transformer

87
Transformer Professor Mohamed A. El-Sharkawi

Upload: mohammedsaadanihassani

Post on 16-Nov-2014

21 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Transformer

Transformer

Professor Mohamed A. El-Sharkawi

Page 2: Transformer

El-Sharkawi@University of Washington

2

Why do we need transformers?

• Increase voltage of generator’s output– Transmit high power at low current– Reduce cost of transmission system

• Adjust voltage to a usable level

• Create electrical isolation

• Match load impedance

• Filters

Page 3: Transformer

El-Sharkawi@University of Washington

3

220kV-750kV220kV-750kV

15 kV- 25kV15 kV- 25kV

208V- 416V208V- 416V

TransmissionTransmissionTransformerTransformer

DistributionDistributionTransformerTransformer

ServiceServiceTransformerTransformer

Page 4: Transformer

El-Sharkawi@University of Washington

4

Transmission Transformer

Page 5: Transformer

El-Sharkawi@University of Washington

5

Distribution Transformer

Page 6: Transformer

El-Sharkawi@University of Washington

6

Distribution Transformer

Page 7: Transformer

El-Sharkawi@University of Washington

7

Service Transformer

Page 8: Transformer

El-Sharkawi@University of Washington

8

Service Transformer bank

Page 9: Transformer

El-Sharkawi@University of Washington

9

Service Transformer bank

Page 10: Transformer

El-Sharkawi@University of Washington

10

Service Transformer

Page 11: Transformer

El-Sharkawi@University of Washington

11

Service Transformer

Page 12: Transformer

El-Sharkawi@University of Washington

12

Service Transformer

Page 13: Transformer

El-Sharkawi@University of Washington

13

Service Transformer

Page 14: Transformer

El-Sharkawi@University of Washington

14

Service Transformer

Page 15: Transformer

El-Sharkawi@University of Washington

15

Low power Transformer

Page 16: Transformer

El-Sharkawi@University of Washington

16

Basic Components

Iron Core Insulated Copper Wire

Page 17: Transformer

El-Sharkawi@University of Washington

17

Basic Components

Laminated iron core

Insulated copper wire

Page 18: Transformer

El-Sharkawi@University of Washington

18

Page 19: Transformer

El-Sharkawi@University of Washington

19

Page 20: Transformer

El-Sharkawi@University of Washington

20

Page 21: Transformer

El-Sharkawi@University of Washington

21

i1 i2

N1e1 N2

e2

dteN

1dt

dNe

11

11

dt

dNe

22

Primary Secondary

Page 22: Transformer

El-Sharkawi@University of Washington

22

2

1

2

1

2

1

N

N

dtd

N

dtd

N

te

te

2

1

2

1

N

N

E

E

2

2

1

1

N

E

N

E

Basic Analysis:Voltagei1

i2

N1e1+_

N2e2

+_

• Volts/turn is constant• Voltages are in phase (no phase shift)• Voltage magnitudes vary with turns ratio.

Page 23: Transformer

El-Sharkawi@University of Washington

23

Basic Analysis: Power and current

21 SS

*22

*11 IEIE

1

2

1

2*2

*1

N

N

E

E

I

I

1

2

2

1

N

N

I

I 2211 ININ

i1i2

N1e1+_

N2e2

+_

• Currents are in phase.

• Current ratio is opposite to the voltage ratio

Page 24: Transformer

El-Sharkawi@University of Washington

24

Basic Analysis: Reflected impedance

I1I2

N1E1 N2

E2

Primary Secondary

Source

Load

Flux

Zload

2

2

I

EZload

Page 25: Transformer

El-Sharkawi@University of Washington

25

Basic Analysis: Reflected impedance

'loadZ

I1

E1

Primary

Source

1

1

I

EZ '

load

2

2

1'

2

2

1

1

2

2

1'

N

NZZ

N

N

I

I

E

E

Z

Z

loadload

load

load

Page 26: Transformer

El-Sharkawi@University of Washington

26

Single-Phase, Ideal Transformer Ratings

2 KVA, 120/240 V

Apparent Power

Primary Voltage Secondary Voltage

N2N1

+

-

V1

I1 I2

+

-V2

Page 27: Transformer

El-Sharkawi@University of Washington

27

Rated Values

• Rated voltage: The device can continuously operate at the rated voltage without being damaged due to insulation failure

• Rated current: The device can continuously operate at the rated current without being damaged due to thermal destruction

Page 28: Transformer

El-Sharkawi@University of Washington

28

ExampleTransformer rating:

2 KVA, 240/120 V

Compute the currents

KVAIVIVS 2 2211

A 33.8V240

KVA 2

11

V

SI

A 67.16V 120

KVA 2

22

V

SI

N2N1

+

-

V1

I1 I2

+

-V2

Page 29: Transformer

El-Sharkawi@University of Washington

29

Multi-Secondary Transformer

Page 30: Transformer

El-Sharkawi@University of Washington

30

Multi-secondary windings

Page 31: Transformer

El-Sharkawi@University of Washington

31

I1

I2N1E1

N2E2

Primary

I3

N3E3

3

1

3

1

2

1

2

1

N

N

E

E

N

N

E

E

Page 32: Transformer

El-Sharkawi@University of Washington

32

Current ratio: superposition

1

2212 N

NII I12

I2N1E1

N2E2

Primary

Page 33: Transformer

El-Sharkawi@University of Washington

33

Current ratio: superposition

1

3313 N

NII I13

N1E1

Primary

I3

N3E3

Page 34: Transformer

El-Sharkawi@University of Washington

34

Superposition

I1

I2N1E1

N2E2

Primary

I3

N3E3

332211

1

33

1

2213121

NININI

N

NI

N

NIIII

Page 35: Transformer

El-Sharkawi@University of Washington

35

Superposition

I1

I2N1E1

N2E2

Primary

I3

N3E3

331 SSS *33

*22

*11 IEIEIE

Page 36: Transformer

El-Sharkawi@University of Washington

36

Example

• The transformer consists of one primary winding and two secondary windings. The number of turns is each winding is

A voltage source of 120V is applied to the primary winding, and purely resistive loads are connected across the secondary windings. A wattmeter placed in the primary circuit measures 300W. Another wattmeter placed in the secondary winding N2 measures 90W. Compute the following:

• The voltages of the secondary windings• The currents in N3• The power consumed by the load connected across N3

500;1000;4000 321 NNN

Page 37: Transformer

El-Sharkawi@University of Washington

37

Solution

304000

1000120

1

212

N

NEE

154000

500120

1

313

N

NEE

5.2120

300

cos 11

11

E

PI

330

90

cos 22

22

E

PI

Page 38: Transformer

El-Sharkawi@University of Washington

38

Solution

3

332211

5003*10004000*5.2 I

NININI

143 I

3

332211

153*305.2*120 I

IEIEIE

143 I

Page 39: Transformer

El-Sharkawi@University of Washington

39

Solution

3

321

90300 P

PPP

2103P

Page 40: Transformer

El-Sharkawi@University of Washington

40

Autotransformer

Page 41: Transformer

El-Sharkawi@University of Washington

41

I1 I2

N1V1N2

E2

A1

A2

B1

B2

E1 V2

Page 42: Transformer

El-Sharkawi@University of Washington

42

Autotransformer: Voltage and current

21 III load

I2

N2

V1

N1I1

Is

Iload

V2

A1

A2

B1

B2

E1

E2

211 EEV

Page 43: Transformer

El-Sharkawi@University of Washington

43

Autotransformer

2211 IEIESA

loadsB IVIVS 21

N2N1

+

-

E1

I1 I2

+

-

E2

I2

N2

V1

N1I1

Is

Iload

V2

A1

A2

B1

B2

E1

E2

Page 44: Transformer

El-Sharkawi@University of Washington

44

Autotransformer: Power

12

12111211 )(

IESS

IEIEIEEIVS

AB

sB

AB SS

Page 45: Transformer

El-Sharkawi@University of Washington

45

ExampleRatings of regular transformer: 10 kVA, 400/200 V

New voltage ratio: 600/200 V

Compute the new ratings

Solution

AI

AI

254.0

10

502.0

10

1

2

kVAIVSB 152560011

I2

N2

V1

N1I1

Is

Iload

V2

A1

A2

B1

B2

E1

E2

Page 46: Transformer

El-Sharkawi@University of Washington

46

VARIC: Variable Auto-Transformer

I2N2

V1

N1

I1

Is

Iload

V2

N3

Z

Y

Sliding terminal

Page 47: Transformer

El-Sharkawi@University of Washington

47

Output Voltage

21

2

NN

NVV sload

ssload VNN

NNVV

21

21

21

321

NN

NNNVV sload

I2N2

V1

N1

I1

Is

Iload

V2

N3

Z

Y

Sliding terminal

At Y

At Z

Page 48: Transformer

El-Sharkawi@University of Washington

48

Three-Phase Transformer

Page 49: Transformer

El-Sharkawi@University of Washington

49

3-phase transformer

Page 50: Transformer

El-Sharkawi@University of Washington

50

3-phase transformer Y-Y connection. Also known as star-star connection

a

c b

N1

A

BC

N2

2

1

N

N

V

V

AN

an 2

1

3

3

N

N

V

V

V

V

AN

an

AC

ac

n N

Rat

io o

f P

has

e V

olta

ge

Rat

io o

f L

ine

Vol

tage

Page 51: Transformer

El-Sharkawi@University of Washington

51

3-phase transformer ( -)

A

B

C

N2

a

bc

N1

2

1

N

N

V

V

AC

ac

Rat

io o

f P

has

e V

olta

ge a

nd

lin

e vo

ltag

e

Page 52: Transformer

El-Sharkawi@University of Washington

52

3-phase transformer (Y-)

Also known as star-delta connectionA

B

C

N2

N1

2

1

N

N

V

V

AC

an 2

133

N

N

V

V

V

V

AC

an

AC

ac

a

c b

n

Rat

io o

f P

has

e V

olta

ge

Rat

io o

f L

ine

Vol

tage

Page 53: Transformer

El-Sharkawi@University of Washington

53

3-phase transformer bank (Y-)

N2N1Van

N2N1

N2N1

a

c

A

B

C

VABVab

1

2

an

AB

ab

AB

N3

N

V3

V

V

V

1

2

an

AB

N

N

V

V

b

Page 54: Transformer

El-Sharkawi@University of Washington

54

Page 55: Transformer

El-Sharkawi@University of Washington

55

Ratings of Ideal 3-phase Transformer

100 MVA, 13.8/138 KV

Apparent Power (3-phase)

Primary Voltageline-to-line

Secondary Voltageline-to-line

Page 56: Transformer

El-Sharkawi@University of Washington

56

Example

• Three single-phase transformers are used to form a three-phase transformer bank. Each single-phase transformer is rated at 10 kVA, 13.8 KV/240 V. One side of the transformer bank is connected to a three-phase, 13.8 kV transmission line. The other side of the transformer is connected to a three-phase residential load of 415.7V, 9kVA at 0.8 power factor lagging. Determine the connection of the transformer bank, the voltage ratio of the transformer bank, and the line current of the bank at the 13.8 kV side

Page 57: Transformer

El-Sharkawi@University of Washington

57

Solution• Secondary voltage (Low voltage side) should be in

Y to provide the needed residential voltage

• The high voltage side must be Delta-connection

– The line-to-line voltage of the supply is 13.8 kV. Same as the transformer rating of the primary.

– If the primary is connected in Y, the voltage of the load would be lower than 240 V.

V2403

7.415

Page 58: Transformer

El-Sharkawi@University of Washington

58

Solution

N2N1Van

N2N1

a

c

A

B

C

VAB= 13.8 kV Vab

b

Van= 240 V

Page 59: Transformer

El-Sharkawi@University of Washington

59

Solution2403

800,13

3

an

AB

ab

AB

V

V

V

V

N2N1Van

N2N1

a

c

A

B

C

VAB= 13.8 kV Vab

b

Van= 240 V

AI 5.12240

39000

2

Phase current of the load

Phase current of the Transformer primary

AN

NII 2174.0

800,13

2405.12

1

221

Line Current in primary

AII A 377.03 1

Page 60: Transformer

El-Sharkawi@University of Washington

60

Actual Transformer

• Windings:– Resistance– Inductance

• Core:– Eddy Current– Hysteresis

i1i2

N1e1+_

N2e2

+_

Page 61: Transformer

El-Sharkawi@University of Washington

61

R1X1

N1 N2

R2 X2

Ideal Transformer

Windings Impedance

Page 62: Transformer

El-Sharkawi@University of Washington

62

Core Hysteresis

B

H

i

Ne+

_

dtefB

ifH

Page 63: Transformer

El-Sharkawi@University of Washington

63

i

e

Page 64: Transformer

El-Sharkawi@University of Washington

64

Core Model

e

i

RLet

tEe sinmax

tE

dte

cosmax

tR

E

R

ei sinmax i

e

Page 65: Transformer

El-Sharkawi@University of Washington

65

Core Model

LettEe sinmax

tE

dte

cosmax

tL

Edte

Li

dt

diLe

cos1 max

i

e

i

e Xl

Page 66: Transformer

El-Sharkawi@University of Washington

66

e

i

R Xl

i

e

i

e

Page 67: Transformer

El-Sharkawi@University of Washington

67

Ro Xo

R1X1 R2 X2

V1

I1

Io

'2I

I2V2E1 E2

N1 N2

Equivalent Circuit

2

1

2

1

2

1

V

V

N

N

E

E

2

1

1

2

2

'2

I

I

N

N

I

I

load

Page 68: Transformer

El-Sharkawi@University of Washington

68

Referred impedance

Ro Xo

R1X1 R2 X2

V1

I1

Io

'2I

I2E1 E2

N1 N2

V2

22222

12

2

11 VjXRI

N

NE

N

NE

Page 69: Transformer

El-Sharkawi@University of Washington

69

Referred impedance

Ro Xo

R1X1 R2 X2

V1

I1

Io

'2I

I2E1 E2

N1 N2

V2

222

2

1'2

2

12

2

11 VjXR

N

NI

N

NE

N

NE

Page 70: Transformer

El-Sharkawi@University of Washington

70

222

2

1'2

2

12

2

11 VjXR

N

NI

N

NE

N

NE

22

1'2

2

2

2

1'2

2

2

2

1'2

VN

NV

XN

NX

RN

NR

Define:

'2

'2

'2

'21 VjXRIE

Then:

22

122

2

2

1'21 V

N

NjXR

N

NIE

Page 71: Transformer

El-Sharkawi@University of Washington

71

'2

'2

'2

'21 VjXRIE

Ro Xo

R1X1 R2 X2

V1

I1

Io

'2I

I2E1 E2

N1 N2

V2

Ro Xo

R1X1

V1

I1

Io '2I

E1

'2R

'2X

'2V

Equivalent Circuit Referred to Source Side

Page 72: Transformer

El-Sharkawi@University of Washington

72

o'21 III

1o'2 III

Ro Xo

V1

I1

Io '2I

E1'2V

R1X1

'2R

'2X

'2o1 RRR '2o1 XXX

Practical Considerations

Page 73: Transformer

El-Sharkawi@University of Washington

73

V1

I1

Ro Xo

Io '2I '

2V

R1X1 '

2R'2X

V1

I1

Ro Xo

Io

'2I

'2V

R1

X1 '2R

'2X

Page 74: Transformer

El-Sharkawi@University of Washington

74

V1

'21 II '

2V

R1

X1 '2R

'2X

Define:'21eq

'21eq

XXX

RRR

Page 75: Transformer

El-Sharkawi@University of Washington

75

Analysis of Transformer

'21 II

V1'2V

eqR eqX

eqeq'2

'21 jXRIVV

Z

Page 76: Transformer

El-Sharkawi@University of Washington

76

22

1'2 V

N

NV

TerminologiesTerminologies

2

2

2

1'2

2

2

2

1'2

XN

NX

RN

NR

2I

21

2'2 I

N

NI

2V Load VoltageLoad Voltage

Load Voltage referred to Source sideLoad Voltage referred to Source side

Impedance referred to Source sideImpedance referred to Source side

Load CurrentLoad Current

Load current referred to Source sideLoad current referred to Source side

Page 77: Transformer

El-Sharkawi@University of Washington

77

Analysis of Transformer

'21 II

V1'2V

eqR eqX

eqeq'2

'21 jXRIVV

Z’

Page 78: Transformer

El-Sharkawi@University of Washington

78

eqX

'21 II

V1'2V

eqR

Z’

'2I

eq'2 RI

eq'2 XI

Page 79: Transformer

El-Sharkawi@University of Washington

79

'21 II

V1'2V

eqR eqX

Z

eq'2eq

'2

'21 XIjRIVV

eq'2 RI

eq'2 XI

'2I

eq'2 ZI

'2V

1V

Page 80: Transformer

El-Sharkawi@University of Washington

80

Ratings of Actual 3-phase Transformer

100 MVA, 13.8/138 KV

Apparent Power (3-phase)

line-to-line

'V2

line-to-line2V

Page 81: Transformer

El-Sharkawi@University of Washington

81

Example

102

1 N

N

5000;1000;10;1 0'21

'21 XRXXXRRR oeqeq

ol .Z 3050

A transformer has the following parameters:

The rated voltage of the primary winding is 1000V. Compute the load voltage.

Page 82: Transformer

El-Sharkawi@University of Washington

82

Solution

502

2

1

N

NZZ L

'L

A..jZXjR

VI o

o'Leqeq

' 31387173050101

01000 01

2

'21 II

V1'2V

eqR eqX

Z’

V...ZIV oo'L

'' 022 31888530503138717

V.N

NVV ' 588

10

1885

1

222

Page 83: Transformer

El-Sharkawi@University of Washington

83

Voltage Regulation VR

loadfull

loadfullloadno

V

VVVR

'2

'21

V

VVVR

Measured at the load side

'21 II '

2V

eqR eqX

V1 Loa

d

Page 84: Transformer

El-Sharkawi@University of Washington

84

ExampleCalculate the voltage regulation of the transformer in the previous problem.

Solution:

%14.01007200

72005.7209VR

V

VVVR

'2

'21

Page 85: Transformer

El-Sharkawi@University of Washington

85

Efficiency

V1

I1

Ro Xo

Io'2I '

2V

ReqXeq

in

out

P

P

PowerInput

PowerOutput

LossesPP outin

ironculosses PPP

eq2'

2cu RIP

o

21

iron R

VP

cosIVP '2

'2out

Page 86: Transformer

El-Sharkawi@University of Washington

86

Example

A 10 kVA, 2300/230 V, single phase distribution transformerhas the following parameters:

k4.69X;k6.75R

05.6R;12XX;8.5R

oo

'2

'211

At full load and 0.8 power factor lagging, compute the efficiencyof the transformer.

Page 87: Transformer

El-Sharkawi@University of Washington

87

Solution

W23.22405.68.5)35.4(RIP 2eq

2'2cu

W

R

V

R

VP

ooiron 70

600,75

2300 22'2

21

kW88.010cosScosIVP '2

'2out

A35.42300

000,10

V

SI

'2

'2

%45.961007023.2248000

8000

P

P

in

out