tna1503 sencom modbus quick start - yokogawa

20
Tech Note: TNA01503 Date: April 27, 2015 Quick Start Guide: SENCOM Modbus Communication 1.0 SENCOM Data Management PC Software, SPS24 1.1 SENCOM PC Software Installation 1.) Insert the SPS24 Software CD into the computer. The CD should auto Launch the software. If it does not access the CD drive on your computer and double click the SPS24_Launcher.exe file, to start the software launch. 2.) The following screen should appear. Select Install Driver for Interface Box and follow the following steps. “User Account Control” o Click “Yes” “Welcome to Yokogawa Driver for interface box set up” o Click “Next to continue” “Ready to Install the Program” o Click “Install” “Windows Security” o Click “Install” (CDM Driver Package – Bus/D2XX Driver) “Windows Security” o Click “Install”(Com port driver) “Install Shield Wizard Complete” o Click “Finish”

Upload: others

Post on 03-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

Quick Start Guide: SENCOM Modbus Communication

1.0 SENCOM Data Management PC Software, SPS24 1.1 SENCOM PC Software Installation

1.) Insert the SPS24 Software CD into the computer. The CD should auto Launch the

software. If it does not access the CD drive on your computer and double click the SPS24_Launcher.exe file, to start the software launch.

2.) The following screen should appear.

Select Install Driver for Interface Box and follow the following steps.

“User Account Control” o Click “Yes”

“Welcome to Yokogawa Driver for interface box set up” o Click “Next to continue”

“Ready to Install the Program” o Click “Install”

“Windows Security” o Click “Install” (CDM Driver Package – Bus/D2XX Driver)

“Windows Security” o Click “Install”(Com port driver)

“Install Shield Wizard Complete” o Click “Finish”

Page 2: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

3.) It should bring you back to the main launch screen.

Now select Install SENCOM PC Software SPS24 and follow the following steps.

“User Account Control” o Click “Yes”

“Welcome to SPS24 Setup” o Click “Next” to continue

“License Agreement” o Select “I accept the terms in the License Agreement” o Click “Next”

“User information” o Enter “User Name” and “Organization” o Click “Next”

“Install Destination” o Click “Next”

“Ready to install” o Click “Install”

“Setup Complete” o Click “Finish”

1.2 SPS24 Firmware Upgrade

1.) Access url page http://www.yokogawa.com/us/sencom-update/ 2.) At the bottom of the page you will see a download section. Select the

SPS24_V10201_update.zip. 3.) Once the zip file is downloaded, open and select the SPS24_Setup.exe

Page 3: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

4.) Now select RUN and follow the following steps. “Do you want to fun this file?”

o Click “RUN” “Are you sure to start reinstalling?”

o Click “YES” to continue Click “NEXT” to continue Click “Finish”

1.3 Completing installation of the Interface Box, K9701PM

1.) Connect the WU11 sensor cable to the K9701PM Interface Box, matching terminal

point with the numbered wire.

2.) Connect the Interface box to the PC. Note that the SENCOM sensor is not connected yet. Once the PC detects the interface box the driver will automatically finish the installation.

3.) Once the driver installation is complete. Start the SENCOM PC Software. 4.) When the software loads you will received a message stating “RS port must be set”.

Click OK 5.) Access the “Setup” wrench Tab at the top 6.) Clicking the drop down menus next to Sensor One. Change the “Not used” to

“COM**: USB RS-485 Port (COM**)”. 7.) Then click Save in the bottom right hand side of the screen. 8.) A message will appear stating “Are you sure to save changes?” Click OK

Page 4: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

9.) Connect the SENCOM sensor to the cable.

10.) Once the sensor is connected, click “Connect” in the bottom left hand side of the screen.

11.) You should see the sensor detected on the left hand side. The example below shows 2 sensors connected.

1.4 Programming a SENCOM Sensor using SPS24 1.) Access the “Sensor Management” Tab at the top. 2.) Here you will see the sensors current measurements. To configure the sensor for pH

ONLY, pH and ORP, ORP ONLY or rH, select Sensor setup next to the sensor that needs to be configured. The image below shows four sensors connected at one time.

Page 5: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

3.) Select Sensor Setup for the desired sensor. 4.) The following screen should appear.

Page 6: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

5.) Using the drop down menus next to Sensor Type, select the desired measurement pH, ORP or pH and ORP. Please note that when selecting ORP only as the measurement, the sensor is reading what is known as pH compensated ORP. This is when the pH measurement is used as the reference voltage. When selecting pH + ORP as the measurement the ORP value that is given is traditional reference ORP.

6.) If a change is made, select Sychronize in the bottom right hand side to send the change to the sensor.

1.5 Helpful items in the PC Software 1.5.1 Sensor Performance From the main display if performance is selected

The screen will appear as follows:

Page 7: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

This is where you can get a better understanding of the condition of the sensor. You can view sensor wellness, last calibration data with projected replacement, and current measurement information. 1.5.2 Database Viewer

Page 8: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

Database viewer tab, will show up to 100 unqiue serial numbers that have been connected to the PC software. Here is where eachs sensors calibraiton history can be seen and reports can be generated.

Page 9: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

These reports allow for better tracking of sensor performance, maintenance and replacement.

1.5.3 Error Information This tab will show you any faults or warnings that maybe have appears or currently appear with any of the sensors.

Page 10: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

2.0 Wiring

2.1 SENCOM Cable

Connection should be performed using the WU11 interconnection cable for SENCOM sensors. The definition of connector pin to WU11 cable and signal description is given as follows:

Pin # Signal description Wire color Wire Number 1 Data - Yellow 83 2 Data + Green 84 2 Supply + Brown 87 4 Shield Black 82 5 Supply Ground White 86

(Front view) Sensor connector, male (Front view) Sensor connector, female 2.2 S8000 Galvanic Isolation Box

IP66 Rated Version IP20 Rated version In order to have proper measurement readings complete galvanic isolation is needed. It is especially needed for pH measurements where there is a high danger of ground loop currents and interference due to the high resistance of the pH glass. The S8000 box allows for the connection of up to four sensors with independent Modbus slave address numbers. The Slave ID can be changed using: SENCOM Modbus Slave Configuration Tool R2.02. This tool sets a slave address to a desired slave number for supporting multi-

Page 11: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

drop. (See appendix 1 for changing SENCOM sensor’s slave address). For detailed information on the box please reference specification sheet GS 12B06W05-01EN-E. Communication is Modbus over TCP, def IP add 192.168.0.1

Signal description Wire color Wire Number Data - Yellow 83 Data + Green 84 Supply + Brown 87 Shield Black 82 Supply Ground White 86

3.0 Modbus (RS 485) Communication Parameters 3.1 Communication parameters

Item Factory default Setting range Transmission speed*1 9600 bps Fixed Data length 8 bits Fixed Stop bit 1 bit Fixed Parity setting Even Fixed Slave ID*2 1 1-247

Note: *1 Transmission speed: The transmission speed (baud rate) is configurable but part of protected settings to guarantee proper working with the FLXA21 analyzer. The default baud rate is set at 9600bps.

Page 12: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

*2 Slave ID: All sensors are set to Slave ID 1 by factory setting. This Slave address can only be changed by using the SENCOM MODBUS Slave Configuration Tool R2.02. 2 1 3.2 Signed/unsigned

16 bit signed numbers range from -32766 to +32767 16 bit unsigned numbers range from 0 to +65535

3.3 Hexadecmial Long strings of ones and zeroes are difficult to read, so the bits are combined and shown in hexadecimal code. Each block of 4 bits is represented by one of the sixteen characters from 0 to F. 0000 = 0 0100 = 4 1000 = 8 1100 = C 0001 = 1 0101 = 5 1001 = 9 1101 = D 0010 = 2 0110 = 6 1010 = A 1110 = E 0011 = 3 0111 = 7 1011 = B 1111 = F Each block of 8 bits (called a byte) is represented by one of the 256 character pairs from 00 to FF.

3.4 Binary A binary code represents text using the binary number system’s two binary digits, 0 and 1. A binary code assigns a bit string to each symbol or instruction. For example, a binary string of eight binary digits (bits) can represent any of 256 possible values and can therefore correspond to a variety of different symbols, letters or instructions.

3.5 Long To accommodate values that can reach beyond the 16-bit limitation. A 32-bit register represented in 32-bit Integer format is passed via communications as two 16-bit registers:

High-Order Register =value/65536 Low-Order Register = value modulus 65536 (value = register high x 65536 + register low)

4.0 Modbus Address Map

The MODBUS protocol used RTU (Remote Terminal Unit) mode which means that transmitted data is “numeric value” and not ASCII code”. Below are the typical suggested parameters to read. For detailed Modbus map, please refer to SENCOM Service Manual, SM 12B06J03-04E-E.

Page 13: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

Relative address

Register Number

Memory Contents

Read-out data Display Description

0006 30007 pH Value x1000: -2000…+16000pH

Signed pH Value; (limits -32000…+32000pH)

0007 30008 Temperature used in calculations

x100: -3500…+15500ºC

Signed Temperature in ºC; (limits -4000…+16000 ºC)

0008 30009 ORP Value x10:-15000…+15000mV

Signed (limits -20000…+20000mV)

0009 30010 rH Value x100:0…10000 Signed (limits -1000…+11000) 0010 30011 Glass Impedance

pH 1 x1: 10…10000kOhm

Signed Value x or code -1, -2, -3, -4, -5 See section 4.1

0011 30012 Glass Impedance pH 2

x1: 10…10000kOhm

Signed Value x or code -1, -2, -3, -4, -5 See section 4.1

0012 30013 Reference Impedance

x2: 5…2000kOhm Signed Value x or code -1, -2, -3, -4, -5 See section 4.1

0014 30015 Temperature measured value PT1000

x100: -3500…+15500 ºC

Signed Temperature in ºC; (limits -5000…+17490 ºC)

0037 :

0046

40038 :

40047

Model Code See Section 4.2 Hex 16 bytes (alpha numeric) 8 address string

0047 :

0049

40048 :

40050

Serial Number See Section 4.3 Hex 6 bytes 3 address string 2 bytes for production location

0050 :

0051

40051 :

40052

Date Yokogawa Time Stamp

See Section 4.4 Unsigned Production date in sections from: 2000-01-01-00:00:00

1018 41019 Total time of operation

0…65536 Unsigned Days

1019 41020 Total time of operation

0…65536 Unsigned Hours

4.1 Impedance (IR30011-30013)

The impedance value measured by the sensor is measured automatically or on request (see Section 5.3.7) and the result in written in IR30011 to IR30013. Dependent on the sensor type, the impedance value is valid or not valid. A non-valid impedance value is identified with an error code, see tables below. The glass impedance is measured on pH1 and/or pH2 input. The reference is measured on pHref input. The electronics of these inputs are optimized for the high ohmic pH glass electrode or the low ohmic reference electrode.

The inputs are pre-defined in Hold registers 40031, 40032 and 40033. If a pH glass electrode is used as measurement element, the impedance is High and the setting of the Hold register is 1. In case of a reference electrode, the impedance is Low and the setting

Page 14: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

of the Hold register is 0. The Hold register settings 40031-40033 are corresponding with 30011-30013. Glass Impedance Table

10…10000 kOhm = value for Glass impedance < 100 kOhm = Glass breakage > 100 kOhm = a correct glass impedance 0 = no measurement value available -1 = almost 0, maybe shorted or glass breakage -2 = < 10 kOhm, glass breakage -3 = above lineair range. > 10 MOhm -4 = above lineair range. > 200 MOhm -5 = No good calculation. Air bubble/dry measurement etc. Reference Impedance Table

5 …2000 kOhm = value for Reference impedance 0 = no measurement value available. -1 = almost 0, maybe shorted, function of reference good -2 = low, below linear range, function of reference good -3 = above linear range. Out of spec. -4 = too high, probably open/dry. Out of spec. -5 = No good calculation. Air bubble/ dry measurement etc.

4.2 Model Code (HR40038-40047)

Hold registers HR38 – 47 contain the model code. The format of the model code is a string of maximum 16 ASCII codes; each ASCII code is 1 byte. Each Hold register address has two (2) bytes which means that two (2) ASCII codes can be stored. The hexadecimal representations of both ASCII codes are added and converted to a decimal number that is stored in the Hold register address. Example: Model code FU20F-NPT: F= 70 (ASCII code) = 46 (hex) U= 85 (ASCII code) = 55 (hex) Added: = 4655 (hex) Converted: = 18005 (dec) The result is stored in Hold register HR40038 2 = 50 (ASCII code) = 32 (hex) 0 = 48 (ASCII code) = 30 (hex) Added: = 3230 (hex)

Page 15: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

Converted: = 12848 (dec) The result is stored in Hold register HR40039 Etc.

4.3 Serial Number (HR40048-40050) Hold registers HR48 - 50 contain the Serial number. The format of the Serial number is a string of four (4) ASCII codes representing characters (N3YM) and five (5) ASCII codes representing a decimal number (xxxxx). The translation method of the ASCII codes representing the characters is the same as for the Model code (see Section 5.3.3). The results are stored in HR48 and HR49. The ASCII codes representing the numbers are stored as unsigned integer in HR50.

4.4 Yokogawa Time Stamp (HR40051-40052) The Yokogawa Time Stamp is the number of seconds elapsed since 01/01/2000 00:00:00. This unsigned integer is stored in 2 Hold register addresses (4 bytes). The seconds are converted to hexadecimal format. The first 4 ‘digits’ are stored in HR40051 as (hexa)decimal, the second 4 ‘digits’ are stored in HR40052 as (hexa)decimal. Example: Date: 25/11/2014 10:23:52 => Yokogawa Time Stamp = 470226232 seconds Converted: => 1C071538 (hex) The result 1C07 (hex) or 7175 (dec) is stored in Hold register HR40051, the result 1538 (hex) or 5432 (dec) is stored in Hold register HR40052.

Page 16: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

Appendix 1: Modbus Address Tool Change Access the SENCOM Slave Address Change Tool at the following URL.

http://cdn2.us.yokogawa.com/SENCOM_Slave_Address_Change_Tool.zip

1.) Download the file and open the folder. Inside the folder you will see two different packages. If you are using the Interface box open the file titled “Package_USBDRV” if not use the package titled “Package_NOUSBDRV”.

2.) Within the folder click on the setup.exe file. 3.) A screen should appear asking for a password. Input “sencom” and click ok.

4.) Select “Run”

5.) Select “OK”

Page 17: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

6.) Select the “SENCOM Click to Install” button

7.) Select “Continue”

8.) The software will load. Click “OK”

9.) An icon should now appear on the desktop

Page 18: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

10.) Double click the icon to launch the program. The following screen should appear.

11.) Connect the SENCOM sensor to the PC

12.) Select Find Sensor in the Slave Address Change Tool

Page 19: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

13.) If a sensor is found the screen will display the sensor information as shown below.

If no sensor is found error message will be given:

Page 20: TNA1503 SENCOM Modbus Quick Start - Yokogawa

Tech Note: TNA01503 Date: April 27, 2015

14.) To change the sensor Modbus address. Type in the desired address number 1-247 in the box next to “Set SENCOM to Slave address:” and select Set New Slave Address. At any time the sensor can be changed back to factory defaults by selecting “Set Factory Defaults”.

Please Note that when connecting a SENCOM sensor to the SPS24 PC Software for clairbation the slave address has to be changed back to 1 before the software will recognize the sensor. Then after you connect to the SPS24 software and perform the clairbation you would need toaccess the slave address tool and change it back to the desired slave address location. 15.) A cvs file can be downloaded that tracks all of the slave address changes. The report captures

the model number, serial number, original slave address and the new slave address.