toward nnlo accuracy of parton distribution functions · toward nnlo accuracy of parton...

64
Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration with M. Guzzi, F. Olness, J. Huston, H.-L. Lai, Z. Li, J. Pumplin, C.-P . Yuan (CTEQ) September 23, 2011 Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 1

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Toward NNLO accuracyof parton distribution functions

Pavel Nadolsky

Southern Methodist UniversityDallas, TX, U.S.A.

in collaboration withM. Guzzi, F. Olness,

J. Huston, H.-L. Lai, Z. Li, J. Pumplin, C.-P. Yuan (CTEQ)

September 23, 2011

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 1

Page 2: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO PDF sets as the new norm

¥ PDFs with NNLO (two-loop)QCD corrections to DIS andDY processes are becomingthe standard. They are nowproduced by 6 groups.

¥ Our general-purpose setCT10 is obtained at NLO (PRD82,

074024 (2010)). The CT10.1 NNLO setundergoes pre-publicationtests.

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 2

Page 3: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

The agreement between NNLO PDF sets is not automatically

better than at NLO

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 3

Page 4: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

The agreement between NNLO PDF sets is not automatically

better than at NLO

G. Watt, in PDF4LHC study, arXiv:1101.0536 )2Z

(MSα0.11 0.115 0.12 0.125 0.13

(p

b)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

68% C.L. PDF

MSTW08

HERAPDF1.0

ABKM09

GJR08/JR09

= 180 GeVH

= 1.96 TeV) for MsH at the Tevatron (→NNLO gg

Open symbols: NLOClosed symbols: NNLO

SαOuter: PDF+Inner: PDF onlyVertical error bars

)2Z

(MSα0.11 0.115 0.12 0.125 0.13

(p

b)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 3

Page 5: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

χ2/Ndata points in various experiments (PRELIMINARY)PDF set Order All Combined BCDMS CDF, D0 D0 Run-2 Ae

ch,

expts. HERA-1 DIS Fp,d2 Run-2 1-jet pe

T > 25 GeV

CT10.1 1.11 1.17 1.10 1.33 3.72MSTW08 NLO 1.42 1.73 1.16 1.31 11.38

(1.28) (1.4) (1.17)NNPDF2.0 1.37 1.32 1.28 1.57 2.79

CT10.1 1.13 1.12 1.14 1.23 2.59MSTW08 1.34 1.36 1.15 1.38 9.84

NNPDF2.1 NNLO 1.57 1.36 1.30 1.51 5.45ABM’09 (5f) 1.65 1.4 1.49 2.63 23.78

HERA1.5 1.71 1.15 1.87 ? 5.4

Npoints 2798 579 590 182 12

Cross sections are computed using the CTEQ fitting code and αs, mc,mb values provided by each PDF set. Their agreement does notimmediately improve after going to NNLO.

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 4

Page 6: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Origin of differences between PDF sets

¥ NNLO QCD terms (in all 6 PDF fits)

I Implementation of heavy-quark mass terms

¥ (N)LO electroweak contributions

¥ Selection of data: global analyses (CTEQ, MSTW, NNPDF) vs.restricted (“DIS-based”) analyses (ABM, GJR, HERAPDF)

¥ Statistical treatment: Monte-Carlo sampling vs. analyticalminimization of χ2; correlated systematic uncertainties;definitions of PDF uncertainties

¥ Initial PDF parametrizations: neural networks (NNPDF);2-5 parameters per flavor (other fits)

¥ Values of αs(MZ), mc, and mb and their treatment

¥ Differences in NLO codes used by PDF fits

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 5

Page 7: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

This talk

Genuine NNLO accuracy requires an earnest effortto calibrate all components of the PDF fits

I will provide examples of related activities, focusing on

¥ Heavy-quark contributions to DIS at O(α2s)

M. Guzzi, P.N., H.-L. Lai, C.-P. Yuan, arXiv:1108.5112;

additional figures at http://bit.ly/SACOTNNLO11

¥ W charge asymmetry at the Tevatron1. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. N., J. Pumplin, C.-P. Yuan, Phys.Rev. D82 (2010) 074024.

2. M. Guzzi, P. N., E. Berger, H.-L. Lai, F. Olness, C.-P. Yuan, arXiv:1101.0561 [hep-ph].

¥ Consistency of DGLAP picture at small x at HERA1. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. N., J. Pumplin, C.-P. Yuan, Phys.Rev. D82 (2010) 074024.

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 6

Page 8: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

1. Heavy quarks in DIS and LHC electroweak cross sections

The latest PDF fits assume mc,b 6= 0 when evaluating Wilson coeffi-cients in DIS, e±p → e±X and e±p → νX

This is needed, in particular, to correctly predict W, Z productionrates at the LHC (Tung et al., hep-ph/0611254)

CMS-PAS-EWK-10-00518.5 19 19.5 20 20.5 21 21.5 22

ΣtotHpp®HW±®{ΝLXL HnbL

1.85

1.9

1.95

2

2.05

2.1

2.15

Σto

tHpp®HZ

0®{{-

LXLHn

bL

W± & Z cross sections at the LHC (14 TeV)

CTEQ6.6 (GM)

CTEQ6.1 (ZM)

NNLL-NLO ResBos

- arXiv:0802.0007

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 7

Page 9: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

1. Heavy quarks in DIS and LHC electroweak cross sections

In pp → Z0X at√

s = 14 TeV:

σ(general-mass PDFs)σ(zero-mass PDFs)

≈ 1.05− 1.08;

to be compared with

KNNLO/NLO ≡ σ(α2s)/σ(αs) ≈ 1.02

CMS-PAS-EWK-10-00518.5 19 19.5 20 20.5 21 21.5 22

ΣtotHpp®HW±®{ΝLXL HnbL

1.85

1.9

1.95

2

2.05

2.1

2.15

Σto

tHpp®HZ

0®{{-

LXLHn

bL

W± & Z cross sections at the LHC (14 TeV)

CTEQ6.6 (GM)

CTEQ6.1 (ZM)

NNLL-NLO ResBos

- arXiv:0802.0007

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 7

Page 10: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Massive quark contributions to neutral-current DIS

Several heavy-quarkfactorization schemes

FFN, ACOT, BMSN, CSN,FONLL, TR’...

Extensive recent workTung et al., hep-ph/0611254; Thorne,hep-ph/0601245; Tung, Thorne, arXiv:0809.0714; P.N.,Tung, arXiv:0903.2667; Forte, Laenen, Nason,arXiv:1001.2312; J. Rojo et al., arXiv:1003.1241;Alekhin,Moch, arXiv:1011.5790;...

Is a consistent picture emerging? Willpersisting confusions (e.g., about theuniversality of heavy-quark PDFs) be

resolved?

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 8

Page 11: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Heavy-quark NC DIS at NLO: consistent ambiguityAt NLO, the charm mass mc and factorization scale µ of aretuned to best describe the DIS data in each scheme; but theresidual differences in the W and Z cross sections remain

à

à

à à

à

ò

ò

ò

ò

ò

æ

æ

æ æ

æ

ç

ç

ç ç

ç

Scale dependencelong dash: S-ACOT- Χ NLO

short dash: FFNS NLO Nf=3

à MSTW08-NLO

ò MSTW08-NLO- Χ

æ FONLL-A- Χ

ç FONLL-B- Χ

dotted:S-ACOT NLO

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.20.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

103x

0.5

F2

cHx

,QL

LH PDFs Q=2 GeV, mc=1.41 GeV

2009 Les Houches HQ benchmarkswith toy PDFs; default µ = Q

G. Watt, PDF4LHC mtg, 26.03.2010

W, Z cross sections;mc = 1.3 GeV in CTEQ6.6

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 9

Page 12: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO: better agreement between the schemes,remaining conceptual differences

arXiv:1108.5112

¥ revisits the QCD factorizationtheorem for DIS with heavyquarks

¥ discusses a scheme(S-ACOT-χ) for a streamlined,algorithmic implementation ofNNLO massive contributions

Subtractions

c F(0) (1)h,h h,g

Structure Functions

ch,h(1)

A(1)h,g * c

h,h(1)

A(2)h,g ch,h

(0)* A

(2)* c(0)

h,hh,lPSPS

h,l(2)FFh,g

(2)

u,d,s,c

c(2)h,h

A(1)h,g c(0)

h,h*

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 10

Page 13: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

S-ACOT-χ scheme: merging FFN and ZM

S-ACOT- Χ NNLO

FFNS Nf=3 NNLO

ZM NNLO

0.00

0.05

0.10

0.15

0.20

0.25

F2

cHx

,QL

x=0.01

10.5.2. 3.1.5 7.0.60.70.80.91.01.11.2

Q HGeVL

Rat

ioto

SA

CO

S-ACOT-χ reducesto FFN at Q ≈ mc

and to ZM at Q À mc

Les Houches toy PDFs, evolvedat NNLO with threshold

matching terms

Cancellations betweensubtractions and other terms atQ ≈ mc and Q À mc; details inbackup slides

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 11

Page 14: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Are heavy quarks counted as active partons?Fixed Flavor Number schememc 6= 0 for all µ2 = Q2 ≥ m2

c

PDF"hard" part

massive quark

Zero-Mass Variable FlavorNumber scheme

mc = 0 for all Q2 ≥ m2c

massless quark

fc/p(ξ, µ2) ∼∞X

n=1

αkS(µ)

nX

k=0

cnk(ξ) lnk

„µ2

m2c

«

Shown for up to 4 flavors for simplicity

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 12

Page 15: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

General-Mass Variable Flavor Number schemes

(Aivasis, Collins, Olness, Tung; Buza et al.; Cacciari, Greco, Nason;

Chuvakin et al.; Kniehl et al.; Thorne, Roberts; Forte, Laenen, Nason; ...)

For the ACOT GM scheme,factorization of DIS cross sections isproved to all orders of αs (Collins, 1998)

Theorem

F2(x,Q, mc) = σ0

∑a=g,q,q

∫dξ

ξCa

(x

ξ,

Q

µF,mc

Q

)fa/p(ξ,

µF

mc)+O

(ΛQCD

Q

)

¥ Ca is a Wilson coefficient with an incoming parton a = g, u(−)

, ..., c(−)

¥ fa/p is a PDF for Nf flavors

¥ Nf = 3 for µ < µ(4)switch ≈ mc; Nf = 4 for µ ≥ µ

(4)switch

¥ limQ→∞ Ca exists; no terms O(mc/Q) in the remainderPavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 13

Page 16: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

General-Mass Variable Flavor Number schemes

(Aivasis, Collins, Olness, Tung; Buza et al.; Cacciari, Greco, Nason;

Chuvakin et al.; Kniehl et al.; Thorne, Roberts; Forte, Laenen, Nason; ...)

For the ACOT GM scheme,factorization of DIS cross sections isproved to all orders of αs (Collins, 1998)

Schemes of the ACOT type do not use...

¥ PDFs for several Nf values in the same µ range

¥ smoothness conditions/damping factors at Q → mc

¥ constant terms from higher orders in αs to ensure continuityat the threshold

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 13

Page 17: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Components of inclusive F2,L(x,Q)Structure of S-ACOT-χ NNLO expressions is reminiscent of the ZM scheme(e.g., in Moch, Vermaseren, Vogt, 2005)

Components of inclusive F2,L(x,Q2) are classified according tothe quark couplings to the photon

F =

Nl∑

l=1

Fl + Fh (1)

Fl = e2l

∑a

[Cl,a ⊗ fa/p

](x,Q), Fh = e2

h

∑a

[Ch,a ⊗ fa/p

](x,Q). (2)

e l he

AtO(α2

s):

F(2)h = e2

h

{cNS,(2)h,h ⊗ (fh/p + fh/p) + C

(2)h,l ⊗ Σ + C

(2)h,g ⊗ fg/p

}

F(2)l = e2

l

{C

NS,(2)l,l ⊗ (fl/p + fl/p) + cPS,(2) ⊗ Σ + c

(2)l,g ⊗ fg/p

}. (3)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 14

Page 18: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Components of inclusive F2,L(x,Q)

¥ Lower case c(2)a,b, f

(k)a,b → ZM expressions

Zijlstra and Van Neerven PLB272 (1991), NPB383 (1992)S. Moch, J.A.M. Vermaseren and A. Vogt, NPB724 (2005)

¥ Upper case C(2)a,b , F

(k)a,b A

(k)a,b → coeff. functions, structure

functions and subtractions with mc 6= 0,Buza et al., NPB 472 (1996); EPJC1 (1998);Riemersma, et al. PLB 347 (1995); Laenen et al. NPB392 (1993)

¥ All building blocks are available from literature

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 14

Page 19: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Components of inclusive F2,L(x,Q)The separation into Fl and Fh (according to the quark’s electriccharge e2

i ) is valid at all Q

The “light-quark” Fl contains some subgraphs with heavy-quarklines, denoted by “Gl,l,heavy”.

The “heavy-quark” Fh 6= F c2 :

F c2 = Fh + (Gl,l,heavy)real,

where Gi,j = C(2)i,j , F

(2)i,j , and A

(2)i,j

l

h

(a) (b)

l

h

(c) (d)

l

hh

l

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 14

Page 20: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Three versions of the ACOT schemeScheme Lowest-order graphs Variables in Hc

Full ACOTAivasis et. al.,

hep-ph/9312319

Proof in Collins,

hep-ph/9806259

+ −P1m;n=1�nSvnm lnm(Q2=M2)m!mc 6= 0

ζ =

x2

(1 +

√1 + 4m2

c

Q2

)

SimplifiedACOT

Proof in Collins,hep-ph/9806259;

Kramer, Olness, Soper,

hep-ph/0003035

+ − mc = 0ζ = x

S-ACOT-χTung, Kretzer, Schmidt,

hep-ph/0110247;

proof in Guzzi et al.,

arXiv:1108.5112

+ − mc = 0ζ = x

(1 +

4m2c

Q2

)≡ χ

¥ Ha with incoming light partons are unambiguous¥ Hc with incoming c quarks differ by terms of order (m2

c/Q2)p, p > 0Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 15

Page 21: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration
Page 22: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Three versions of the ACOT schemeScheme Lowest-order graphs Variables in Hc

Full ACOTAivasis et. al.,

hep-ph/9312319

Proof in Collins,

hep-ph/9806259

+ −P1m;n=1�nSvnm lnm(Q2=M2)m!mc 6= 0

ζ =

x2

(1 +

√1 + 4m2

c

Q2

)

SimplifiedACOT

Proof in Collins,hep-ph/9806259;

Kramer, Olness, Soper,

hep-ph/0003035

+ − mc = 0ζ = x

S-ACOT-χTung, Kretzer, Schmidt,

hep-ph/0110247;

proof in Guzzi et al.,

arXiv:1108.5112

+ − mc = 0ζ = x

(1 +

4m2c

Q2

)≡ χ

¥ Ha with incoming light partons are unambiguous¥ Hc with incoming c quarks differ by terms of order (m2

c/Q2)p, p > 0Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 17

Page 23: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Energy conservation near the thresholdThreshold rate suppression resulting from energy conservation isthe most important mass effect at Q ≈ mc

(Tung, Kretzer, Schmidt, hep-ph/0110247; Tung, Thorne, arXiv:0809.0714; P.N., Tung, arXiv:0903.2667)

In DIS, a cc pair is produced only at par-tonic energies W satisfying

W 2 = (ξp + q)2 = Q2

x− 1

)≥ 4m2

c

⇒χ ≤ ξ ≤ 1, where χ ≡ x

(1 +

4m2c

Q2

)≥ x.

/ Collinear approximation for cc pro-duction may allow to integrate over

x ≤ ξ ≤ 1,

in violation of energy conservation

eξpq

c

cp

Threshold

suppression

x=0.05 µ2=Q

2+4 m

2

F2c

Q2 / GeV

2

χ=x(1+4 m2 / Q

2 )

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 10 102

103

NLO 3-flv

LO 3-flv : GF(1)

Naive LO 4-flv : c

(x)

LO

4-f

lv A

CO

T(c)

: c(c)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 18

Page 24: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Energy conservation near the thresholdThreshold rate suppression resulting from energy conservation isthe most important mass effect at Q ≈ mc

(Tung, Kretzer, Schmidt, hep-ph/0110247; Tung, Thorne, arXiv:0809.0714; P.N., Tung, arXiv:0903.2667)

, The S-ACOT-χ scheme allows oneto include the energy conservation re-quirement in the QCD factorization the-orem (arXiv:1108.5112)

, This is achieved by rescaling, whichrestores the correct kinematics of HQproduction at the threshold without aposteriori constraints or damping fac-tors imposed by other schemes

eξpq

c

cp

Threshold

suppression

x=0.05 µ2=Q

2+4 m

2

F2c

Q2 / GeV

2

χ=x(1+4 m2 / Q

2 )

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 10 102

103

NLO 3-flv

LO 3-flv : GF(1)

Naive LO 4-flv : c

(x)

LO

4-f

lv A

CO

T(c)

: c(c)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 18

Page 25: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Rescaling at the lowest order

+ −

c(ζ) +αs

Z 1

χ

ξg(ξ)C

(1)h,g

„χ

ξ

«− αs

Z 1

ζ

ξg(ξ)A

(1)h,g

„ζ

ξ

«

®

­

©

ªζ takes place of x

in terms 1 and 3

¥ Term 2 (γ∗g fusion) is unambiguous

¥ Terms 1 and 3 are essentiallyZ 1

0

ξδ

„1− ζ

ξ

«c(ξ)− αs

Z 1

0

ξg(ξ)A

(1)h,g

„ζ

ξ

«θ

„1− ζ

ξ

«.

Rescaling ζ → κζ, ξ → κ−1ξ changes the ξ range in theWilson coefficients δ(1− ζ

ξ ) and A(1)h,g

(ζξ

)θ(1− ζ

ξ

), but does

not change their magnitude

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 19

Page 26: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Rescaling at the lowest order

+ −

c(ζ) +αs

Z 1

χ

ξg(ξ)C

(1)h,g

„χ

ξ

«− αs

Z 1

ζ

ξg(ξ)A

(1)h,g

„ζ

ξ

«

®

­

©

ªζ takes place of x

in terms 1 and 3

Q2 = 10 GeV2

¥ Red curve: g(ξ)C(1)h,g(χ/ξ) at χ ≤ ξ ≤ 1

¥ Green: ζ = x; κ = 1

I g(ξ)A(1)h,g(x/ξ) 6= 0 at ξ < χ

I its integral cancels poorly with c(x)

¥ Blue: ζ = χ; κ = 1 + 4m2c/Q2

Ig(ξ)A(1)h,g(χ/ξ) = 0 at ξ < χ

I its integral cancels better with c(χ)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 19

Page 27: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Rescaling at the lowest order

+ −

c(ζ) +αs

Z 1

χ

ξg(ξ)C

(1)h,g

„χ

ξ

«− αs

Z 1

ζ

ξg(ξ)A

(1)h,g

„ζ

ξ

«

®

­

©

ªζ takes place of x

in terms 1 and 3

Q2 = 100 GeV2

χ ≈ x

g(ξ)A(1)h,g(ζ/ξ) approximates the logarithmic

growth in g(ξ)C(1)h,g(χ/ξ)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 19

Page 28: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Rescaling at the lowest order

+ −

c(ζ) +αs

Z 1

χ

ξg(ξ)C

(1)h,g

„χ

ξ

«− αs

Z 1

ζ

ξg(ξ)A

(1)h,g

„ζ

ξ

«

®

­

©

ªζ takes place of x

in terms 1 and 3

Q2 = 10000 GeV2

χ ≈ x

g(ξ)A(1)h,g(ζ/ξ) approximates the logarithmic

growth in g(ξ)C(1)h,g(χ/ξ)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 19

Page 29: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Rescaling to all orders of αs and the factorization theorem

Z projectionk

k

pa = g, q, q

q qp

~kT

Ta(k, p)Ta(k, p) Ha(q,k)Ha(q, k) ⊗

¥ Rescaling is introduced in the definition of the hard subgraphHc(q, k) with an incoming c quark in γ∗(q) + c(k) → X. Hard graphsHg, Hq with incoming light partons and target graphs Ta(k, p) are notaffected

¥ In Hc(q, k), the momentum of the incoming c quark is approxi-mated by bk =

“ξp+, 0−,~0T

”. k and Hc(q, k) are invariant under trans-

formation p+ → p+/κ, ξ → ξ κ. The physical ξ range is obtained forκ = 1 + 4m2

c/Q2.

¥ This transformation shows that the S-ACOT-χ scheme is valid toall orders on the same grounds as the S-ACOT scheme.

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 20

Page 30: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Rescaling to all orders of αs and the factorization theorem

Z projectionk

k

pa = g, q, q

q qp

~kT

Ta(k, p)Ta(k, p) Ha(q,k)Ha(q, k) ⊗

F (x, Q) =X

a=g,u,d,...,c

Zdξ

ξCa

„x

ξ,Q

µ,mc

Q

«fa/p(ξ, µ)

¥ Wilson coefficients with initial heavy quarks are

Cc

„x

ξ,Q

µ,mc

Q

«≈ Cc

„χ

ξ,Q

µ, mc = 0

«θ(χ ≤ ξ ≤ 1)

where χ ≡ x

„1 +

4m2c

Q2

«.

¥ The target (PDF) subgraphs Ta are given by the same universaloperator matrix elements in all ACOT schemes

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 20

Page 31: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO results for F(c)2 (x,Q2)

At NLO:

à

à

à à

à

ò

ò

ò

ò

ò

æ

æ

æ æ

æ

ç

ç

ç ç

ç

Scale dependencelong dash: S-ACOT- Χ NLO

short dash: FFNS NLO Nf=3

à MSTW08-NLO

ò MSTW08-NLO- Χ

æ FONLL-A- Χ

ç FONLL-B- Χ

dotted:S-ACOT NLO

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.20.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

103x

0.5

F2

cHx

,QL

LH PDFs Q=2 GeV, mc=1.41 GeV

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 21

Page 32: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO results for F(c)2 (x,Q2)

At NNLO and Q ≈ mc:

S-ACOT-χ (Nf = 4) ≈ FFN (Nf = 3)

without tuning

¥ S-ACOT is numerically closeto other NNLO schemes

¥ NNLO expressions are closeto the FONLL-C scheme(Forte, Laenen, Nason, arXiv:1001.2312).

ò

ò

ò

ò

ò

æ

æ

æ æ

æ

Scale dependencelong dash: S-ACOT- Χ NLO

solid: S-ACOT- Χ NNLO

short dash: FFNS NNLO Nf=3

ò MSTW08-NNLO- Χ

æ FONLL-C- Χ

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.20.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

103x

0.5

F2

cHx

,QL

LH PDFs Q=2 GeV, mc=1.41 GeV

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 21

Page 33: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO results for F(c)2 (x,Q2)

At NNLO and Q ≈ mc:

S-ACOT-χ (Nf = 4) ≈ FFN (Nf = 3)

without tuning

¥ S-ACOT is numerically closeto other NNLO schemes

¥ NNLO expressions are closeto the FONLL-C scheme(Forte, Laenen, Nason, arXiv:1001.2312).

scale+rescaling dependenceblue band: NLO

green band: NNLO

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.20

1

2

3

4

5

x

103x

0.5

F2

cHx

,QL

LH PDFs Q=2 GeV S-ACOT

¥ Even without rescaling (a wrong choice!), NNLO cross sectionsare much closer to FFN at Q ≈ mc than at NLO

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 21

Page 34: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Main features of the S-ACOT-χ scheme¥ It is proved to all orders by the QCD factorization theorem for

DIS (Collins, 1998)

¥ It is relatively simple

I One value of Nf (and one PDF set) in each Q range

I sets mh = 0 in ME with incoming h = c or b

I matching to FFN is implemented as a part of the QCDfactorization theorem

¥ Universal PDFs¥ It reduces to the ZM MS scheme at Q2 À m2

Q, withoutadditional renormalization

¥ It reduces to the FFN scheme at Q2 ≈ m2Q

I has reduced dependence on tunable parameters at NNLO

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 22

Page 35: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

CT10/CT10W distributions, W charge asymmetry,HERA DIS at small x

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 23

Page 36: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

CT10 parton distribution functions (PRD82, 074024 (2010))

New experimental data, statistical methods, andparametrization forms

¥ combined HERA-1 data are included

¥ 53 CT10 and 53 CT10W eigenvector sets for αs(MZ) = 0.118

¥ 4 CT10AS PDFs for αs(MZ) = 0.116− 0.120sufficient for computing the PDF+αs uncertainty, as explained inPRD82,054021 (2010)

¥ CT10/CT10W PDFs with 3 and 4 active flavors

¥ extended discussion ofthe Tevatron Run-2 W asymmetry data

¥ search for deviations from NLO DGLAP evolutionin the small-x HERA data

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 24

Page 37: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

The puzzle of the W lepton asymmetry

¥ Rapidity asymmetry A`(y`) of charged lepton ` = e or µ inW boson decay provides important constraints ond(x,Q)/u(x,Q) at x > 0.1

A`(y`) =dσ(pp → (W+ → `+ν`)X)/dy` − dσ(pp → (W− → `−ν`)X)/dy`

dσ(pp → (W+ → `+ν`)X)/dy` + dσ(pp → (W− → `−ν`)X)/dy`.

¥ A`(y`) is related to the boson-level asymmetry,

AW (yW ) =dσ(pp → W+X)/dyW − dσ(pp → W−X)/dyW

dσ(pp → W+X)/dyW + dσ(pp → W−X)/dyW,

smeared by W± decay effectsBerger, Halzen, Kim, Willenbrock, PRD 40, 83 (1989); Martin, Roberts, Stirling, 1989

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 25

Page 38: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

The puzzle of the CDF/D0 W lepton asymmetry

¥ CT10W set reasonably agrees with 3 pT` bins of Ae(ye) andone bin of Aµ(yµ) from D0 Run-2 (2008); shows tension withNMC, BCDMS F p,d

2 (x,Q)

¥ NNPDF 2.0 (arXiv:1012.0836) agrees with Aµ(yµ), disagrees with twopTe bins of Ae(ye).

¥ CT10, many other PDFs fail.

Agreement of Source orPQCD with D0 Ae(ye) χ2/npt comments

CTEQ6.6, NLO 191/36=5.5 Our study;

CT10W, NLO 78/36=2.2 Resbos, NNLL-NLO

With Aµ(yµ): 88/47=1.9ABKM’09, NNLO 540/24=22.5 Catani, Ferrera, Grazzini,

MSTW’08, NNLO 205/24=8.6 JHEP 05, 006 (2010)

JR09VF, NNLO 113/24=4.7

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 26

Page 39: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Why difficulties with fitting A`(y`)?

1. A`(y`) is very sensitive to the average slope sdu ofd(x, MW )/u(x, MW )

A`(y`) ∼ A`(yW )|LO ∝1

x1 − x2

[d(x1)

u(x1)− d(x2)

u(x2)

]; x1,2 =

Q√se±yW

Berger, Halzen, Kim, Willenbrock, PRD 40, 83 (1989); Martin, Stirling, Roberts, MPLA 4, 1135 (1989); PRD D50, 6734 (1994);Lai et al., PRD 51, 4763 (1995)

2. Constraints on sdu by fixed-target F d2 (x,Q)/F p

2 (x,Q) areaffected by nuclear and higher-twist effectsAccardi, Christy, Keppel, Monaghan, Melnitchouk, Morfin, Owens, PRD 81, 034016 (2010)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 27

Page 40: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Challenges with fitting A`(y`)

Small changes in sdu causesignificant variations in A`

Lai et al., PRD 51, 4763 (1995)

Alternative constraints on d/uby F d

2 (x,Q)/F p2 (x,Q) from

fixed-target DIS are affectedby nuclear and higher-twisteffectsAccardi, Christy, Keppel, Monaghan, Melnitchouk,Morfin, Owens, PRD 81, 034016 (2010)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 28

Page 41: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

d(x,Q)/u(x,Q) at Q = 85 GeV

η0 0.5 1 1.5 2 2.5 3

)ηA

(

-0.8

-0.6

-0.4

-0.2

0

0.2NNPDF20

CT10

MSTW08

>25GeV)T

D0el(E

R. Ball et al., arXiv:1012.0836

R. Ball et al., arXiv:1012.0836 H.-L. Lai et al., arXiv:1007.2241

Solid band: CTEQ6.6 uncertaintyHatched band: CT10W uncertainty

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2 0.5 0.70.7

0.8

0.9

1.0

1.1

1.2

1.3

x

Rat

ioto

CT

EQ

6.6M

d/u at µ = 85 GeV

H.-L. Lai et al., arXiv:1007.2241

¥ D0 Run-2 A` data distinguishes between PDF models, reducesthe PDF uncertainty

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 29

Page 42: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Why difficulties with fitting A`(y`)?

3. Existing parametrizations underestimate the PDF uncertaintyon d/u

PDFs based on Chebyshovpolynomials improveagreement with D0 Run-2 Ae,but are outside of currentCTEQ/MSTW bands (Pumplin)

This ambiguity is reduced byA`(y`) at the LHC, whichconstrains d/u and d/u atx ∼ 0.01.

Band: CT10 uncertainty

Long dash: Chebyshov, dbar/ubar->1 at x->0

Short dash: Chebyshov, free dbar/ubar at x->0

Solid: MSTW’2008NLO

PRELIMINARY

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 30

Page 43: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

CT10(W) vs. A` at the LHC

|µη|0 0.5 1 1.5 2

µA

0.15

0.2

0.25

0.3

0.35

|µη|0 0.5 1 1.5 2

µA

0.15

0.2

0.25

0.3

0.35=7 TeV)sData 2010 (

MC@NLO, CTEQ 6.6MC@NLO, HERA 1.0MC@NLO, MSTW 2008

-1 L dt = 31 pb∫

νµ →W

ATLAS

CT10(W) agrees well with theLHC A`; some differencesbetween NLO and NNLL+NLO

|η|0 0.5 1 1.5 2 2.5 3

W c

har

ge

asym

met

ry

0.1

0.15

0.2

0.25

0.3

0.35 CT10

CT10W

CMS electron

CMS muon

NNLL−NLO+K, ResBos

PRELIMINARY

Zhao Li, 2011

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 31

Page 44: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

CT10(W) vs. A`: LHC-B

|η|1.5 2 2.5 3 3.5 4 4.5

W c

harg

e as

ymm

etry

-0.6

-0.4

-0.2

0

0.2

0.4

CT10

CT10W

LHCBNNLL−NLO+K, ResBos

PRELIMINARY

Zhao Li, 2011

LHC-B marginally prefers CT10W

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 32

Page 45: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Why difficulties with fitting A`(y`)?

4. Experimental A` with lepton pT` cuts is sensitive to dσ/dqT of Wboson at transverse momentum qT → 0.

¥ Fixed-order (N)NLO calculations (DYNNLO, FEWZ, MCFM,...)predict a wrong shape of dσ/dqT at qT → 0.

¥ Small-qT resummation correctly predicts dσ/dqT in this limit.

¥ CT10(W) PDFs are fitted using a NNLL-NLO+K resummedprediction for A` (ResBos); must not be used with fixed-orderpredictions for A`.

For example:

χ2(CT10W+ResBos) = 1.9Npt (us);

χ2(CT10W+DYNNLO) = 8.4Npt (NNPDF)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 33

Page 46: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Radiative contributions in ResBos +comparison to the Tevatron Z qT distribution

¥ Resummed dσ`pp → (V → ` ¯′)X

´/(d3p`d3p ¯′ ) for

V = γ∗, W, Z, with decay and EWinterference effects

¥ QT ∼ Q: [O(αs) with full decay] ×[average O(α2

s) correction (Arnold, Reno)]

¥ QT ¿ Q: A(3), B(2), C(1)

I no H(2) correction – a ≈ constanterror of ±3% in the normalization ofXsecs

¥ mass dependence in c, b scatteringcross sections (S. Berge, P. N., F. I. Olness, hep-ph/0509023)

¥ a nonperturbative function fromKonychev, P. N., hep-ph/0506225

(1/

GeV

)

T/d

pZσ

d× Zσ

1/

-610

-510

-410

-310

-210

-110

-1, L=0.97 fb∅DNNLO pQCD + corr.

PYTHIA Perugia 6

< 115 GeVµµ65 < M > 15 GeV

T| < 1.7, muon pηmuon |

∅D

(1/

GeV

)

T/d

pZσ

d× Zσ

1/

-610

-510

-410

-310

-210

-110

Rat

io to

PY

TH

IA P

erug

ia 6

1

-1, L=0.97 fb∅D

PYTHIA scale unc.

HERWIG+JIMMY

PYTHIA Tune D62

0.7

0.5

Rat

io to

PY

TH

IA P

erug

ia 6

1

(GeV)ZT

p1 10 210

Rat

io to

PY

TH

IA P

erug

ia 6

1

-1, L=0.97 fb∅DNNLO pQCD

Scale & PDF unc.

RESBOSNLO pQCD

Scale & PDF unc.

PYTHIA scale unc.

2

0.7

0.5

(GeV)ZT

p1 10 210

Rat

io to

PY

TH

IA P

erug

ia 6

1

(GeV)ZT

p1 10 210

Rat

io to

PY

TH

IA P

erug

ia 6

1

-1, L=0.97 fb∅DSHERPAPYTHIA scale unc.

ALP+HERWIGALP+PY Tune D6ALP+PY Perugia 6

2

0.7

0.5

(GeV)ZT

p1 10 210

Rat

io to

PY

TH

IA P

erug

ia 6

1

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 34

Page 47: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Charge asymmetry in peT bins (CDF Run-2, 207 pb−1)

Without the peT cut (FEWZ):

Anastasiou et al., 2003

y

y of W boson

With pTe cuts imposed, Ach(ye) is sensitive to small-QT resummation

arXiv:1101.05610.5 1 1.5 2 2.5 3

y{

-0.6

-0.4

-0.2

0

0.2

Cha

rge

asym

met

ry

25 < pT{ < 35 GeV, CTEQ65

Resummed

NLOLO

0.5 1 1.5 2 2.5 3y{

-0.4

-0.2

0

0.2

0.4

Cha

rge

asym

met

ry

35 < pT{ < 45 GeV, CTEQ65

NNLL�NLO

NLO

LO

Balazs, Yuan, 1997; PN, 2007, unpublished; arXiv:1101.0561

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 35

Page 48: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Acut fits to combined HERA data

x-510 -410 -310 -210 -110 1

]2 [

GeV

2 T /

p2

/ M

2Q

1

10

210

310

410

510

610 NMC-pdNMCSLACBCDMSHERAI-AVCHORUSFLH108NTVDMNZEUS-H2DYE886CDFWASYCDFZRAPD0ZRAPCDFR2KT

= 0.5cutA = 1.0cutA = 1.5cutA = 3.0cutA = 6.0cutA

NNPDF2.0 dataset

Ags ≡ Q2x0.3 < Acut

Fitting procedure:¥ Include only DIS data above an Acut line

¥ Compare the resulting PDFs with DIS data below the Acut

line, in a region that is “connected” by DGLAP evolutionPavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 36

Page 49: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

CT10: Acut fits to DIS data at Q > Q0 = 2 GeV>2

<d

0.5

1

1.5

2

2.5

3 = 1.5cutFit with A

Fit without cuts < 1.0 cutA

< 1.5cut1.0 < A

< 3.0cut1.5 < A

< 6.0 cut3.0 < A

> 6.0cutA

Caola, Forte, Rojo, arXiv:1007.5405v2

Q > 1.41 GeV

<1.0 1.0-1.5 1.5-3.0 3.0-6.0 >6.0

ææ

æ

ææ

à

à

à

àà

ì

ì

ì

ìì

CT10 fit

Fit 1 with Acut=1.5Fit 2 with Acut=1.5

Q > 2 GeV

N pts= 36 18 30 27 468Ags

ranges

0.5

1.0

1.5

2.0

2.5

3.0Χdata

2�Npts

Motivation

Search for deviations from DGLAP evolution at smallest x and Q

¥ Follow the procedure proposed by NNPDF (Caola, Forte, Rojo, arXiv:1007.5405)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 37

Page 50: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

CT10: Acut fits to DIS data at Q > Q0 = 2 GeV>2

<d

0.5

1

1.5

2

2.5

3 = 1.5cutFit with A

Fit without cuts < 1.0 cutA

< 1.5cut1.0 < A

< 3.0cut1.5 < A

< 6.0 cut3.0 < A

> 6.0cutA

Caola, Forte, Rojo, arXiv:1007.5405v2

Q > 1.41 GeV

<1.0 1.0-1.5 1.5-3.0 3.0-6.0 >6.0

ææ

æ

ææ

à

à

à

àà

ì

ì

ì

ìì

CT10 fit

Fit 1 with Acut=1.5Fit 2 with Acut=1.5

Q > 2 GeV

N pts= 36 18 30 27 468Ags

ranges

0.5

1.0

1.5

2.0

2.5

3.0Χdata

2�Npts

CT10

Two CT10-like fits to data at Ags > 1.5, with differentparametrizations of g(x,Q)

χ2i =

(Shifted Data− Theory)2

σ2uncor

Large syst. shifts at Ags < 1.0, in apattern that could mimic aslower Q2 evolution

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 37

Page 51: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

CT10: Acut fits to DIS data at Q > Q0 = 2 GeV>2

<d

0.5

1

1.5

2

2.5

3 = 1.5cutFit with A

Fit without cuts < 1.0 cutA

< 1.5cut1.0 < A

< 3.0cut1.5 < A

< 6.0 cut3.0 < A

> 6.0cutA

Caola, Forte, Rojo, arXiv:1007.5405v2

Q > 1.41 GeV

<1.0 1.0-1.5 1.5-3.0 3.0-6.0 >6.0

ææ

æ

ææ

à

à

à

àà

ì

ì

ì

ìì

CT10 fit

Fit 1 with Acut=1.5Fit 2 with Acut=1.5

Q > 2 GeV

N pts= 36 18 30 27 468Ags

ranges

0.5

1.0

1.5

2.0

2.5

3.0Χdata

2�Npts

CT10, cont.

δχ2 ∼ 0 at Ags > 1.0[no difference]

δχ2 = 0− 1.5 at Ags < 1.0,with large uncertainty

⇒ Disagreement with the “DGLAP-connected” data atAgs < Acut is not supported by the CT10 fit

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 37

Page 52: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Conclusions¥ Great progress in understanding of heavy-quark

contributions to DIS.

I S-ACOT-χ recipe-like formulas for implementing NNLO

I Energy conservation in DIS is realized as a part of the QCDfactorization theorem. Would it be interesting to try to extendto pp processes.

I It leads to rescaling of Wilson coefficient functions withincoming heavy quarks. The PDFs are given by universaloperator matrix elements.

¥ Progress in understanding of NNLO contributions, newTevatron and LHC data sets, PDF parametrization issues

¥ arXiv:1101.0561: synopsis of recent CTEQ publications

I CT10W fit to Run-2 W charge asymmetry;PDFs for leading-order showering programs; constraints oncolor-octet fermions

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 38

Page 53: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Conclusion

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 39

Page 54: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Backup slides1. Details on S-ACOT-χ scheme at NNLO

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 40

Page 55: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

S-ACOT input parameters

At Q ≈ mc, F c2 depends significantly on

1. Charm mass: mc = 1.3 GeV in CT10

2. Factorization scale: µ =√

Q2 + κm2c ; κ = 1 in CT10

3. Rescaling variable ζ(λ) for matching in γ∗c channels(Tung et al., hep-ph/0110247; Nadolsky, Tung, PRD79, 113014 (2009))

Fi(x,Q2) =∑

a,b

∫ 1

ζ

ξfa(ξ, µ) Ca

b,λ

ξ,Q

µ,mi

µ

)

x = ζ/(

1 + ζλ · (4m2c)/Q2

), with 0 ≤ λ . 1

CT10 usesζ(0) ≡ χ ≡ x

(1 + 4m2

c/Q2),

motivated by momentum conservation

1+ �����������Mf

2

Q2 Ζ=ΧACOT HΛ=0L

Ζ=x HΛ®¥L

Λ=0.1

Λ=0.2

Λ=1 Phy

sica

lthr

esho

ld:W=

Mf;Ζ=

1

10-4 0.001 0.01 0.1 1

1

x

Res

calin

gfa

ctor�x

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 41

Page 56: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Classes of Feynman diagrams I

+

+

+ + +

NLO Subtraction

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 42

Page 57: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Classes of Feynman Diagrams II

− − −

+ + +...

NNLO Subtractions

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 43

Page 58: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Cancellations between Feynman diagrams

Validity of the S-ACOT calculation was verified by checking forcertain cancellations at Q ≈ mc and Q À mc

¥ Q ≈ mc:

D(2)C1 ¿ D

(2)C0 ¿ D

(1)C0 ≤ F c

2 (x,Q)

¥ Q À mc:

D(2)g ¿ D(1)

g < F c2 (x,Q)

These cancellations are indeed observed in our results

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 44

Page 59: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO: Cancellations at Q2 ≈ m2c

D(1)

C0

D(1)C0 = C

(0)Q ⊗ c− asC

(0)Q ⊗A

(1)Qg ⊗ g; as =

αs

(4π)(1)

D(2)

C0

D(2)C0 = D

(1)C0 − a2

sC(0)Q ⊗A

(2),SQg ⊗ g − a2

sC(0)Q ⊗A

(2),PSQΣ ⊗ Σ (2)

D (2)

C1

D(2)C1 = C

(1)Q ⊗ c− a2

s C(1)Q ⊗A

(1)Qg ⊗ g (3)

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 45

Page 60: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO: Cancellations at Q2 ≈ m2c

FFNS nf=3 nnl

LO OHΑs0L

DC0H1L

DC0H2L

DC1H2L

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.20

1

2

3

4

x

103x

0.5

F2cHx

,QL

S−ACOT (no rescaling), Q=2 GeV

FFNS nf=3 nnl

LO OHΑs0L

DC0H1L

DC0H2L

DC1H2L

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.20

1

2

3

4

x

103x

0.5

F2cHx

,QL

S−ACOT−chi, Q = 2 GeV

D(2)C1 ¿ D

(2)C0 ¿ D

(1)C0 ≤ FFN at NNLO both for ζ = x and ζ = χ.

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 46

Page 61: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

NNLO: Cancellations at Q À mc

D(1)g

D(1)g ≡ C(1)

g = as

“F (1)

g ⊗ g − C(0)Q ⊗A

(1),SQg ⊗ g

”(4)

+ +

(2)gD

D(2)g = D(1)

g + a2s

hF (2)

g ⊗ g + F(2)Σ ⊗ Σ− C

(1)Q ⊗A

(1),SQg ⊗ g

−C(0)Q ⊗A

(2),SQg ⊗ g − C

(0)Q ⊗A

(2),PSQΣ ⊗ Σ

i(5)

D(1)g is of order of α2

s while D(2)g is of order of α3

s.Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 47

Page 62: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

F c2 at NNLO: Cancellations at Q = 10 GeV

FFNS nf=3 nnl

DgH1L

DgH2L

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2

0

5

10

15

x

103x

0.5

F2cHx

,QL

S−ACOT (no rescaling), Q = 10 GeV

FFNS nf=3 nnl

DgH1L

DgH2L

10-5 10-4 10-3 0.01 0.02 0.05 0.1 0.2

0

5

10

15

x

103x

0.5

F2cHx

,QL

S−ACOT−chi, Q = 10 GeV

D(2)g ¿ D

(1)g < FFN at NNLO < ACOT

log Q2

m2c

terms in FFN are cancelled well by subtractions.

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 48

Page 63: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

Comparison of (N)NLO PDF sets with data in the CT10.1 fit

¥ χ2 are computed at NNLO, using the LHAPDF 5.8.6 interfaceand CTEQ fitting code (very naively!)

¥ Whenever possible, adjust settings to reproduce assumptionsby other groups

I Use αs(Mz), mc,b values suggested by each PDF set

I approximate the GM scheme in DIS if possible

¥ Correlated systematic errors are included according to theCTEQ method

χ2 =∑

e={expt.}

Npt∑

k=1

1

s2k

(Dk − Tk −

Nλ∑

α=1

λαβkα

)2

+

Nλ∑

α=1

λ2α

N Dk and Tk are data and theory values (k = 1, ..., Npt);

N sk is the stat.+syst. uncorrelated error; λα are sources of syst. errorsPavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 49

Page 64: Toward NNLO accuracy of parton distribution functions · Toward NNLO accuracy of parton distribution functions Pavel Nadolsky Southern Methodist University Dallas, TX, U.S.A. in collaboration

χ2 values per experiment (PRELIMINARY)

PDF set Order All Combined BCDMS CDF, D0 D0 Run-2 Aech,

expts. HERA-1 Fp,d2 Run-2 1-jet pe

T > 25 GeV

CT10.1 1.11 1.17 1.10 1.33 3.72MSTW08 NLO 1.42 1.73 1.16 1.31 11.38

(1.28) (1.4) (1.17)NNPDF2.0 1.37 1.32 1.28 1.57 2.79

CT10.2 1.13 1.12 1.14 1.23 2.59MSTW08 1.34 1.36 1.15 1.38 9.84

NNPDF2.1 NNLO 1.57 1.36 1.30 1.51 5.45ABM’09 (5f) 1.65 1.4 1.49 2.63 23.78

HERA1.5 1.71 1.15 1.87 ? 5.4

Npoints 2798 579 590 182 12

Pavel Nadolsky (SMU) Galileo Galilei Institute September 23, 2011 50