topological insulators yew san hor 1 department of chemistry and j. g. checkelsky 2, a. richardella...

84
Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2 , A. Richardella 2 , J. Seo 2 , P. Roushan 2 , D. Hsieh 2 , Y. Xia 2 , M. Z. Hasan 2 , A. Yazdani 2 , N. P. Ong 2 , and R. J. Cava 1 2 Department of Physics Princeton University NSF-MRSEC DMR 0819860 TAR College, Kuala Lumpur, Malaysia 13 July 2010

Upload: chana-saffell

Post on 29-Mar-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topological InsulatorsYew San Hor

1Department of Chemistryand

J. G. Checkelsky2, A. Richardella2, J. Seo2, P. Roushan2, D. Hsieh2, Y. Xia2, M. Z. Hasan2, A.

Yazdani2, N. P. Ong2, and R. J. Cava1

2Department of PhysicsPrinceton University

NSF-MRSEC DMR 0819860

TAR College, Kuala Lumpur, Malaysia13 July 2010

Page 2: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M
Page 3: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M
Page 4: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Albert Einstein

E = mc2

Page 5: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Photo by Ch’ng Ping Choon

Einstein’s house at Princeton 1935-55

Page 6: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Princeton Campus

Page 7: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Princeton Chemistry Department

Spring 2009

Page 8: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M
Page 9: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Princeton Physics Department

Page 10: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Ch’ng Ping Choon

Richard Feymann

Page 11: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Princeton Science Library

Page 12: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Princeton Condensed Matter GroupPhysics & Chemistry

NSF-MRSEC

Page 13: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Robert J. Cava

Matthias Prize for New Superconducting Materials 1996

Chemistry

Page 14: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Nai Phuan Ong

• Director of NSF MRSEC DMR 081986

• 2006 Kamerlingh Onnes Prize (For research accomplishments in HTc superconductor)

Physics

Page 15: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Zahid HasanDavid Hsieh

Bob Cava

Yew San Hor

Page 16: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M
Page 17: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M
Page 18: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M
Page 19: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

t = 10-32 sec

Dirac equation (μ∂ μ + mc)ψ = 0

Relativistic energy

E2 = p2c2 + m2c4

E

k

E ~ k

Elementary particles

t ~ 300,000 years

Page 20: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

t ~ 300,000 years

Condensed Matter

Non-relativistic energy

E~k2

E

k

Schroedinger Equation:Schroedinger Equation:

Page 21: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

t ~ 1.5 × 1010 years

Page 22: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

t ~ 1.5 × 1010 years

Page 23: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

source: spie.org

Page 24: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

LLss

EE

kk

Bulk InsulatorBulk Insulator

Strong Spin-OrbitCoupling

Strong Spin-OrbitCoupling

E~k2E~k2

BCBBCB

BVBBVB

Page 25: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

LLss

EE

kk

Bulk InsulatorBulk Insulator

Strong Spin-OrbitCoupling

Strong Spin-OrbitCoupling

E~k2E~k2

BCBBCB

BVBBVB

EE

kkSVBSVB

SCBSCB

E~kE~kSurface ConductorSurface Conductor

Page 26: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

…is a band insulator which is characterized by a topological

number and has Dirac-like excitations at its boundaries.

Page 27: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topology…is the mathematical study of the

spatial properties that are preserved under continuous deformations of objects, for examples, twisting and stretching, but no tearing or gluing.

Page 28: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topology

=

sphere ellipsoid

Page 29: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topology

=

Page 30: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topologyin condensed matter electronic phases…

Electron spin property plays an important role.

Example:

AA BB

Page 31: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Insulatormaterial does not conduct electric current

1. Band Insulator (valence band completely filled).2. Peierls Insulator (lattice deformation).3. Mott Insulator (Coulomb repulsion).4. Anderson Insulator (impurity scattering).

A new class of insulator

Topological Insulator

Page 32: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topological Insulators• Bulk band insulators.

Ingredients:Strong spin-orbit coupling.Time reversal symmetry.

E

k

E

k

Gapless surface state

Gapped bulk insulator

• Gapless Dirac excitations at its boundaries.

E ~ k2

BulkConduction Band

Bulk Valence Band

E ~ k

SurfaceConduction Band

SurfaceValence Band

Page 33: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Consider a simpler system 2D electron gas as an analogy

Page 34: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

2D electron gas

No boundary

Page 35: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Applied B-field out of plane

When boundary is created, interface with vacuum state→ Edge state.

Electron charge → Quantum Hall effect

Page 36: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Conducting edge state

Insulator

Vacuum

…but this breaks Time Reversal Symmetry.

Electron charge → Quantum Hall effect

Page 37: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Broken Time Reversal Symmetry

Conducting edge state (Reversed with T operator)

Electron charge → Quantum Hall effect

Page 38: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Hall effect “charge”Electron charge → Quantum

Page 39: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Quantum Hall EffectClassical Hall Effect

Lorentz ForceF = -e x B

Hall conductancexy = -ne/B

Quantization of Hall conductance

xy = ie2/h

h/e2 = 25812.807

(Klaus von Klitzing, 1980)

1985 Nobel Prize in Physics

Page 40: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Fractional Quantum Hall Effect

Quantization of Hall conductance

xy = ie2/h

i = 1/3, 1/5, 5/2, 12/5 ..

(discovered in 1982)

Daniel Tsui Horst Stormer

Robert Laughlin

1998 Nobel Prize in Physics

Page 41: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Devices utilize electron charge property: Semiconductor

Transistor, AT&T Bell Labs (1947).Single Crystal Germanium (1952).Single Crystal Silicon (1954).IC device, Texas Instrument (1958).IC Product, Fairchild Camera (1961).Microprocessor, Intel (1971).Personal Computer (1975).

Page 42: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Semiconductor crisisGorden Moore (co-founder of Intel 1964):

Number of transistors doubled every 12 months while price unchanged.

In 1980s, number of transistors doubled every 18 months.

*Size limit*Heat dissipation

Page 43: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

So, we need to find a new material

Page 44: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

New materials utilize electron spin property:

Topological Insulators

Page 45: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topological Insulators

Spintronic devices

- apply electron spin property.

Quantum computer

- apply quantum mechanical phenomena.

- use qubit (quantum bit) instead of bit.

Page 46: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topological Insulator

is also important for…

1. Quantum Spin Hall Effect.2. The search of Majorana fermion.3. Axion electrodynamic study.4. Magnetic monopole.

Page 47: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

3D Topological Insulator

Bulk insulator

L

s

Strong spin-orbit couplingL

s

L

s

L

s

L

s

L

s

Large atomic number → Large orbital moment, L

No boundary

Page 48: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

3D Topological Insulator

Bulk insulator

L

s

Strong spin-orbit coupling

L

s

L

s

Page 49: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

3D Topological Insulator

Bulk insulator

L

s

Strong spin-orbit coupling

Etrap

Etrap

s

s

k1k2

k x Etrap ~ B

Page 50: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

3D Topological Insulator

L

s

Etrap Etrap

s

s-k2 -k1

Time Reversal Symmetry

Invariant!

Bulk insulator

Strong spin-orbit coupling

When T-operator is applied…

Page 51: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

3D Topological Insulator

Bulk insulator

L

s

Strong spin-orbit coupling

L

s

L

s

Electron spin Quantum spin Hall effect

Surface Dirac-like spin current.Zero net current, but spin-polarization,protected by Time Reversal Symmetry

Page 52: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

• Bi • Bi1-xSbx • Sb• Bi2Se3 • Bi2Te3

• Sb2Te3• will look for more…

Nature 452, 970 (2008)

Science 321, 547 (2008)

Nature Physics 5, 398 (2009)

Bi

Bi2Se3

Bi0.9Sb0.1

Bi1-xSbx

Topological insulators

Page 53: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Basics of ARPES

ARPES is surface sensitive

Can measure E vs k of bulk and surface states separately

Damascelli et al. RMP 2003

h

(Angle-resolved photoemission spectroscopy)

Page 54: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

EE

EE

kkSVBSVB

SCBSCB

E~kE~kDirac surface stateDirac surface state

ARPES

Surface Dirac-like spin current.Zero net current, but spin-polarization,protected by Time Reversal Symmetry

Page 55: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

k

E

Gaplesssurfacestate

EF

Challenging problem for

Dirac surface state transport measurements

Why not bulk insulator?

Bulk electron is measured

BCB

Page 56: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Imperfect World

Page 57: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Defect chemistry in Bi2Se3

SeSe → VSe●● + Se (gas) + 2 e-

defect

n-type Bi2Se3

10 nm

e-e-

STM

Bi

Se

Se

Bi

Se

Se

Se

Se

Se

Se

Bi

Bi

Bi

Page 58: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Ca-doped in Bi2Se3

2Ca

defect

n-type Bi2Se3

10 nm

e-e- → 2CaBi’ + 2h•

p-type Bi2Se3 STM

Bi

Se

Se

Bi

Se

Se

Se

Se

Se

Se

Bi

Bi

Bi

Page 59: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Bi2-xCaxSe3 Crystal growth

1st step: (i) stoichiometric mixture of Bi and Se in vacuum quartz tube. (ii) melting at 800 oC for 16 hours. (iii) air-quenching to room temperature.

2nd step: (i) add Ca to Bi2-xSe3 and sealed in vacuum quartz tube. (ii) 400 oC for 16 hours. (iii) 800 oC for 1 day. (iv) 1 day slow cooling

to 550 oC. (v) stay at 550 oC for 3 days.

PRB 79 195208 (2009)

Page 60: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

n- to p-type Bi2-xCaxSe3 topological insulator

X=0

X=0.02

X = 0

X=0.02k

E

k

E

PRB 79 195208 (2009)

x = 0x = 0.005, 0.02, 0.05

Page 61: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Fine tuning in Bi2-xCaxSe3

Bi2Se3 Bi1.9975Ca0.0025Se3 Bi1.99Ca0.01Se3

Nature 460, 1101 (2009)

Page 62: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Metallic behavior.

Non-metallic.Onset at T~130 K.

x = 0.0025x > 0.005x = 0

PRL 103, 246601 (2009)

Bi2-xCaxSe3 transport properties

Page 63: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Bi1.9975Ca0.0025Se3

Quasi-periodic fluctuations

Surface state?

PRL 103 246601 (2009)

Page 64: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Te annealing of Bi2Te3

Annealing temperature: 400 – 440 C (1 week)

Te powder As-grown Bi2Te3 crystal

Page 65: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Transport property of Bi2Te3

kx (Å-1)

EB (

eV)

Fine tuning of Bi2Te3+

As-grown

EF S1S2

S3

S4

Page 66: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Dirac States in topological insulator Bi2Te3

Science (in press)

Non-metallic Metallic

kx

EB

EB

kx

dxx

/dH

HHHH

HH

HH

2D Fermi Surface 3D Bulk State

Page 67: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

On the other hand…

Bi2Se3 can be doped to become more conducting…

Superconductor

Cu-intercalated Bi2Se3

Page 68: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

By C.Kane (U Penn.)

superconductor

Page 69: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

CuxBi2Se3

Cux

Cux

Cux

Page 70: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Cu-doped Bi2Se3 crystal growth

• Mixtures of high purity elements Bi, Cu, Se in sealed vacuum quartz tubes.

• Melt at 850 oC overnight.• Slow cooling: 850 → 620 oC for 24 hours.• Quench in cold water at 620 oC.

Page 71: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

STM topography of Cu0.15Bi2Se3

T = 4.2 K

Cu clusters on surface. Cu atoms intercalated between layers

Page 72: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Superconductivity of CuxBi2Se3

Superconductivity only found in 0.1 < x < 0.3

Tc~3.8 K

~20 % SC phase

Page 73: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

SC phase is not fully connected.

PRL 104 057001 (2010)

Superconductivity of CuxBi2Se3

Page 74: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Upper critical field Hc2 is anisotropic

Strongly type II superconductor

Page 75: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Bi2Se3 topological insulator+

CuxBi2Se3 superconductor

Majorana Fermionic Physics.

(?)

Page 76: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Topological magnetic insulators

• Motivated by:• Axion electrodynamics theory → E x B.• Magnetic monopole → symmetries of Maxwell’s

equations.• by Zhang group (Stanford), arXiv:0908.1537v1

Ferromagnetism in Bi2-xMnxTe3

Page 77: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

For axion electrodynamics

1. Quantum Spin Hall Effect: (b) Transport measurements

Point charge

Vacuum

Topologicalinsulator

Magnetic monopole induced

Surface currentinduced

S. C. Zhang, Science 323 1184 (2009)

Page 78: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Axion electrodynamics

Schematic diagram for the studies of axion electrodynamics

1. Quantum Spin Hall Effect: (b) Transport measurements

Gold-copper alloy contacts

I+ V+ V- I-

Induced surface current

E field

TI crystal

Sharp tip acts as a point charge

Page 79: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Mn-doped Bi2Te3

Mn-substituted Bi2Te3 (Bi2-xMnxTe3)

Bi/Mn

Te

Te

Bi/Mn

Te

Te

Te

Te

Te

Te

Bi/Mn

Bi/Mn

Bi/Mn

Page 80: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

STM topography of Bi1.91Mn0.09Te3

Black triangles: substitutional Mn on Bi sites. No Mn-clustering is found.

Page 81: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

DC Magnetization of Bi2-xMnxTe3

TC ~ 9 – 12 K for x = 0.04 and 0.09

Page 82: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

ARPES

Topological surface state is still present. Dispersion relation of the state is changed in a subtle fashion.

T=15 K

PRB 81,195203 (2010)

Page 83: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

Summary● Ca-doped Bi2Se3 → Topological “Insulator”.

suppress bulk conductance to show up Dirac electron surface state.

● Cu-added Bi2Se3 → Superconductor.

interface with Bi2Se3 to have proximity effect, Majorana fermionic physics (?).

● Mn-doped Bi2Te3 → Magnetic topological insulator.

in search for magnetic monopole (?) and

axion electrodynamics studies (?).

Page 84: Topological Insulators Yew San Hor 1 Department of Chemistry and J. G. Checkelsky 2, A. Richardella 2, J. Seo 2, P. Roushan 2, D. Hsieh 2, Y. Xia 2, M

AcknowledgementsCava group:

• Professor Robert Cava• Tyrel McQueen (JHU)• Don Vincent West (U Penn)• Anthony Williams• David Grauer (UC Berkeley)• Jared Allred• Shuang Jia• Siân Dutton• Esteban Climent-Pascual• Martin Bremholm• Ni Ni• Ulyana Sorokopoud• Linda Peoples

Funding agencies:

Air Force Office of Scientific Research (AFOSR).

Materials Research Science & Engineering Centers (MRSEC).

Thank you

References:Bernevig, Hughes, Zhang, Science 2006.Fu, Kane, Mele, PRL 2007.Moore, Nature 2010.Bjorken, Relativistic Quantum Mechanics.