equivalent input noise voltage vs Frequency 60

B1 Unity-gain bandwidthvs Supply voltagevs Free-air temperature

61, 6263, 64

φm Phase marginvs Supply voltagevs Load capacitancevs Free-air temperature

65, 6667, 6869, 70

Phase shift vs Frequency 26

Page 18: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 5

16

12

8

4

3000−3000

600

20

VIO − Input Offset Voltage − μV

Per

cen

tag

e o

f U

nit

s −

%

−600

ÎÎÎÎP Package

VCC ± = ±15 V231 Units Tested From 1 Wafer Lot

DISTRIBUTION OF TLE2021INPUT OFFSET VOLTAGE

TA = 25°C

−450 −150 150 450

Figure 6

−600

Per

cen

tag

e o

f U

nit

s −

%

VIO − Input Offset Voltage − μV

20

2000

−400 −200 0

4

8

12

16

400 600

DISTRIBUTION OF TLE2022INPUT OFFSET VOLTAGE

ÎÎÎÎÎÎÎÎÎÎÎ398 Amplifiers Tested From 1 Wafer LotVCC ± = ±15 V

TA = 25°CP Package

Figure 7

−1

Per

cen

tag

e o

f U

nit

s −

%

VIO − Input Offset Voltage − mV

16

10

−0.5 0 0.5

796 Amplifiers Tested From 1 Wafer LotVCC ± = ±15 VTA = 25°CN Package

4

8

12

DISTRIBUTION OF TLE2024INPUT OFFSET VOLTAGE

Figure 8

TA = 25°C

VCC ± = ±15 V

−35

−30

−25

−20

−15

−10

−5

1050−5−100

15

−40

VIC − Common-Mode Input Voltage − V

IIB −

Inp

ut

Bia

s C

urr

ent −

nA

−15

IBI

TLE2021INPUT BIAS CURRENT

vsCOMMON-MODE INPUT VOLTAGE

Page 19: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

19POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 9

−15

IIB −

Inp

ut

Bia

s C

urr

ent −

nA

VIC − Common-Mode Input Voltage − V

−50

15−10 −5 0 5 10−20

−25

−30

−35

−40

−45

VCC ± = ±15 V

TA = 25°C

IBI

TLE2022INPUT BIAS CURRENT

vsCOMMON-MODE INPUT VOLTAGE

Figure 10

−15

IIB −

Inp

ut

Bia

s C

urr

ent −

nA

VIC − Common-Mode Input Voltage − V

−60

15−20

−10 −5 0 5 10

−30

−40

−50

VCC ± = ±15 V

TA = 25°C

ÁÁÁÁ

I IB

TLE2024INPUT BIAS CURRENT

vsCOMMON-MODE INPUT VOLTAGE

Figure 11

−30

−25

−20

−15

−10

−5

1007550250−25−500

125

−35

TA − Free-Air Temperature − °C

IIB −

Inp

ut

Bia

s C

urr

ent −

nA

−75

IBI

TLE2021INPUT BIAS CURRENT†

vsFREE-AIR TEMPERATURE

VCC ± = ±15 VVO = 0VIC = 0

Figure 12

−75

IIB −

Inp

ut

Bia

s C

urr

ent −

nA

TA − Free-Air Temperature − °C

−50

125−50 −25 0 25 50 75 100−20

−25

−30

−35

−40

−45

VCC ± = ±15 VVO = 0VIC = 0

IBI

TLE2022INPUT BIAS CURRENT†

vsFREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 20: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 13TA − Free-Air Temperature − °C

−75

IIB −

Inp

ut

Bia

s C

urr

ent −

nA

−60

−20−50 −25 0 25 50 75 100

−50

−30

−40

125

ÁÁÁÁ

I IB

ÎÎÎÎÎÎÎÎÎ

VO = 0VIC = 0

ÎÎÎÎÎVCC± = ±15 V

TLE2024INPUT BIAS CURRENT†

vsFREE-AIR TEMPERATURE

Figure 14

TA = 25°CVIC = 0VCC± = ±15 V

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.90.80.70.60.50.40.30.20.10

1

1

|VID| − Differential Input Voltage − V

II −

Inp

ut

Cu

rren

t −

mA

0

INPUT CURRENTvs

DIFFERENTIAL INPUT VOLTAGE

I I

Figure 15

0

VO

M −

Max

imu

m P

eak

Ou

tpu

t Vo

ltag

e −

V

IO − Output Current − mA

16

100

2 4 6 8

2

4

6

8

10

12

14

VCC ± = ±15 VTA = 25°C

ÁÁÁÁÁÁÁÁÁ

V OM

ÎÎÎÎÎÎÎÎ

VOM−

ÎÎÎÎÎÎÎÎ

VOM+

TLE2021MAXIMUM PEAK OUTPUT VOLTAGE

vsOUTPUT CURRENT

Figure 16

0

VO

M| −

Max

imu

m P

eak

Ou

tpu

t Vo

ltag

e −

V

|IO| − Output Current − mA

16

140

2 4 6

2

4

6

8

10

12

14 TA = 25°C

8 10 12

ÁÁÁÁ|V

OM

ÎÎÎÎÎÎ

VOM+

ÎÎÎÎÎÎÎÎ

VOM−

VCC ± = ±15 V

TLE2022MAXIMUM PEAK OUTPUT VOLTAGE

vsOUTPUT CURRENT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 21: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

21POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 17IO − Output Current − mA

0

VO

M −

Max

imu

m P

eak

Ou

tpu

t Vo

ltag

e −

V

16

02 4 6

2

4

6

8

10

12

14

8 10 12

ÎÎÎÎÎÎ

VOM−

14

VCC ± = ±5 V

ÎÎÎVOM +

ÁÁÁÁÁÁ

V OM

ÎÎÎÎTA = 25°C

TLE2024MAXIMUM PEAK OUTPUT VOLTAGE

vsOUTPUT CURRENT

Figure 18

−75TA − Free-Air Temperature − °C

15

12512

−50 −25 0 25 50 75 100

12.5

13

13.5

14

14.5

VOM−

VOM +

VCC ± = ±15 V

TA = 25°CRL = 10 kΩ

MAXIMUM PEAK OUTPUT VOLTAGE†

vsFREE-AIR TEMPERATURE

VO

M| −

Max

imu

m P

eak

Ou

tpu

t Vo

ltag

e −

V

ÁÁÁÁÁÁÁÁÁ

|VO

M

Figure 19

0

VO

H −

Hig

h-L

evel

Ou

tpu

t Vo

ltag

e −

V

IOH − High-Level Output Current − mA

5

−70

−1 −2 −3 −4 −5 −6

1

2

3

4

TA = 25°CVCC = 5 V

ÁÁÁÁV

OH

TLE2021HIGH-LEVEL OUTPUT VOLTAGE

vsHIGH-LEVEL OUTPUT CURRENT

Figure 20IOH − High-Level Output Current − mA

0

VO

H −

Hig

h-L

evel

Ou

tpu

t Vo

ltag

e −

V

5

0−2 −4 −6 −8

1

2

3

4

TA = 25°CVCC = 5 V

ÁÁÁÁ

V OH

−10

TLE2022 AND TLE2024HIGH-LEVEL OUTPUT VOLTAGE

vsHIGH-LEVEL OUTPUT CURRENT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 22: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 21

−75

TA − Free-Air Temperature − °C

5

1254

−50 −25 0 25 50 75 100

4.2

4.6

4.8

VO

H −

Hig

h-L

evel

Ou

tpu

t Vo

ltag

e −

V

VCC = 5 V

RL = 10 kΩ

No Load

HIGH-LEVEL OUTPUT VOLTAGE†

vsFREE-AIR TEMPERATURE

ÁÁÁÁV O

H

4.4

Figure 22

0

VO

L −

Lo

w-L

evel

Ou

tpu

t Vo

ltag

e −

V

IOL − Low-Level Output Current − mA

5

30

0.5 1 1.5 2 2.5

1

2

3

4

VCC = 5 VTA = 25°C

LOW-LEVEL OUTPUT VOLTAGEvs

LOW-LEVEL OUTPUT CURRENT

ÁÁÁÁÁÁ

VO

L

Figure 23

−75TA − Free-Air Temperature − °C

1

1250

−50 −25 0 25 50 75 100

0.25

0.5

0.75

IOL = 1 mA

IOL = 0

VCC ± = ±5 V

LOW-LEVEL OUTPUT VOLTAGE†

vsFREE-AIR TEMPERATURE

VO

L −

Lo

w-L

evel

Ou

tpu

t Vo

ltag

e −

V

ÁÁÁÁÁÁV

OL

Figure 24

100

VO

PP

− M

axim

um

Pea

k-to

-Pea

k O

utp

ut

Volt

age −

V

f − Frequency − Hz

5

1 M0

1

2

3

4

1 k 10 k 100 k

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

FREQUENCY

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTA = 25°C

VCC = 5 VRL = 10 kΩÁÁ

ÁÁÁÁV

O(P

P)

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 23: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

23POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 25

100f − Frequency − Hz

30

1 M0

5

10

15

20

25

1 k 10 k 100 k

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

FREQUENCY

ÁÁÁÁÁÁÁÁÁÁÁÁTA = 25°C

VCC ± = ±15 V

RL = 10 kΩ

VO

PP

− M

axim

um

Pea

k-to

-Pea

k O

utp

ut

Volt

age −

V

ÁÁÁÁÁÁÁÁ

V O(P

P)

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

RL = 10 kΩCL = 30 pFTA = 25°C

Ph

ase

Sh

iftAVD

180°

60°

200°

160°

140°

120°

100°

80°100

80

60

40

20

0

1 M100 k10 k1 k100−20

10 M

120

f − Frequency − Hz10

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE SHIFT

vsFREQUENCY

ÎÎÎÎÎÎÎÎÎÎ

Phase Shift

VCC = 5 V

− L

arg

e-S

ign

al D

iffe

ren

tial

AV

D Vo

ltag

e A

mp

lific

atio

n −

dB

Figure 26

Page 24: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 27

RL = 10 kΩ

ÎÎÎÎÎÎÎÎ

VCC = 5 V

6

4

2

1007550250−25−500

125

10

TA − Free-Air Temperature − °C

−75

ÎÎÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

V/

Vo

ltag

e A

mp

lific

atio

n −

8

− L

arg

e-S

ign

al D

iffe

ren

tial

AV

D

TLE2021LARGE-SCALE DIFFERENTIAL VOLTAGE

AMPLIFICATION†

vsFREE-AIR TEMPERATURE

Figure 28

−75TA − Free-Air Temperature − °C

1250

−50 −25 0 25 50 75 100

1

VCC = 5 V

VCC ± = ±15 V

RL = 10 kΩ

2

3

4

5

6

AV

D −

Lar

ge-

Sig

nal

Dif

fere

nti

alÁÁÁÁÁÁ

AV

DV

olt

age

Am

plif

icat

ion

− V

/μV

TLE2022LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION†

vsFREE-AIR TEMPERATURE

Figure 29

VCC ± = ±5 V

6

4

2

1007550250−25−500

125

10

TA − Free-Air Temperature − °C

−75

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

ÎÎÎÎÎÎÎÎÎÎ

RL = 10 kΩ

V/

Vo

ltag

e A

mp

lific

atio

n −

8

A−

Lar

ge-

Sig

nal

Dif

fere

nti

alV

D

TLE2024LARGE-SCALE DIFFERENTIAL VOLTAGE

AMPLIFICATION†

vsFREE-AIR TEMPERATURE

Figure 30

ÎÎÎÎÎVID = 100 mV

TA = 25°C

VID = −100 mV

VO = 08

6

4

2

0

−2

−4

−6

−8

1412108642−10

16

10

|VCC ±| − Supply Voltage − V

IOS

− S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t −

mA

0

ÁÁÁÁ

OS

I

TLE2021SHORT-CIRCUIT OUTPUT CURRENT

vsSUPPLY VOLTAGE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 25: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

25POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 31

0

IOS

− S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t −

mA

|VCC ±| − Supply Voltage − V

15

16−15

2 4 6 8 10 12 14

VO = 0TA = 25°C

VID = 100 mV−10

−5

0

5

10

I OS

ÎÎÎÎÎVID = −100 mV

TLE2022 AND TLE2024SHORT-CIRCUIT OUTPUT CURRENT

vsSUPPLY VOLTAGE

Figure 32

VO = VCC

TA = 25°C

VID = 100 mV

VID = −100 mV

VO = 0

8

4

0

−4

−8

252015105− 12

30

12

VCC − Supply Voltage − V0

IOS

− S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t −

mA

ÁÁÁÁÁÁ

OS

I

TLE2021SHORT-CIRCUIT OUTPUT CURRENT

vsSUPPLY VOLTAGE

Figure 33

0

IOS

− S

ho

rt-C

ircu

it O

utp

ut

CU

rren

t −

mA

VCC − Supply Voltage − V

15

30−15

−10

−5

0

5

10

ÎÎÎÎÎÎÎÎ

TA = 25°C

VID = −100 mV

VID = 100 mV

252015105

VO = VCC

VO = 0

I OS

TLE2022 AND TLE2024SHORT-CIRCUIT OUTPUT CURRENT

vsSUPPLY VOLTAGE

Figure 34

− 75

8

125− 8

− 50 − 25 0 25 50 75 100

− 6

− 4

− 2

0

2

4

6

VID = −100 mV

VCC = 5 V

VID = 100 mVVO = 0

VO = 5 V

TA − Free-Air Temperature − °C

IOS

− S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t −

mA

ÁÁÁÁ

OS

I

TLE2021SHORT-CIRCUIT OUTPUT CURRENT†

vsFREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 26: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 35

−75

6

125−10

−50 −25 0 25 50 75 100

−8

−6

−4

−2

0

2

4VID = −100 mVVCC = 5 V

VO = 5 V

TA − Free-Air Temperature −°C

IOS

− S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t −

mA

I OS

ÎÎÎÎÎVID = 100 mVÎÎÎÎÎÎ

VO = 0

TLE2022 AND TLE2024SHORT-CIRCUIT OUTPUT CURRENT†

vsFREE-AIR TEMPERATURE

Figure 36

−75

IOS

− S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t −

mA

TA − Free-Air Temperature − °C

12

125−12

−50 −25 0 25 50 75 100

−8

−4

0

4

8VO = 0

VCC ± = ±15 V

VID = −100 mV

VID = 100 mVÁÁÁÁ

OS

I

TLE2021SHORT-CIRCUIT OUTPUT CURRENT†

vsFREE-AIR TEMPERATURE

Figure 37

−75

TA − Free-Air Temperature − °C

15

125−15

−10

−5

0

5

10VO = 0

VID = −100 mV

VID = 100 mV

VCC ± = ±15 V

IOS

− S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t −

mA

−50 −25 0 25 50 75 100

I OS

TLE2022 AND TLE2024SHORT-CIRCUIT OUTPUT CURRENT†

vsFREE-AIR TEMPERATURE

Figure 38

0

ICC

− S

up

ply

Cu

rren

t −

ua

|VCC ±| − Supply Voltage − V

250

160

50

100

150

200

2 4 6 8 10 12 14

VO = 0No Load

ÁÁÁÁ

CC

IA

μ

ÎÎÎÎÎÎÎÎ

TA = 25°C

ÎÎÎÎÎÎÎÎTA = 125°C

ÎÎÎÎÎÎÎÎ

TA = −55°C

TLE2021SUPPLY CURRENT

vsSUPPLY VOLTAGE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 27: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

27POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 39

0

ICC

− S

up

ply

Cu

rren

t −

ua

|VCC ±| − Supply Voltage − V162 4 6 8 10 12 14

VO = 0No Load

TA = 25°C

TA = 125°CTA = −55°C

100

200

300

400

0

500

ÁÁÁÁÁÁ

CC

IA

μ

TLE2022SUPPLY CURRENT

vsSUPPLY VOLTAGE

Figure 40

0

|VCC ±| − Supply Voltage − V

162 4 6 8 10 12 14

VO = 0

No Load

200

400

600

800

0

1000

TA = 25°C

ÎÎÎÎTA = 125°C

TA = −55°C

− S

up

ply

Cu

rren

t −

μA

I CC

TLE2024SUPPLY CURRENT

vsSUPPLY VOLTAGE

Figure 41

−75

225

1250

25

50

75

100

125

150

175

200

−50 −25 0 25 50 75 100TA − Free-Air Temperature − °C

No Load

VO = 0

ÎÎÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±2.5 V

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

ICC

− S

up

ply

Cu

rren

t −

ua

ÁÁÁÁ

CC

IA

μ

TLE2021SUPPLY CURRENT†

vsFREE-AIR TEMPERATURE

Figure 42

−75

500

1250

−50 −25 0 25 50 75 100

VCC ± = ±15 V

VCC ± = ±2.5 V

TA − Free-Air Temperature − °C

No LoadVO = 0

400

300

200

100

ICC

− S

up

ply

Cu

rren

t −

ua

ÁÁÁÁ

CC

IA

μ

TLE2022SUPPLY CURRENT†

vsFREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 28: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 43

−75 125−50 −25 0 25 50 75 100

TA − Free-Air Temperature − °C

1000

0

800

600

400

200

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

ÎÎÎÎÎVCC ± = ±2.5 V

VO = 0

No Load

− S

up

ply

Cu

rren

t −

μA

I CC

TLE2024SUPPLY CURRENT†

vsFREE-AIR TEMPERATURE

Figure 44

TA = 25°C

ÎÎÎÎÎÎÎÎÎÎ

VCC = 5 V

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

100

80

60

40

20

1 M100 k10 k1 k1000

10 M

120

f − Frequency − Hz

CM

RR

− C

om

mo

n-M

od

e R

ejec

tio

n R

atio

− d

B

10

TLE2021COMMON-MODE REJECTION RATIO

vsFREQUENCY

Figure 45

10

CM

RR

− C

om

mo

n-M

od

e R

ehec

tio

n R

atio

− d

B

f − Frequency − Hz

120

10 M0

100 1 k 10 k 100 k 1 M

20

40

60

80

100

VCC ± = ±15 V

VCC = 5 V

ÎÎÎÎÎTA = 25°C

TLE2022COMMON-MODE REJECTION RATIO

vsFREQUENCY

Figure 46

10

CM

RR

− C

om

mo

n-M

od

e R

ejec

tio

n R

atio

− d

B

f − Frequency − Hz

120

10 M0

100 1 k 10 k 100 k 1 M

20

40

60

80

100

ÎÎÎÎÎÎÎÎ

VCC = 5 V

TA = 25°C

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

TLE2024COMMON-MODE REJECTION RATIO

vsFREQUENCY

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 29: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

29POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 47

See Figure 1

RL = 20 kΩCL = 30 pF

0.8

0.6

0.4

0.2

1007550250−25−500

125

1

TA − Free-Air Temperature − °C

SR

− S

lew

Rat

e −

V/u

s

−75

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

ÎÎÎÎÎÎÎÎ

VCC = 5 V

TLE2021SLEW RATE†

vsFREE-AIR TEMPERATURE

Figure 48

−75

SR

− S

lew

Rat

e −

V/ u

s

TA − Free-Air Temperature − °C

1

1250

−50 −25 0 25 50 75 100

0.2

0.4

0.6

0.8VCC ± = ±15 V

VCC = 5 V

CL = 30 pFRL = 20 kΩ

See Figure 1

TLE2022SLEW RATE†

vsFREE-AIR TEMPERATURE

Figure 49

−75

SR

− S

lew

Rat

e −

V/s

TA − Free-Air Temperature − °C

1

1250

−50 −25 0 25 50 75 100

0.2

0.4

0.6

0.8

CL = 30 pFRL = 20 kΩ

See Figure 1

ÎÎÎÎÎVCC ± = ±15 V

VCC = 5 V

V/

TLE2024SLEW RATE†

vsFREE-AIR TEMPERATURE

Figure 50

ÎÎÎÎÎÎÎÎÎÎ

See Figure 4TA = 25°CCL = 30 pFRL = 10 kΩVCC ± = ±15 V

50

0

−50

6040200−100

80

100

t − Time − μs

VO

− O

utp

ut

Volt

age −

mV

VOLTAGE-FOLLOWERSMALL-SIGNAL

PULSE RESPONSE

ÁÁÁÁ

VO

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 30: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 51

TA = 25°CCL = 30 pF

ÎÎÎÎÎSee Figure 4

RL = 10 kΩ

t − Time − μs

VCC = 5 V

2.5

60402002.4

80

2.6

VOLTAGE-FOLLOWERSMALL-SIGNAL

PULSE RESPONSE

VO

− O

utp

ut

Volt

age −

V

ÁÁÁÁÁÁ

VO

2.55

2.45

Figure 52t − Time − μs

4

800

0 20 40 60

1

2

3

VCC = 5 VRL = 10 kΩCL = 30 pFTA = 25°C

ÎÎÎÎÎÎÎÎÎÎ

See Figure 1

VO

− O

utp

ut

Volt

age −

V

ÁÁÁÁV

O

TLE2021VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

Figure 53t − Time − μs

4

800

0 20 40 60

1

2

3

VCC = 5 VRL = 10 kΩCL = 30 pFTA = 25°CSee Figure 1

VO

− O

utp

ut

Volt

age −

V

ÁÁÁÁÁÁ

VO

TLE2022VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

Figure 54t − Time − μs

4

800

0 20 40 60

1

2

3

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

VCC ± = 5 VRL = 10 kΩCL = 30 pFTA = 25°CSee Figure 1

VO

− O

utp

ut

Volt

age −

VV O

TLE2024VOLTAGE-FOLLOWER LARGE-SCALE

PULSE RESPONSE

Page 31: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

31POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 55

VO

− O

utp

ut

Volt

age −

V

t − Time − μs

15

80−15

0 20 40 60

−10

− 5

0

5

10

VCC ± = ±15 V

RL = 10 kΩCL = 30 pFTA = 25°CSee Figure 1

ÁÁÁÁV

O

TLE2021VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

Figure 56

VO

− O

utp

ut

Volt

age −

V

t − Time − μs

15

80−15

0 20 40 60

−10

−5

0

5

10

ÎÎÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 VRL = 10 kΩCL = 30 pFTA = 25°CSee Figure 1

ÁÁÁÁV

O

TLE2022VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

Figure 57

VO

− O

utp

ut

Volt

age −

V

t − Time − μs

15

80−15

0 20 40 60

−10

−5

0

5

10

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 VRL = 10 kΩCL = 30 pFTA = 25°CSee Figure 1

V O

TLE2024VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

Figure 58

0

0.5

10− 0.5

1 2 3 4 5 6 7 8 9

− 0.4

− 0.3

− 0.2

− 0.1

0

0.1

0.2

0.3

0.4

t − Time − s

ÎÎÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

TA = 25°C

PEAK-TO-PEAK EQUIVALENTINPUT NOISE VOLTAGE

0.1 TO 1 Hz

VN

PP

− P

eak-

to-P

eak

Eq

uiv

alen

t In

pu

t N

ois

e Vo

ltag

e −

uV Vμ

ÁÁÁÁÁÁ

V N(P

P)

Page 32: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 59t − Time − s

0.4

0.3

0.2

0.1

0

− 0.1

− 0.2

− 0.3

− 0.4

− 0.5

0.5

987654321 100

VCC ± = ±15 V

TA = 25°C

PEAK-TO-PEAK EQUIVALENTINPUT NOISE VOLTAGE

0.1 TO 10 Hz

VN

PP

− P

eak-

to-P

eak

Eq

uiv

alen

t In

pu

t N

ois

e Vo

ltag

e −

uV Vμ

ÁÁÁÁÁÁÁÁÁ

V N(P

P)

Figure 60

1

Vn

− E

qu

ival

ent

Inp

ut

No

ise

Volt

age −

nV

Hz

f − Frequency − Hz

200

10 k0

40

80

120

160

10 100 1 k

EQUIVALENT INPUT NOISE VOLTAGEvs

FREQUENCY

Vn

ÁÁÁÁÁÁ

nV

/H

z ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

RS = 20 Ω

ÎÎÎÎTA = 25°CÎÎÎÎÎÎÎÎÎÎ

See Figure 2

Figure 61

0

B1 −

Un

ity-

Gai

n B

and

wid

th −

MH

z

4

160

2 4 6 8 10 12 14

1

2

3See Figure 3TA = 25°CCL = 30 pFRL = 10 kΩ

B1

|VCC±| − Supply Voltage − V

TLE2021UNITY-GAIN BANDWIDTH

vsSUPPLY VOLTAGE

Figure 62

3

2

1

14121086420

16

4

|VCC±| − Supply Voltage − V

B1 −

Un

ity-

Gai

n B

and

wid

th −

MH

z

0

B1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RL = 10 kΩCL = 30 pFTA = 25°CSee Figure 3

TLE2022 AND TLE2024UNITY-GAIN BANDWIDTH

vsSUPPLY VOLTAGE

Page 33: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

33POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 63

−75

B1 −

Un

ity-

Gai

n B

and

wid

th −

MH

z

TA − Free-Air Temperature − °C

4

1250

−50 −25 0 25 50 75 100

1

2

3

See Figure 3CL = 30 pF

RL = 10 kΩ

VCC ± = ±15 V

ÎÎÎÎÎVCC = 5 VB1

TLE2021UNITY-GAIN BANDWIDTH†

vsFREE-AIR TEMPERATURE

Figure 64

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCC = 5 V

3

2

1

1007550250−25−500

125

4

TA − Free-Air Temperature − °C−75

RL = 10 kΩCL = 30 pFSee Figure 3

ÎÎÎÎÎÎÎÎÎÎÎÎ

VCC ± = ±15 V

B1 −

Un

ity-

Gai

n B

and

wid

th −

MH

zB

1

TLE2022 AND TLE2024UNITY-GAIN BANDWIDTH†

vsFREE-AIR TEMPERATURE

Figure 65

0

m −

Ph

ase

Mar

gin

50°

1640°

2 4 6 8 10 12 14

42°

44°

46°

48°

|VCC ±| − Supply Voltage − V

RL = 10 kΩCL = 30 pFTA = 25°CSee Figure 3

ÁÁÁÁ

TLE2021PHASE MARGIN

vsSUPPLY VOLTAGE

Figure 66

53°

51°

49°

47°

141210864245°

16

55°

m −

Ph

ase

Mar

gin

0|VCC±| − Supply Voltage − V

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

See Figure 3TA = 25°CCL = 30 pFRL = 10 kΩ

TLE2022 AND TLE2024PHASE MARGIN

vsSUPPLY VOLTAGE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 34: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 67

0CL − Load Capacitance − pF

60°

1000

20 40 60 80

10°

20°

30°

40°

50°

RL = 10 kΩTA = 30 pFSee Figure 3

VCC ± = ±15 V

VCC = 5 V

m −

Ph

ase

Mar

gin

ÁÁÁÁÁÁ

TLE2021PHASE MARGIN

vsLOAD CAPACITANCE

Figure 68

ÁÁÁÁÁÁÁÁÁÁÁÁ

80604020

VCC = 5 V

See Figure 3TA = 25°CRL = 10 kΩ

60°

50°

40°

30°

20°

10°

0°100

70°

CL − Load Capacitance − pF

m −

Ph

ase

Mar

gin

0

ÁÁÁÁ

VCC ± = ±15 V

TLE2022 AND TLE2024PHASE MARGIN

vsLOAD CAPACITANCE

Figure 69

−75

m −

Ph

ase

Mar

gin

TA − Free-Air Temperature − °C

50°

12536°

−50 −25 0 25 50 75 100

38°

40°

42°

44°

46°

48°

RL = 10 kΩCL = 30 pFSee Figure 3

VCC ± = ±15 V

VCC = 5 V

ÁÁ

TLE2021PHASE MARGIN†

vsFREE-AIR TEMPERATURE

Figure 70

42°

1007550250−25−50

VCC = 5 V

VCC ± = ±15 V

52°

50°

48°

46°

44°

40°125

54°

TA − Free-Air Temperature − °C−75

m −

Ph

ase

Mar

gin

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

See Figure 3CL = 30 pFRL = 10 kΩ

TLE2022 AND TLE2024PHASE MARGIN†

vsFREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 35: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

35POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

voltage-follower applications

The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occurwhen the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. Itis recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to preventdegradation of the device. This feedback resistor forms a pole with the input capacitance of the device. Forfeedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem canbe alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).

CF = 20 pF to 50 pF

IF ≤ 1 mA

RF

VCC +

VCC−

VO

VI

+

Figure 71. Voltage Follower

Input offset voltage nulling

The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit inFigure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the nullpins may be left disconnected.

1 kΩ GND (single supply)

VCC − (split supply)

5 kΩ

OFFSET N2

+

OFFSET N1

IN −

IN +

Figure 72. Input Offset Voltage Null Circuit

Page 36: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISIONOPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim Parts™, the model generation software usedwith Microsim PSpice™. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, andFigure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using thisinformation, output simulations of the following key parameters can be generated to a tolerance of 20% (in mostcases):

� Unity-gain frequency� Common-mode rejection ratio� Phase margin� DC output resistance� AC output resistance� Short-circuit output current limit

� Maximum positive output voltage swing� Maximum negative output voltage swing� Slew rate� Quiescent power dissipation� Input bias current� Open-loop voltage amplification

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journalof Solid-State Circuits, SC-9, 353 (1974).

OUT

+

+

+

+

−+

+

− +

+−

VCC +

rp

IN−

2IN+

1

VCC−

rc1

11

Q1 Q2

13

cee Iee

3

12

rc2

ve

54de

dp

vc

dc

4

C1

53

r2

6

9

egnd

vb

fb

C2

gcm gavlim

8

5ro1

ro2

hlim

90

dip

91

din92

vinvip

99

7

ree

14

re1 re2

Figure 73. Boyle Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

Page 37: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TLE202x-EP, TLE202xA-EPEXCALIBUR HIGH-SPEED LOW-POWER PRECISION

OPERATIONAL AMPLIFIERS

SGLS235D− FEBRUARY 2004 − REVISED SEPTEMBER 2010

37POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

.SUBCKT TLE2021 1 2 3 4 5*

c1 11 12 6.244E−12c2 6 7 13.4E−12c3 87 0 10.64E−9cpsr 85 86 15.9E−9dcm+ 81 82 dxdcm− 83 81 dxdc 5 53 dxde 54 5 dxdlp 90 91 dxdln 92 90 dxdp 4 3 dxecmr 84 99 (2 99) 1egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6ense 89 2 poly(1) (88,0) 120E−6 1fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6+ −50E7 50E7 50E7 −50E7 547E6ga 6 0 11 12 188.5E−6gcm 0 6 10 99 335.2E−12gpsr 85 86 (85,86) 100E−6grc1 4 11 (4,11) 1.885E−4grc2 4 12 (4,12) 1.885E−4gre1 13 10 (13,10) 6.82E−4gre2 14 10 (14,10) 6.82E−4hlim 90 0 vlim 1k

hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2irp 3 4 185E−6iee 3 10 dc 15.67E−6iio 2 0 2E−9i1 88 0 1E−21q1 11 89 13 qxq2 12 80 14 qxR2 6 9 100.0E3rcm 84 81 1Kree 10 99 14.76E6rn1 87 0 2.55E8rn2 87 88 11.67E3ro1 8 5 62ro2 7 99 63vcm+ 82 99 13.3vcm− 83 99 −14.6vb 9 0 dc 0vc 3 53 dc 1.300ve 54 4 dc 1.500vlim 7 8 dc 0vlp 91 0 dc 3.600vln 0 92 dc 3.600vpsr 0 86 dc 0

.model dx d(is=800.0E−18)

.model qx pnp(is=800.0E−18 bf=270)

.ends

Figure 74. Boyle Macromodel for the TLE2021

.SUBCKT TLE2022 1 2 3 4 5*c1 11 12 6.814E−12c2 6 7 20.00E−12dc 5 53 dxde 54 5 dxdlp 90 91 dxdln 92 90 dxdp 4 3 dxegnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5fb 7 99 poly(5) vb vc ve vlp vln 0

+ 45.47E6 −50E6 50E6 50E6 −50E6ga 6 0 11 12 377.9E−6gcm 0 6 10 99 7.84E−10iee 3 10 DC 18.07E−6hlim 90 0 vlim 1kq1 11 2 13 qxq2 12 1 14 qxr2 6 9 100.0E3

rc1 4 11 2.842E3rc2 4 12 2.842E3ge1 13 10 (10,13) 31.299E−3ge2 14 10 (10,14) 31.299E−3ree 10 99 11.07E6ro1 8 5 250ro2 7 99 250rp 3 4 137.2E3vb 9 0 dc 0vc 3 53 dc 1.300ve 54 4 dc 1.500vlim 7 8 dc 0vlp 91 0 dc 3vln 0 92 dc 3

.model dx d(is=800.0E−18)

.model qx pnp(is=800.0E−18 bf=257.1)

.ends

Figure 75. Boyle Macromodel for the TLE2022

Page 38: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2014

Addendum-Page 1

PACKAGING INFORMATION

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

TLE2021AQDREP ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2021AE

TLE2021MDREP ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -55 to 125 2021ME

TLE2021QDREP ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2021QE

TLE2022AQDREP ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2022AE

TLE2022QDREP ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2022QE

TLE2024AQDWREP ACTIVE SOIC DW 16 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2024AE

TLE2024QDWREP ACTIVE SOIC DW 16 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2024QE

V62/04755-01XE ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2021AE

V62/04755-02XE ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2021QE

V62/04755-03XE ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2022AE

V62/04755-04XE ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2022QE

V62/04755-05YE ACTIVE SOIC DW 16 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2024AE

V62/04755-06YE ACTIVE SOIC DW 16 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2024QE

V62/04755-07XE ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -55 to 125 2021ME

(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

Page 39: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2014

Addendum-Page 2

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availabilityinformation and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuationof the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finishvalue exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLE2021-EP, TLE2021A-EP, TLE2022-EP, TLE2022A-EP, TLE2024-EP, TLE2024A-EP :

• Catalog: TLE2021, TLE2021A, TLE2022, TLE2022A, TLE2024, TLE2024A

• Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2024-Q1, TLE2024A-Q1

• Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2024M, TLE2024AM

NOTE: Qualified Version Definitions:

Page 40: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

PACKAGE OPTION ADDENDUM

www.ti.com 31-May-2014

Addendum-Page 3

• Catalog - TI's standard catalog product

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Military - QML certified for Military and Defense Applications

Page 41: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device PackageType

PackageDrawing

Pins SPQ ReelDiameter

(mm)

ReelWidth

W1 (mm)

A0(mm)

B0(mm)

K0(mm)

P1(mm)

W(mm)

Pin1Quadrant

TLE2021AQDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLE2021MDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLE2021QDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLE2022AQDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLE2022QDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLE2024AQDWREP SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1

TLE2024QDWREP SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Dec-2016

Pack Materials-Page 1

Page 42: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

TLE2021AQDREP SOIC D 8 2500 367.0 367.0 35.0

TLE2021MDREP SOIC D 8 2500 340.5 338.1 20.6

TLE2021QDREP SOIC D 8 2500 367.0 367.0 35.0

TLE2022AQDREP SOIC D 8 2500 367.0 367.0 35.0

TLE2022QDREP SOIC D 8 2500 367.0 367.0 35.0

TLE2024AQDWREP SOIC DW 16 2000 367.0 367.0 38.0

TLE2024QDWREP SOIC DW 16 2000 367.0 367.0 38.0

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Dec-2016

Pack Materials-Page 2

Page 43: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL
Page 44: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL
Page 45: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

GENERIC PACKAGE VIEW

Images above are just a representation of the package family, actual package may vary.Refer to the product data sheet for package details.

DW 16 SOIC - 2.65 mm max heightSMALL OUTLINE INTEGRATED CIRCUIT

4040000-2/H

Page 46: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

www.ti.com

PACKAGE OUTLINE

C

TYP10.639.97

2.65 MAX

14X 1.27

16X 0.510.31

2X8.89

TYP0.330.10

0 - 80.30.1

(1.4)

0.25GAGE PLANE

1.270.40

A

NOTE 3

10.510.1

BNOTE 4

7.67.4

4220721/A 07/2016

SOIC - 2.65 mm max heightDW0016ASOIC

NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.5. Reference JEDEC registration MS-013.

1 16

0.25 C A B

98

PIN 1 IDAREA

SEATING PLANE

0.1 C

SEE DETAIL A

DETAIL ATYPICAL

SCALE 1.500

Page 47: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

www.ti.com

EXAMPLE BOARD LAYOUT

0.07 MAXALL AROUND

0.07 MINALL AROUND

(9.3)

14X (1.27)

R0.05 TYP

16X (2)

16X (0.6)

4220721/A 07/2016

SOIC - 2.65 mm max heightDW0016ASOIC

NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

METAL SOLDER MASKOPENING

NON SOLDER MASKDEFINED

SOLDER MASK DETAILS

OPENINGSOLDER MASK METAL

SOLDER MASKDEFINED

LAND PATTERN EXAMPLESCALE:7X

SYMM

1

8 9

16

SEEDETAILS

SYMM

Page 48: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

www.ti.com

EXAMPLE STENCIL DESIGN

R0.05 TYP

16X (2)

16X (0.6)

14X (1.27)

(9.3)

4220721/A 07/2016

SOIC - 2.65 mm max heightDW0016ASOIC

NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design.

SOLDER PASTE EXAMPLEBASED ON 0.125 mm THICK STENCIL

SCALE:7X

SYMM

SYMM

1

8 9

16

Page 49: TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL · PDF file · 2016-12-02TLE202x-EP, TLE202xA-EP EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to itssemiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyersshould obtain the latest relevant information before placing orders and should verify that such information is current and complete.TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integratedcircuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products andservices.Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and isaccompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduceddocumentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statementsdifferent from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for theassociated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designersremain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers havefull and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI productsused in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, withrespect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerousconsequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm andtake appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer willthoroughly test such applications and the functionality of such TI products as used in such applications.TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended toassist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in anyway, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resourcesolely for this purpose and subject to the terms of this Notice.TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TIproducts, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specificallydescribed in the published documentation for a particular TI Resource.Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications thatinclude the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISETO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTYRIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, orother intellectual property right relating to any combination, machine, or process in which TI products or services are used. Informationregarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty orendorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of thethird party, or a license from TI under the patents or other intellectual property of TI.TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES ORREPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TOACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OFMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUALPROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OFPRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES INCONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEENADVISED OF THE POSSIBILITY OF SUCH DAMAGES.Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, suchproducts are intended to help enable customers to design and create their own applications that meet applicable functional safety standardsand requirements. Using products in an application does not by itself establish any safety features in the application. Designers mustensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products inlife-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., lifesupport, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, allmedical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applicationsand that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatoryrequirements in connection with such selection.Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2018, Texas Instruments Incorporated