today’s outline - november 05, 2012 - iitphys.iit.edu/~segre/phys405/12f/lecture_20.pdf · 2012....

101
Today’s Outline - November 05, 2012 C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 1 / 10

Upload: others

Post on 24-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Today’s Outline - November 05, 2012

• Problem 4.52

• Electrons in a magnetic field

• Adding angular momentum

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 1 / 10

Page 2: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Today’s Outline - November 05, 2012

• Problem 4.52

• Electrons in a magnetic field

• Adding angular momentum

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 1 / 10

Page 3: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Today’s Outline - November 05, 2012

• Problem 4.52

• Electrons in a magnetic field

• Adding angular momentum

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 1 / 10

Page 4: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Today’s Outline - November 05, 2012

• Problem 4.52

• Electrons in a magnetic field

• Adding angular momentum

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 1 / 10

Page 5: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using, as always,the basis of eigenstates of Sz . Solve the characteristic equation todetermine the eigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

| 32

32〉 =

1000

| 32

12〉 =

0100

| 32

−12〉 =

0010

| 32

−32〉 =

0001

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 2 / 10

Page 6: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using, as always,the basis of eigenstates of Sz . Solve the characteristic equation todetermine the eigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

| 32

32〉 =

1000

| 32

12〉 =

0100

| 32

−12〉 =

0010

| 32

−32〉 =

0001

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 2 / 10

Page 7: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using, as always,the basis of eigenstates of Sz . Solve the characteristic equation todetermine the eigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

| 32

32〉 =

1000

| 32

12〉 =

0100

| 32

−12〉 =

0010

| 32

−32〉 =

0001

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 2 / 10

Page 8: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using, as always,the basis of eigenstates of Sz . Solve the characteristic equation todetermine the eigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

| 32

32〉 =

1000

| 32

12〉 =

0100

| 32

−12〉 =

0010

| 32

−32〉 =

0001

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 2 / 10

Page 9: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using, as always,the basis of eigenstates of Sz . Solve the characteristic equation todetermine the eigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

| 32

32〉 =

1000

| 32

12〉 =

0100

| 32

−12〉 =

0010

| 32

−32〉 =

0001

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 2 / 10

Page 10: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using, as always,the basis of eigenstates of Sz . Solve the characteristic equation todetermine the eigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

| 32

32〉 =

1000

| 32

12〉 =

0100

| 32

−12〉 =

0010

| 32

−32〉 =

0001

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 2 / 10

Page 11: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 12: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 13: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+| 32 32〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 14: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 15: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0

√3 0 0

0

0 2 0

0

0 0√

3

0

0 0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 16: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0

√3 0 0

0

0 2 0

0

0 0√

3

0

0 0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉

=√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 17: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0

√3 0 0

0

0 2 0

0

0 0√

3

0

0 0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 18: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3

0 0

0 0

2 0

0 0

0√

3

0 0

0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 19: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3

0 0

0 0

2 0

0 0

0√

3

0 0

0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉

= 2~ | 32

12〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 20: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3

0 0

0 0

2 0

0 0

0√

3

0 0

0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 21: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0

0

0 0 2

0

0 0 0

√3

0 0 0

0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 22: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0

0

0 0 2

0

0 0 0

√3

0 0 0

0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉

=√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 23: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0

0

0 0 2

0

0 0 0

√3

0 0 0

0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 24: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

The raising and lowering operators are

S±|sm〉 = ~√

s(s + 1)−m(m ± 1) |s(m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+| 32 3

2〉 = 0

S+| 32 12〉 =

√32( 5

2)− 12( 3

2)~ | 32 32〉 =√

3~ | 32

32〉

S+| 32 −12〉 =

√32( 5

2)+ 12( 1

2)~ | 32 12〉 = 2~ | 3

212〉

S+| 32 −32〉 =

√32( 5

2)+ 32(− 1

2)~ | 32 −12〉 =√

3~ | 32

−12〉

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 3 / 10

Page 25: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 26: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 27: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉

=√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 28: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 29: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0

0 0 0

√3

0 0 0

0

2 0 0

0

0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 30: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0

0 0 0

√3

0 0 0

0

2 0 0

0

0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉

= 2~ | 32

−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 31: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0

0 0 0

√3

0 0 0

0

2 0 0

0

0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 32: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0

0 0

√3 0

0 0

0 2

0 0

0 0

√3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 33: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0

0 0

√3 0

0 0

0 2

0 0

0 0

√3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉

=√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 34: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0

0 0

√3 0

0 0

0 2

0 0

0 0

√3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 35: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0

0

√3 0 0

0

0 2 0

0

0 0√

3

0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 36: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0

0

√3 0 0

0

0 2 0

0

0 0√

3

0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 37: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−| 32 32〉 =

√32( 5

2)− 32( 1

2)~ | 32 12〉 =√

3~ | 32

12〉

S−| 32 12〉 =

√32( 5

2)− 12(− 1

2)~ | 32 −12〉 = 2~ | 3

2−12〉

S−| 32 −12〉 =

√32( 5

2)+ 12(− 3

2)~ | 32 −32〉 =√

3~ | 32

−32〉

S−| 32 −32〉 = 0

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 4 / 10

Page 38: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−)

=~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣− λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 39: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣− λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 40: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣− λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 41: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣− λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣

= −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 42: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣− λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣

−√

3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 43: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣

= −λ[−λ(λ2 − 3)− 2(−2λ)]−√

3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 44: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 45: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9]

= λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 46: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 47: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9

= (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 48: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1)

= (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 49: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 50: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Problem 4.52 (cont.)

Sx =1

2(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~, 1

2~,− 1

2~,− 3

2~

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 5 / 10

Page 51: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 52: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 53: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 54: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 55: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 56: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 57: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 58: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 59: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 60: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Electron in a magnetic field

Orbital angular momentum implies a circulating charge which leads to amagnetic moment

because spin behaves in all ways like orbital angular momentum, it mustalso be associated with a magnetic dipole moment

~µ = γ~S

in the presence of a magnetic field,the dipole feels a torque

and has total energy

the Hamiltonian for a particle withspin in the presence of a magneticfield, is thus

γ is the gyromagnetic ratio

~τ = ~µ× ~B

H = −~µ · ~B

H = −γ~B · ~S

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 6 / 10

Page 61: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 62: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 63: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 64: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz

= −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 65: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

)

{χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 66: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

)

{χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 67: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 68: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation

can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 69: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation

can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 70: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 71: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~

=

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 72: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Dipole at rest in a magnetic field

consider a particle of spin 1/2 atrest in the presence of a magneticfield in the z-direction

the Hamiltonian is

and its eigenstates are those of Szwith eigenvalues E±

the time dependent Schrodingerequation can be solved in terms ofthe stationary states

~B = B0z

H = −γB0Sz = −γB0~2

(1 00 −1

){χ+, E+ = −γB0~

2

χ−, E− = +γB0~2

i~∂χ

∂t= Hχ

χ(t) = aχ+e−E+t/~ + bχ−e

−E−t/~ =

(ae iγB0t/2

be−iγB0t/2

)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 7 / 10

Page 73: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 74: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)

a = cos(α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 75: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)

a = cos(α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 76: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 77: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 78: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)

the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 79: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 80: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 81: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)

=~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 82: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)

=~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 83: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)

=~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 84: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Time-dependent expectation value

The constants a and b can be de-termined from the initial conditions

giving |a|2 + |b|2 = 1 and suggest-ing the relationship

the time-dependent solution is thus

χ(0) =

(ab

)a = cos(

α

2), b = sin(

α

2)

χ(t) =

(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)the expectation value of S as a function of time can now be calculated

〈Sx〉 = χ†(t)Sxχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 11 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(sin(α2 )e−iγB0t/2

cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(e−iγB0t + e iγB0t

)=

~2

sinα cos(γB0t)

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 8 / 10

Page 85: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 86: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)

=~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 87: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)

=~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 88: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)

= −~2

sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 89: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 90: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 91: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)

=~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 92: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)

=~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 93: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)

=~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 94: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

More expectation values

〈Sy 〉 = χ†(t)Syχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(0 −ii 0

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)(−i sin(α2 )e−iγB0t/2

i cos(α2 )e iγB0t/2

)=

~2

cos(α/2) sin(α/2)(−ie−iγB0t + ie iγB0t

)= −~

2sinα sin(γB0t)

〈Sz〉 = χ†(t)Szχ(t)

=(

cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2) ~

2

(1 00 −1

)(cos(α2 )e iγB0t/2

sin(α2 )e−iγB0t/2

)=

~2

(cos(α2 )e−iγB0t/2 sin(α2 )e+iγB0t/2

)( cos(α2 )e iγB0t/2

− sin(α2 )e−iγB0t/2

)=

~2

(cos2(α/2)− sin2(α/2)

)=

~2

cosα

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 9 / 10

Page 95: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Larmor precession

The expectation values for the compo-nents of S are thus

〈Sx〉 =~2

sinα cos(γB0t)

〈Sy 〉 = −~2

sinα sin(γB0t)

〈Sz〉 =~2

cosα

S precesses about the z-axis, at a fixedangle α so 〈Sz〉 is constant and the othertwo are constantly changing

the precession frequency ω = γB0 iscalled the Larmor frequency

z

y

x

S

ω

α

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 10 / 10

Page 96: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Larmor precession

The expectation values for the compo-nents of S are thus

〈Sx〉 =~2

sinα cos(γB0t)

〈Sy 〉 = −~2

sinα sin(γB0t)

〈Sz〉 =~2

cosα

S precesses about the z-axis, at a fixedangle α so 〈Sz〉 is constant and the othertwo are constantly changing

the precession frequency ω = γB0 iscalled the Larmor frequency

z

y

x

S

ω

α

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 10 / 10

Page 97: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Larmor precession

The expectation values for the compo-nents of S are thus

〈Sx〉 =~2

sinα cos(γB0t)

〈Sy 〉 = −~2

sinα sin(γB0t)

〈Sz〉 =~2

cosα

S precesses about the z-axis, at a fixedangle α so 〈Sz〉 is constant and the othertwo are constantly changing

the precession frequency ω = γB0 iscalled the Larmor frequency

z

y

x

S

ω

α

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 10 / 10

Page 98: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Larmor precession

The expectation values for the compo-nents of S are thus

〈Sx〉 =~2

sinα cos(γB0t)

〈Sy 〉 = −~2

sinα sin(γB0t)

〈Sz〉 =~2

cosα

S precesses about the z-axis, at a fixedangle α so 〈Sz〉 is constant and the othertwo are constantly changing

the precession frequency ω = γB0 iscalled the Larmor frequency

z

y

x

S

ω

α

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 10 / 10

Page 99: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Larmor precession

The expectation values for the compo-nents of S are thus

〈Sx〉 =~2

sinα cos(γB0t)

〈Sy 〉 = −~2

sinα sin(γB0t)

〈Sz〉 =~2

cosα

S precesses about the z-axis, at a fixedangle α so 〈Sz〉 is constant and the othertwo are constantly changing

the precession frequency ω = γB0 iscalled the Larmor frequency

z

y

x

S

ω

α

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 10 / 10

Page 100: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Larmor precession

The expectation values for the compo-nents of S are thus

〈Sx〉 =~2

sinα cos(γB0t)

〈Sy 〉 = −~2

sinα sin(γB0t)

〈Sz〉 =~2

cosα

S precesses about the z-axis, at a fixedangle α so 〈Sz〉 is constant and the othertwo are constantly changing

the precession frequency ω = γB0 iscalled the Larmor frequency

z

y

x

S

ω

α

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 10 / 10

Page 101: Today’s Outline - November 05, 2012 - IITphys.iit.edu/~segre/phys405/12F/lecture_20.pdf · 2012. 11. 6. · Today’s Outline - November 05, 2012 Problem 4.52 Electrons in a magnetic

Larmor precession

The expectation values for the compo-nents of S are thus

〈Sx〉 =~2

sinα cos(γB0t)

〈Sy 〉 = −~2

sinα sin(γB0t)

〈Sz〉 =~2

cosα

S precesses about the z-axis, at a fixedangle α so 〈Sz〉 is constant and the othertwo are constantly changing

the precession frequency ω = γB0 iscalled the Larmor frequency

z

y

x

S

ω

α

C. Segre (IIT) PHYS 405 - Fall 2012 November 05, 2012 10 / 10