transfer function and linearization - roma tor...

13
Transfer function Linearization Transfer function and linearization Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome “Tor Vergata” Corso di Controlli Automatici, A.A. 2014-2015 Testo del corso: Fondamenti di Controlli Automatici, P. Bolzern, R. Scattolini, N. Schiavoni. 1 / 13

Upload: buitram

Post on 19-Feb-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

Transfer functionLinearization

Transfer function and linearization

Daniele Carnevale

Dipartimento di Ing. Civile ed Ing. Informatica (DICII),

University of Rome “Tor Vergata”

Corso di Controlli Automatici, A.A. 2014-2015

Testo del corso: Fondamenti di Controlli Automatici,

P. Bolzern, R. Scattolini, N. Schiavoni.

1 / 13

Transfer functionLinearization

Example

Space state and transfer function

Consider Single Input Single Output (SISO) Linear Time-invariant System(LTI) described by the differential equation (continuous time)

x = Ax+Bu, y = Cx+Du, (1)

with x ∈ Rn, u ∈ R, y ∈ R.The solution ϕ(t, x0, u(·)) := x(t) of (1) with initial condition x0 is

x(t) = eAx0 +

∫ t

0

eA(t−τ)Bu(τ)d τ, [proof: substitute in (1)] (2)

the system output is then

y(t) = CeAx0︸ ︷︷ ︸free response

+C

∫ t

0

eA(t−τ)Bu(τ)d τ +Du(t)︸ ︷︷ ︸forced response

. (3)

The free response is characterized by system modes of the type eλi tthi/hi!,where λi ∈ σ{A} ⊂ C and 0 ≤ hi ≤ n is the dimension of the largest Jordanblock associated to λi. The forced response contains the modes of the inputand the output eαj ttqj/qj !. There might be higher order (tqj+1) polynomialsin the response if αj = λi for some i and j (resonance).

2 / 13

Transfer functionLinearization

Example

Laplace transform: the transfer function

Applying Laplace transform to (1) yields

L[x(t)](s) := x(s) = (sI −A)−1x0 + (sI −A)−1Bu(s) (4)

L[y(t)](s) := y(s) = C(sI −A)−1x0 +(C(sI −A)−1B +D

)u(s). (5)

Definition (Transfer function)

Assuming x0 = 0, then

FDT (s) :=y(s)

u(s)= C(sI −A)−1B +D =

Γmi=0(s− zi)Γni=0(s− pi)

, (6)

is the system transfer function and is a proper rational function (ratio ofpolynomials of s where m ≤ n ≤ n). Furthermore, if every pole (root of thedenominator) pi of the FDT has non-positive real part (pi ∈ C−0 ) then ifu(t) = E cos(ωt+ θ) it holds

limt→∞

y(t) = ρ(ω)E cos(ωt+ θ + ϕ(ω)), (7)

where ρ(ω) := |FDT (jω)| and ϕ(ω) := FDT (jω).

3 / 13

Transfer functionLinearization

Example

Transient response

The forced response, using inverse Laplace transform and residuals can bewritten as

y(t) = L−1[C(sI −A)−1x0](t) + L−1[FDT (s)u(s)](t)

= |x0=0 L−1

[∑i

∑j

Ri,j(s− pi)j

+∑i

∑j

Ri,j(s− alphai)j

]

=∑i

∑j

Ri,j tj−1epi t

(j − 1)!︸ ︷︷ ︸transient response

+∑i

∑j

Ri,j tj−1eαi t

(j − 1)!︸ ︷︷ ︸regime response

. (8)

If pi ∈ C− then

limt→∞

∑i

∑j

Ri,j tj−1epi t

(j − 1)!︸ ︷︷ ︸transient response

= 0.

What happen if pi ∈ C−0 ? Does exist an initial condition x0 such thaty(t) = ρ(ω)E cos(ωt+ θ + ϕ(ω)) for all t ≥ 0?

4 / 13

Transfer functionLinearization

Example

First order rational functions (not all of them are proper transfer functions)

P1(s) =1

s+ 10, P2(s) =

s+ 10

1, P3(s) =

1

0.1s+ 1, P4(s) =

−0.1s+ 1

1,

P5(s) =1

s− 10, P6(s) =

s+ 100

s+ 10, P7(s) = 2

s+ 10

s+ 100.

−100

−50

0

50

100

Mag

nitu

de (d

B)

10−1 100 101 102 103 104−180

−90

0

90

180

270

360

Phas

e (d

eg)

Bode Diagram

Frequency (rad/s)

P1P2P3P4P5P6P7

Figure: Bode plots - first order functions. 5 / 13

Transfer functionLinearization

Example

First order rational functions (not all of them are proper transfer functions)

P1 = t f ( 1 , [ 1 1 0 ] ) ; P2 = t f ( [ 1 1 0 ] , 1 ) ; P3 = t f ( 1 , [ 0 . 1 1 ] ) ;P4 = t f ( [−0.1 1 ] , [ 1 ] ) ; P5 = t f ( 1 , [ 1 −10]) ;P6 = t f ( [ 1 1 0 0 ] , [ 1 1 0 ] ) ; P7 = zpk ( [ −1 0 ] , [ −1 0 0 ] , 2 ) ;

f i g u r e ( 1 )bode ( P1 , P2 , P3 , P4 , P5 , P6 , P7 ) ;legend ( ’ P 1 ’ , ’ P 2 ’ , ’ P 3 ’ , ’ P 4 ’ , ’ P 5 ’ , ’ P 6 ’ , ’ P 7 ’ )set ( f i n d a l l ( gcf , ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 3 )hold ong r i d on

6 / 13

Transfer functionLinearization

Example

Step response: first order rational functions

P1(s) =1

s+ 10, P2(s) =

s+ 10

1, P3(s) =

1

0.1s+ 1, P4(s) =

−0.1s+ 1

1,

P5(s) =1

s− 10, P6(s) =

s+ 100

s+ 10, P7(s) = 2

s+ 10

s+ 100.

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8

9

10

Step Response

Time (seconds)

Ampl

itude

P1P3P5P6P7

Figure: Step response - first order functions. 7 / 13

Transfer functionLinearization

Example

Step response: first order rational functions

P1(s) =1

s+ 10, P2(s) =

s+ 10

1, P3(s) =

1

0.1s+ 1, P4(s) =

−0.1s+ 1

1,

P5(s) =1

s− 10, P6(s) =

s+ 100

s+ 10, P7(s) = 2

s+ 10

s+ 100.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−10

−8

−6

−4

−2

0

2

4

6

8

10

time [s ]

y(t)

P1P3P5P6P7

0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58

−3

−2

−1

0

1

2

3

time [s ]

y(t)

P1P3P5P6P7

Figure: Input response : u(t) = 2 sin(t · 2π · 30). 8 / 13

Transfer functionLinearization

Example

First order rational functions (not all of them are proper transfer functions)

n i = 3 0 ;omega = 2∗ p i ∗ n i ;mytime = 0 : 0 . 0 0 1 : 2 ;u = 2∗ s i n ( omega∗mytime ) ;l i s t a C o l o r i = { ’ r ’ , ’ b ’ , ’ g ’ , ’ k ’ , ’ c ’ , ’ y ’ , ’m’ , ’ r−− ’ , . . .

’ b−− ’ , ’ g−− ’ , ’ k−− ’ , ’ c−− ’ , ’ y−− ’ , ’m−− ’ , ’ r : ’ , ’ b : ’ , ’ g : ’ , . . .’ k : ’ , ’ c : ’ , ’ y : ’ , ’m: ’ , ’ r .− ’ , ’ b.− ’ , ’ g.− ’ , ’ k.− ’ , ’ c .− ’ , . . .’ y .− ’ , ’m.− ’ , ’ r−o ’ , ’ b−o ’ , ’ g−o ’ , ’ k−o ’ , ’ c−o ’ , ’ y−o ’ , ’m−o ’ , . . .’ r−x ’ , ’ b−x ’ , ’ g−x ’ , ’ k−x ’ , ’ c−x ’ , ’ y−x ’ , ’m−x ’ } ;

myFontSize = 1 6 ;

f i g u r e ( 1 )f o r i = 1 : 7

i f ( i ˜= 2 && i ˜= 4) %not p rope r t r a n s f e r f u n c t i o ne va l ( [ ’ y = l s i m (P ’ num2str ( i ) ’ , u , mytime ) ; ’ ] ) ;p l o t ( mytime , y , c e l l 2 m a t ( l i s t a C o l o r i ( i ) ) , ’ L ineWidth ’ , 2 ) ;ho ld ony l i m ([−10 1 0 ] )

endendho ld o f fl egend ( ’ P 1 ’ , ’ P 3 ’ , ’ P 5 ’ , ’ P 6 ’ , ’ P 7 ’ , ’ L o c a t i o n ’ , ’ NorthWest ’ )x l a b e l ( ’ t ime [ s ] ’ , ’ F o n t S i z e ’ , myFontSize , ’ I n t e r p r e t e r ’ , ’ Latex ’ )y l a b e l ( ’ y ( t ) ’ , ’ F o n t S i z e ’ , myFontSize , ’ I n t e r p r e t e r ’ , ’ Latex ’ )ho ld ong r i d on 9 / 13

Transfer functionLinearization

Example

Second order rational functions

P1(s) =ω2n

s2 + 2ζωns+ ω2n

,

P2(s) =1 + 2s

s2 + 1s+ 1, P3(s) =

1−2ss2 + 1s+ 1

,

−100

−50

0

50

100

150

Mag

nitu

de (d

B)

10−2 10−1 100 101 102−180

−135

−90

−45

0

Phas

e (d

eg)

Bode Diagram

Frequency (rad/s)

−40

−30

−20

−10

0

10

Mag

nitu

de (d

B)

10−2 10−1 100 101 102−90

0

90

180

270

360

Phas

e (d

eg)

Bode Diagram

Frequency (rad/s)

P2P3

Figure: Left: P1(s) with ζ ∈ [0, 1]. Right: P2(s) and P3(s). 10 / 13

Transfer functionLinearization

Example

Second order rational functions

P1(s) =ω2n

s2 + 2ζωns+ ω2n

,

P2(s) =1 + 2s

s2 + 1s+ 1, P3(s) =

1−2ss2 + 1s+ 1

, [Non-minum phase plant]

0 5 10 150

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time [s ]

y(t)

0 5 10 15−1

−0.5

0

0.5

1

1.5

2

time [s ]

y(t)

Figure: Step response of P1(s) with ζ ∈ [0, 1]. Right: step response of P2(s) (RED)and P3(s) (BLUE).

11 / 13

Transfer functionLinearization

Linearization

Consider the nonlinear differential equation

x = f(x, u, d),

where the system state is x ∈ Rn with input u ∈ Rp and disturbance d ∈ Rq.Let (xe, ue, de) be the equilibrium triple such that f(xe, ue, de) = 0, then thelinearization of the system dynamics around such point is

˙x ≈ ∂f(x, u, d)

∂x

∣∣∣∣(xe,ue,de)

x+∂f(x, u, d)

∂u

∣∣∣∣(xe,ue,de)

u+∂f(x, u, d)

∂d

∣∣∣∣(xe,ue,de)

d,

≈ Ax+Bu+Md, (9)

where x = x− xe, u = u− ue and d = d− de.

12 / 13

Transfer functionLinearization

Linearization: cart-pendulum

Figure: Inverted pendulum with cart (Matlab).

13 / 13