trailing edge noise for rotating blades

50
Trailing edge noise for rotating blades Analysis and comparison of two classical approaches Samuel Sinayoko 1 Mike Kingan 2 Anurag Agarwal 1 1 University of Cambridge, UK 2 University of Southampton, Institute of Sound and Vibration Research, UK 18 th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, 6 June 2011

Upload: others

Post on 28-Feb-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trailing edge noise for rotating blades

Trailing edge noise for rotating blades

Analysis and comparison of two classical approaches

Samuel Sinayoko1 Mike Kingan2 Anurag Agarwal1

1University of Cambridge, UK2University of Southampton, Institute of Sound and Vibration Research, UK

18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, 6 June 2011

Page 2: Trailing edge noise for rotating blades

Motivation

2 of 34

Page 3: Trailing edge noise for rotating blades

Outline

Isolated airfoil theory

Amiet’s theory for rotating airfoils

Kim-George’s theory for rotating airfoils

Results

Conclusions

3 of 34

Page 4: Trailing edge noise for rotating blades

Review

Trailing edge for isolated airfoils

I Amiet 1974, 1975, 1976I Roger and Moreau 2005, 2009

Trailing edge for rotating airfoils

I Amiet 1976I Schlinker and Amiet 1981I Kim and George 1982I Blandeau and Joseph 2011

4 of 34

Page 5: Trailing edge noise for rotating blades

Review

Trailing edge for isolated airfoils

I Amiet 1974, 1975, 1976I Roger and Moreau 2005, 2009

Trailing edge for rotating airfoils

I Amiet 1976I Schlinker and Amiet 1981I Kim and George 1982I Blandeau and Joseph 2011

4 of 34

Page 6: Trailing edge noise for rotating blades

Outline

Isolated airfoil theory

Amiet’s theory for rotating airfoils

Kim-George’s theory for rotating airfoils

Results

Conclusions

5 of 34

Page 7: Trailing edge noise for rotating blades

Isolated airfoil theory

I Amplitude

Spp = a |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation lengthI Surface spectrum

6 of 34

Page 8: Trailing edge noise for rotating blades

Isolated airfoil theory

I Amplitude

Spp = a |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation lengthI Surface spectrum

6 of 34

Page 9: Trailing edge noise for rotating blades

Isolated airfoil theory

I Amplitude

Spp = a |Ψ|2 ly Sqq

I Acoustic lift

I Spanwise correlation lengthI Surface spectrum

6 of 34

Page 10: Trailing edge noise for rotating blades

Isolated airfoil theory

I Amplitude

Spp = a |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation length

I Surface spectrum

6 of 34

Page 11: Trailing edge noise for rotating blades

Isolated airfoil theory

I Amplitude

Spp = a |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation lengthI Surface spectrum

6 of 34

Page 12: Trailing edge noise for rotating blades

Outline

Isolated airfoil theory

Amiet’s theory for rotating airfoils

Kim-George’s theory for rotating airfoils

Results

Conclusions

7 of 34

Page 13: Trailing edge noise for rotating blades

Rotating airfoil

Observer

Flow

γ

x

y

z

α

θΩ

Spp(ω) =

∫Spp(ω,γ)dt

8 of 34

Page 14: Trailing edge noise for rotating blades

Rotating airfoil

Observer

Flow

γ

x

y

z

α

θΩ

Spp(ω) =

∫Spp(ω,γ)dt

8 of 34

Page 15: Trailing edge noise for rotating blades

Change of reference frame

rotor plane

E

P

MSO

MFO

Observerz

θ

9 of 34

Page 16: Trailing edge noise for rotating blades

Change of reference frame

rotor plane

E

PMSOMFO

Observerz

θ

MFS z′θ′

MOS

9 of 34

Page 17: Trailing edge noise for rotating blades

Change of reference frame

P

Observer

MFS z′θ′

9 of 34

Page 18: Trailing edge noise for rotating blades

Moving observer in wind tunnel

I p(x, t) : no effectI p(x,ω) : Doppler shift ω ′ → ω

PSD for moving observer

Spp(ω,γ) =ω ′

ωS ′pp(ω

′,γ)

Time for moving observer

dt =ω ′

ωdt ′

10 of 34

Page 19: Trailing edge noise for rotating blades

Moving observer in wind tunnel

I p(x, t) : no effectI p(x,ω) : Doppler shift ω ′ → ω

PSD for moving observer

Spp(ω,γ) =ω ′

ωS ′pp(ω

′,γ)

Time for moving observer

dt =ω ′

ωdt ′

10 of 34

Page 20: Trailing edge noise for rotating blades

Moving observer in wind tunnel

I p(x, t) : no effectI p(x,ω) : Doppler shift ω ′ → ω

PSD for moving observer

Spp(ω,γ) =ω ′

ωS ′pp(ω

′,γ)

Time for moving observer

dt =ω ′

ωdt ′

10 of 34

Page 21: Trailing edge noise for rotating blades

Amiet’s theory for rotating blade

Spp(ω) =1

∫ 2π0

(ω ′

ω

)2

S ′pp(ω

′,γ)dγ

11 of 34

Page 22: Trailing edge noise for rotating blades

But... not everyone agrees

Spp(ω) =1

∫ 2π0

(ω ′

ω

)eS ′pp(ω

′,γ)dγ

Source Exponent eAmiet (1976) 1Rozenberg et al (2010) 1Schlinker and Amiet (1981) 2Blandeau and Joseph (2011) -2

12 of 34

Page 23: Trailing edge noise for rotating blades

Outline

Isolated airfoil theory

Amiet’s theory for rotating airfoils

Kim-George’s theory for rotating airfoils

Results

Conclusions

13 of 34

Page 24: Trailing edge noise for rotating blades

Kim-George approach

p(x, t)

p(x,ω)

Spp(x,ω)

14 of 34

Page 25: Trailing edge noise for rotating blades

Kim-George approach

I Amplitude

Spp =∑m

B |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation lengthI Surface spectrum

15 of 34

Page 26: Trailing edge noise for rotating blades

Kim-George approach

I Amplitude

Spp =∑m

B |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation lengthI Surface spectrum

15 of 34

Page 27: Trailing edge noise for rotating blades

Kim-George approach

I Amplitude

Spp =∑m

B |Ψ|2 ly Sqq

I Acoustic lift

I Spanwise correlation lengthI Surface spectrum

15 of 34

Page 28: Trailing edge noise for rotating blades

Kim-George approach

I Amplitude

Spp =∑m

B |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation length

I Surface spectrum

15 of 34

Page 29: Trailing edge noise for rotating blades

Kim-George approach

I Amplitude

Spp =∑m

B |Ψ|2 ly Sqq

I Acoustic liftI Spanwise correlation lengthI Surface spectrum

15 of 34

Page 30: Trailing edge noise for rotating blades

Summary

Amiet:

Spp =

∫A |Ψ|2 ly Sqq dγ

Kim-George:

Spp =∑m

B |Ψ|2 ly Sqq

16 of 34

Page 31: Trailing edge noise for rotating blades

Outline

Isolated airfoil theory

Amiet’s theory for rotating airfoils

Kim-George’s theory for rotating airfoils

Results

Conclusions

17 of 34

Page 32: Trailing edge noise for rotating blades

Blade elements

Blade Mach number

Pit

chan

gle

Wind Turbine

Open propellorat cruise

Open propellorat take-off

Cooling fan

18 of 34

Page 33: Trailing edge noise for rotating blades

Wind turbine kc = 5

0

30

60

90

120

150

1807272 6262

19 of 34

Page 34: Trailing edge noise for rotating blades

Open propellor takeoff kc = 5

0

30

60

90

120

150

1807878 6464

20 of 34

Page 35: Trailing edge noise for rotating blades

Wind turbine kc=0.5

0

30

60

90

120

150

1807070 6060

21 of 34

Page 36: Trailing edge noise for rotating blades

Wind turbine kc=5

0

30

60

90

120

150

1807272 6262

22 of 34

Page 37: Trailing edge noise for rotating blades

Wind turbine kc=50

0

30

60

90

120

150

1805959 4949

23 of 34

Page 38: Trailing edge noise for rotating blades

Cooling fan kc=0.5

0

30

60

90

120

150

1801010 55

24 of 34

Page 39: Trailing edge noise for rotating blades

Cooling fan kc=5

0

30

60

90

120

150

1802727 1717

25 of 34

Page 40: Trailing edge noise for rotating blades

Cooling fan kc=50

0

30

60

90

120

150

1802626 2121

26 of 34

Page 41: Trailing edge noise for rotating blades

Open propellor take-off kc=0.5

0

30

60

90

120

150

1807171 6161

27 of 34

Page 42: Trailing edge noise for rotating blades

Open propellor take-off kc=5

0

30

60

90

120

150

1807070 6060

28 of 34

Page 43: Trailing edge noise for rotating blades

Open propellor take-off kc=50

0

30

60

90

120

150

1806767 5757

29 of 34

Page 44: Trailing edge noise for rotating blades

Open propeller cruise kc=0.5

0

30

60

90

120

150

1807373 6868

30 of 34

Page 45: Trailing edge noise for rotating blades

Open propeller cruise kc=5

0

30

60

90

120

150

1807373 6868

31 of 34

Page 46: Trailing edge noise for rotating blades

Open propeller cruise kc=50

0

30

60

90

120

150

1807171 6666

32 of 34

Page 47: Trailing edge noise for rotating blades

Outline

Isolated airfoil theory

Amiet’s theory for rotating airfoils

Kim-George’s theory for rotating airfoils

Results

Conclusions

33 of 34

Page 48: Trailing edge noise for rotating blades

Conclusions

1. Right exponent in Amiet’s theory is 2

2. Amiet’s approach exact if Mch 6 0.85 andkc > 0.5

3. Applicable to a wide range of applications

34 of 34

Page 49: Trailing edge noise for rotating blades

Conclusions

1. Right exponent in Amiet’s theory is 2

2. Amiet’s approach exact if Mch 6 0.85 andkc > 0.5

3. Applicable to a wide range of applications

34 of 34

Page 50: Trailing edge noise for rotating blades

Conclusions

1. Right exponent in Amiet’s theory is 2

2. Amiet’s approach exact if Mch 6 0.85 andkc > 0.5

3. Applicable to a wide range of applications

34 of 34