transmission lines 1

Upload: ramana-varala

Post on 03-Jun-2018

230 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/12/2019 Transmission Lines 1

    1/25

    TRANSMISSION LINE THEORY

    I. The Transmission Line Model:

    Consider the following repeating (uniform) sequence of "lumped" circuit elements:

    Applying elementary circuit analysis to each node of such a "discrete" transmission line we

    may write a set of basic circuit equations.

    vn+1t( ) = vn t( ) R sin +1t( ) Ls

    d

    dtin+1t( ) [ I-1a ]

    in +1 t( ) =in t( ) Gp vn t( ) Cp

    d

    dtv

    n t( ) [ I-1b ]

    The crucial matter is that the voltage and current vary both in time and space! To obtain a

    solution, we first deal with the time dependence by making use of the "phasor" concept --

    i.e. we replace the time dependent variables with their Fourier Transforms

    vn t( ) = V

    n( ) exp j t[ ]d

    +

    and in t( ) = In ( ) expj t[ ]d

    +

    [ I-2]

    or in the language of circuit analysis

    vn t( ) = Vn ( ) exp j t[ ]{ } =Vn ( ) cos t+ V( ) [ I-3a ]

    in t( ) = In ( ) expj t[ ]{ } = In ( ) cos t+ I( ) [ I-3b ]

  • 8/12/2019 Transmission Lines 1

    2/25

    TRANSMISSION LINE THEORY PAGE 2

    R. V. Jones, October 23, 2002

    Thus, the set of differential circuit equations for a discrete, uniform transmission line

    becomes a huge set of algebraic equations -- viz.

    Vn+1 ( ) =Vn ( ) Zs ( )In +1 ( ) [ I-4a ]

    In +1 ( ) =In ( ) Yp ( ) Vn ( ) [ I-4b ]

    where Zs ( ) = R s +j L s and Yp ( ) = Gp +j Cp are, respectively, these ri es

    impedance and theshunt (paral lel) admittance of the transmission line.

    II. Exact Solutions of Transmission Line Equations:

    Our task is to solve Eqs. [ I-4 ]. To that end, we first cast this array of coupled

    inhomogeneousequations in the form of a set of coupled, homogeneous algebraic

    equations -- viz.

    Zs ( ) Yp ( ) Vn ( ) =Vn +1 ( ) +Vn1 ( ) 2 Vn ( ) [ II-1a ]

    Zs ( ) Yp ( )In ( ) =In +1 ( ) +In 1 ( ) 2In ( ) [ II-1b ]

    Fortunately, here is an amazingly simple set of solutions for this enormous set of algebraic

    equations. These solutions may be written in the form

    Vn ( ) = a complex constant{ } exp j n ( )[ ] [ II-2a ]

    In ( ) = another complex constant{ } exp j n ( )[ ] [ II-2b ]

    We might characterize these solutions as constant phase solutions in the sense that the

    solution at a given node along transmission line is identical to the solution at an adjacent

    node except for constant phase factor. If these constant phase solutions are to be valid

    solutions of Eqs. [ II-1 ], the phase constant ( ) must satisfy the equation

    Zs ( ) Yp ( ) exp j n ( )[ ] = exp j n +1( ) ( )[ ] + exp j n 1( ) ( )[ ] 2 expj n ( )[ ] [ II-3 ]

  • 8/12/2019 Transmission Lines 1

    3/25

    TRANSMISSION LINE THEORY PAGE 3

    R. V. Jones, October 23, 2002

    Canceling the common exp j n ( )[ ] factor on both sides of the equation, we obtain

    Zs ( ) Yp ( ) = exp j ( )[ ] + exp j ( )[ ] 2

    = expj ( ) 2[ ] exp j ( ) 2[ ]{ }

    2

    = 2j sin ( ) 2[ ]{ }

    2 [ II-4 ]

    Thus, we have obtained an extremely important result which we will, hereafter, refer to as

    the dispersion relationship for a discrete, uniform transmission line-- viz.

    2j sin ( ) 2[ ] = Zs ( ) Yp ( )[ II-5 ]

    Important Special Cases:

    1. The "Ideal" or "Lossless" LC-Transmission Line:

    If we take Z s ( ) =j L s and Yp ( ) =j C p , then Eq [ II-5 ] becomes

    sin ( ) 2( ) = Ls Cp 2 [ II-6 ]

    which is the dispersion relationship of a discrete, uniform, ideal trans-

    mission line (Note that the discrete ideal line is, effectively, a low-pass filter.).

  • 8/12/2019 Transmission Lines 1

    4/25

    TRANSMISSION LINE THEORY PAGE 4

    R. V. Jones, October 23, 2002

    2. The "Lossy" RC-Transmission Line:

    If we take Z s ( ) = R s and Yp ( ) = j Cp , then Eq [ II-5 ] becomes

    sin ( ) 2( ) = 2j[ ]1

    j R sCp [ II-7 ]

    We have a problem! What, in heavens name, do we mean by the square root of

    j (i.e. the fourth root of 1)? To interpret what is meant by j , note that

    j =1 +j

    2

    2

    so that

    j = 1+j

    2

    [ II-8 ]

    Therefore, the dispersive relationship for a "lossy" RC-transmission line -- i.e. Eq.

    [ II-7 ] becomes

  • 8/12/2019 Transmission Lines 1

    5/25

    TRANSMISSION LINE THEORY PAGE 5

    R. V. Jones, October 23, 2002

    sin2

    = sin

    +j 2

    = sin

    2

    cos

    j 2

    + cos

    2

    sin

    j 2

    = 1j{ }

    2

    R sCp

    2

    [ II-9 ]

    which yields, upon equating real and imaginary parts,

    sin

    2

    cosh

    2

    =

    1

    2

    R sCp2

    [ II-10a ]

    cos

    2

    sinh

    2

    = m

    1

    2

    R sCp2

    . [ II-10b ]

    For ease of interpretation, we make the small argument approximation so that

    R sCp

    2 Phase shift per section [ II-11a ]

    = m

    R sC p2

    Attenuation per section [ II-11b ]

  • 8/12/2019 Transmission Lines 1

    6/25

  • 8/12/2019 Transmission Lines 1

    7/25

    TRANSMISSION LINE THEORY PAGE 7

    R. V. Jones, October 23, 2002

    To first-order in z, we obtain the famous inhomogeneous "telegrapher equations"fora lossless transmission line -- viz.

    zv z, t( ) ls

    ti z, t( ) where ls = lim

    z 0

    L s

    z

    [ III-4a ]

    z

    i z, t( ) cpt

    vz ,t( ) where cp = limz 0Cp

    z

    [ III-4b ]

    which, in turn, yields the even more famous homogeneous "wave equations"

    2

    z2vz, t( ) = ls

    z

    t

    i z, t( ) = lst

    z

    i z, t( ) = lscp 2

    t2vz, t( )

    or

    2

    z2v z, t( ) = lscp

    2

    t2vz, t( ) [ III-5a ]

    and 2

    z2i z, t( ) = lscp

    2

    t2i z, t( ) [ III-5b ]

    The truly remarkable point is that any old function of the form vz, t( ) = fz v t( ) and/or of

    the form vz, t( ) = gz + v t( ) will satisfy the Telegrapher and Wave equations!!!!

  • 8/12/2019 Transmission Lines 1

    8/25

  • 8/12/2019 Transmission Lines 1

    9/25

    TRANSMISSION LINE THEORY PAGE 9

    R. V. Jones, October 23, 2002

    zc =1

    cp v=

    lscp

    is the characteristic impedance [ III-8b ]

    General Uniform, Continuous Transmission Line:

    We now turn to the more general case represented by Eqs. [ I-4 ]. Again, we develop a

    "continuous approximation" of these equations by making use of a Taylor expansion for

    small spatial separation of the nodes. Thus, Eqs. [ I-4 ] become

    Vn ( ) + Zs ( )In ( ) =Vn1 ( ) Vn ( ) zz

    Vn ( ) [ III-9a ]

    In

    ( ) Yp ( ) Vn ( ) =In +1 ( ) In ( ) + zz

    In

    ( ) [ III-9b ]

    Once again, to first-order in z , these gyrations lead to a more general version of theinhomogeneousTelegrapherequations -- viz.

    z

    V z,( ) zsI z,( ) where zs = lim z0Zsz

    [ III-10a ]

    z

    I z,( ) ypV z,( ) where yp = limz 0Yp

    z

    [ III-10b ]

    and to a more general version of the homogeneous Helmhotz equation(s) -- viz.

    2

    z2V z,( ) = zsypV z,( ) [ III-11a ]

    2

    z2I z,( ) = zsypI z,( ) [ III-11b ]

    Drawing on our experience above in the analysis of the discrete case, we now look for

    solutions in the form

  • 8/12/2019 Transmission Lines 1

    10/25

    TRANSMISSION LINE THEORY PAGE 10

    R. V. Jones, October 23, 2002

    V z,( ) =Vo exp ( )z[ ] and I z,( ) =Io exp ( )z[ ] [ III-12 ]

    so that

    ( ) V z,( ) = zs

    I z,( ) and ( )I z,( ) = yp

    V z,( ) [ III-13 ]

    and

    2 ( ) V z,( ) = zsypV z,( ) and 2 ( )I z,( ) = zsypI z,( ) [ III-14 ]

    where ( ) is, in general, complex -- i.e. ( ) = ( ) +j ( ) . Therefore, if the

    proposed solution is to valid we must have

    2 ( ) = ( ) +j ( )[ ]2

    = zs ( ) yp ( ) = rs +j ls[ ] gp +j cp[ ] [ III-15 ]

    On equating real and imaginary parts of this expression, we obtain

    2 ( ) 2 ( ) = rs gp 2

    ls cp [ III-16a ]

    and 2 ( ) ( ) = rs cp +g p ls[ ] . [ III-16b ]

    In the small attenuation approximation, we see that the phase shift per unit is given by

    ( ) ls cp 1rs

    ls

    gp

    cp

    [ III-17a ]

    and the attenuation per unit length by

    ( ) 1

    2rs

    cp

    ls+ gp

    lscp

    [ III-17b ]

    If we consider, once again, the all important special case of a "lossless" LC transmission

    line -- i.e. where gp rs 0, we see that

  • 8/12/2019 Transmission Lines 1

    11/25

    TRANSMISSION LINE THEORY PAGE 11

    R. V. Jones, October 23, 2002

    ( ) = ( ) +j ( ) = 0 j ls cp [ III-18 ]

    Thus, for a general uniform, continuous transmission line, the linear combination

    of two independent frequency domainsolutions may be written

    V z,( ) =V+ ( ) exp ( )z[ ] +V ( ) exp + ( )z[ ] [ III-19 ]

    where ( ) = zs ( ) yp ( ) . In the time domain for a single frequency, we have

    vz,t( ) = V+ ( ) exp ( )z +j t[ ] +V ( ) exp + ( )z +j t[ ]{ } [ III-20 ]

    To be concrete and for ease of interpretation, we discuss in much of what follows a general

    lossless or non-attenuating transmission line so that the time domain solution becomes

    vz, t( ) = V+ ( ) exp j t ( )z[ ]{ } +V ( ) exp j t+ ( )z[ ]{ }( )=V+ ( ) cos t ( )z + +[ ] +V ( ) cos t+ ( )z + [ ]

    [ III-21 ]

    As in earlier discussions, we interpret

    V+ ( ) cos t ( )z + +[ ]

    as a continuous wave propagating to the right (positive z-direction) and

    V ( ) cos t+ ( )z + [ ]as a continuous wave propagating to the left (negative z-direction). From one of the

    Telegrapher equations -- viz. Eq. [ III-10a ] -- we see that

    I z,( ) = 1

    zs ( )z

    V z,( ) [ III-22a ]

    so that

  • 8/12/2019 Transmission Lines 1

    12/25

    TRANSMISSION LINE THEORY PAGE 12

    R. V. Jones, October 23, 2002

    I z,( ) =I+ ( ) exp ( )z[ ] +I ( ) exp + ( )z[ ]

    =1

    Zc ( ) V+ ( ) exp ( )z[ ] -V ( ) exp + ( )z[ ]{ }

    [ III-22b ]

    where Zc ( ) = zs ( ) ( ) = zs ( ) yp ( ) [ III-23 ]

    is the characteristic impedance of the transmission line. For a "lossless" LC

    transmission line, we see that

    Zc ( ) = Zc = ls cp [ III-24 ]

    Finally, we introduce the extreme important (but rather confusing) notion of a spatially

    varying wave impedance which is define as

    Z z,( ) V z,( )I z,( )

    = Zc ( ) V+ ( ) exp ( )z[ ] +V ( ) exp + ( )z[ ]

    V+ ( ) exp ( )z[ ] -V ( ) exp + ( )z[ ]

    = Zc ( )1 +V ( ) V+ ( )[ ] exp +2 ( )z[ ]1 - V ( ) V+ ( )[ ] exp +2 ( )z[ ]

    = Zc ( )

    1 +V z,( )1 - V z,( )

    [ III-25 ]

    where Vz,( ) V ( ) V+ ( )[ ] exp +2 ( )z[ ] [ III-26 ]

    is the spatial varying voltage reflection coefficient. Thus, we may write the general

    solution in the compact form

    V z,( ) =V+ ( ) exp ( )z[ ] 1 +Vz,( ){ [ III-27a ]

    I z,( ) Zc ( ) =V+ ( ) exp ( )z[ ] 1 - Vz,( ){ [ III-27b ]

  • 8/12/2019 Transmission Lines 1

    13/25

    TRANSMISSION LINE THEORY PAGE 13

    R. V. Jones, October 23, 2002

    IV. Transmission Lines Terminations:

    It remains for us to determine the spatial varying wave impedance and reflection coefficient

    which must satisfy the dual equations

    Z z,( ) = Zc ( )1 + Vz,( )1 Vz,( )

    [ IV-1a ]

    Vz,( ) =Z z,( ) Zc ( )Z z,( ) + Zc ( ) [ IV-1b ]

    at every point along the transmission line. To that end we must consider the effect of

    transmission line terminations.

    LOADED TRANSMISSION LINE

    Consider first some simple, but important cases.

    1. A "shorted" transmission line -- i. e. Z zL ,( ) = 0 so that V zL ,( ) = 1.

  • 8/12/2019 Transmission Lines 1

    14/25

    TRANSMISSION LINE THEORY PAGE 14

    R. V. Jones, October 23, 2002

    At other points along the line

    V z,( ) = V ( ) V+ ( )[ ] exp +2 ( )z[ ] = VzL ,( ) exp +2 ( ) z zL[ ]{ } [ IV-2 ]

    so that in this case

    Vz,( ) = exp 2 ( ) zL z[ ]{ } [ IV-3a ]

    and

    V z,( ) =V+ ( ) exp ( )z[ ] 1 exp 2 ( ) zL z[ ]{ }( )

    =V+ ( ) exp ( )z ( ) zL z[ ][ ] exp + ( ) zL z[ ]{ } exp ( ) zL z[ ]{ }( )

    =V+ ( ) exp ( )zL[ ] exp + ( ) zL z[ ]{ } exp ( ) zL z[ ]{ }( )

    [ IV-3b ]

    When the attenuation is zero

    V z,( ) = 2j V+ ( ) exp j ( )zL[ ] sin ( ) zL z[ ]{ } [ IV-4a ]

    Zc ( )I z,( ) = 2V+ ( ) exp j ( )zL[ ] cos ( ) zL z[ ]{ } [ IV-4b ]

    Z z,( ) =V z,( )I z,( )

    =j Zc ( ) tan ( ) zL z[ ]{ } [ IV-4c ]

    Such a solution is called a "pure" standing wave. It is a spatial varying

    voltage oscillation which may be observed with an oscilloscope. The pattern

    that would be observed is graphed below as it would be seen at 16 distinct

    times equally spaced at 1/16 of a period. The voltage across the short is, of

    coarse, zero at all times! There is, of course, another voltage node whenever

    ( ) zL

    z[ ] = 2zL z[ ] ( ) = integer[ ] .

  • 8/12/2019 Transmission Lines 1

    15/25

    TRANSMISSION LINE THEORY PAGE 15

    R. V. Jones, October 23, 2002

    VOLTAGE ACROSS A SHO RT ED TRANSMISSION LINE

    2. An "open" transmission line -- i. e. Z zL

    ,( ) = so that VzL ,( ) = +1.

    Vz,( ) = +exp 2 ( ) zL z[ ]{ } [ IV-5a ]

    and

  • 8/12/2019 Transmission Lines 1

    16/25

  • 8/12/2019 Transmission Lines 1

    17/25

  • 8/12/2019 Transmission Lines 1

    18/25

    TRANSMISSION LINE THEORY PAGE 18

    R. V. Jones, October 23, 2002

    VSWR V z,( )

    Max

    V z,( )Min

    =1 + V ( )1 - V ( )

    [ IV-10 ]

    Note that for a pure running wave solution VSWR=1 and for a pure standing

    wave solution VSWR= .

    We have one last really important task -- viz. establishing the all important

    wave impedance transformation. To that end we see from Eqs. [ IV-1 ]

    that

    Z z,( ) = Zc ( )1 +Vz,( )1 - Vz,( )

    = Zc ( )1 +

    V

    zL

    ,( )

    exp 2 ( ) zL

    z[ ]{ }1 - VzL ,( ) exp 2 ( ) zL z[ ]{ }

    = Zc ( )exp + ( ) zL z[ ]{ } +VzL ,( ) exp ( ) zL z[ ]{ }exp + ( ) zL z[ ]{ } - V zL ,( ) exp ( ) zL z[ ]{ }

    [ IV-11 ]

    But VzL ,( ) =Z z

    L,( ) Zc ( )

    Z zL

    ,( ) + Zc ( )

    so that

    Z z,( ) = Zc ( )

    exp + ( ) zL z[ ]{ } +

    Z zL,( ) Zc ( )

    Z zL,( ) + Zc ( )exp ( ) z

    L z[ ]{ }

    exp + ( ) zL z[ ]{ }-Z z

    L,( ) Zc ( )

    Z zL ,( )+ Zc ( )exp ( ) zL z[ ]{ }

    = Zc ( )Z zL ,( ) exp + ( ) z L z[ ]{ } + exp ( ) zL z[ ]{ }[ ] + Zc ( ) exp + ( ) zL z[ ]{ } exp ( ) zL z[ ]{ }[ ]Z zL ,( ) exp + ( ) zL z[ ]{ } exp ( ) zL z[ ]{ }[ ] +Z c ( ) exp + ( ) zL z[ ]{ } + exp ( ) zL z[ ]{ }[ ]

    [ IV-12a ]

  • 8/12/2019 Transmission Lines 1

    19/25

  • 8/12/2019 Transmission Lines 1

    20/25

    TRANSMISSION LINE THEORY PAGE 20

    R. V. Jones, October 23, 2002

    Zmatchz ,( ) = Zc ( )Z c ( ) +j Zc ( ) tan ( ) zL z[ ]{ }Zc ( )+ j Z c ( ) tan ( )zL z[ ]{ }

    = Zc ( )

    [ IV-14c ]

    d. Quarter wavelength matching transformer:

    Z 4 z,( ) = Zc ( ) Z zL,( ) + j Z c ( ) tan 2{ }Z c ( ) +j Z zL ,( ) tan 2{ }

    = Zc ( )[ ]2

    Z zL

    ,( )

    [ IV-14d ]

    Matched if Zc ( ) = Z 4 z,( )Z zL ,( ) !!!

    V. Parameters of a Coaxial Transmission Line:

    We now look to Maxwell's Equations (in integral form) for values of the line parameters of

    a coaxial line of inner radius a and outer radius b :

    We first make use of the Gaussian law of electrostatics to obtain the capacitance of the line.

    Assume a Gaussian surface which is an imaginary coaxial cylinder which has a radius r in

    the range a, b[ ]and a length l so that

    r

    E n dAS

    = 10 dVV

    [ V-1 ]

  • 8/12/2019 Transmission Lines 1

    21/25

    TRANSMISSION LINE THEORY PAGE 21

    R. V. Jones, October 23, 2002

    leads to

    Er

    2r l[ ] = dV

    dr2r l[ ] =

    Q

    0[ V-2 ]

    or

    dV =1

    2 0

    Q

    l

    1

    r

    V=

    1

    2 0

    Q

    l

    ln

    b

    a

    [ V-3 ]

    Therefore, the capacitance per unit line lengthis

    cp = Q l( )

    V=

    2 0ln b a( )

    [ V-4 ]

    Obtaining the inductance of the line is a bit more complicated. We make use of Ampre's

    law to find the magnetic field and then use Faraday's law to find the induced emf associated

    with a time varying current. We apply the integral form of Ampre's to a circular loop of

    radius r which is coaxial with the inner conductor so that

    rB dl

    L

    = 0rJ n dA

    S

    [ V-5 ]

    leads to

    B 2r[ ] = 0I or B = 02

    I

    r

    [ V-6 ]

    We use this expression for the field to find the changing magnetic flux through a loop in the

    median plane of the coaxial line.

  • 8/12/2019 Transmission Lines 1

    22/25

    TRANSMISSION LINE THEORY PAGE 22

    R. V. Jones, October 23, 2002

    emf =r

    E dlL

    = tr

    B n dAS

    = t l B dra

    b

    = 02 l

    dr

    ra

    b

    It=

    02 l ln b a( ){ }

    It

    [ V-7 ]

    Therefore, the inductance per unit line lengthis

    ls =02

    ln b a( ) [ V-8 ]

    Therefore, Maxwell's equations give us expressions for the all important transmission line

    parameters of a coaxial line -- viz.

    v =1

    ls cp=

    20 ln b a( )

    ln b a( )

    2 0

    =

    1

    0 0= phase velocity [ V-9a ]

    Zc = ls cp =0 ln b a( )

    2

    ln b a( )

    2 0

    =

    ln b a( )

    2

    00

    = characteristic impedance [ V-

    9b ]

    VI. Jones on Smith Charts:

    Let us examine a very important property of the pair of equations [ IV-1a ] and [ IV-1b ].

    Recall that

    Z z,( ) = Zc ( )1 + V z,( )1 - V z ,( )

    [ VI-1a ]

    or

  • 8/12/2019 Transmission Lines 1

    23/25

    TRANSMISSION LINE THEORY PAGE 23

    R. V. Jones, October 23, 2002

    z =1 + 1 -

    where z =Z z,( ) Zc ( ) [ VI-1b ]

    Writing this expression in terms of real and imaginary parts we see that

    zr +j zi =1 + r +j i1 - r j i

    = 1 + r +j i1 - r ji

    1 - r +j i1 - r + ji

    =1 - r

    2 i2 +j 2i

    1 - r( )2 + i( )

    2

    [ VI-2 ]

    Equating real and imaginary components on either side of the equation

    zr =1 - r

    2 i2

    1 - r( )2

    + i( )2 [ VI-3a ]

    zi =2i

    1 - r( )2

    + i( )2 [ VI-3b ]

    we obtain

    1 2r +r2 +i

    2 =1

    zr

    1 - r2 i

    2{ } [ VI-4a ]

    1 2r +r2

    +i2

    =1

    zi2i{ } [ VI-4b ]

    or with further messaging

    r2 zr +1

    zr

    2r + i2 zr +1

    zr

    =1 zrz r

    [ VI-5a ]

    r2 2r +1 +i

    2 2izi

    = 0 [ VI-5b ]

  • 8/12/2019 Transmission Lines 1

    24/25

    TRANSMISSION LINE THEORY PAGE 24

    R. V. Jones, October 23, 2002

    Completing the square in both cases

    r2

    2zr

    zr +1+

    zr

    zr +1

    2

    +i2 =

    zr

    zr + 1

    2

    +1 zrzr +1

    =1

    zr +1

    2

    [ VI-6a ]

    r2 2r +1{ } + i

    2 2izi

    +1

    zi

    2

    =1

    zi

    2

    [ VI-6b ]

    Therefore, the loci of constant zr and constant zi in the r , i[ ] plane are equations for

    circles -- viz.

  • 8/12/2019 Transmission Lines 1

    25/25

    TRANSMISSION LINE THEORY PAGE 25

    R. V. Jones, October 23, 2002

    CIRCLES OF CONSTANT "RESISTANCE" CIRCLES OF CONSTANT "REACTANCE"

    r zr

    z

    r

    + 1

    2

    + i2 =

    1

    z

    r

    +1

    2

    [ VI-7a ]

    r 1{ }2

    + i 1

    z

    i

    2

    =1

    z

    i

    2

    [ VI-7b ]

    radius =1

    1 +z r; center=

    zr

    1 +zr,0

    radius =

    1

    zi; center = 1,

    1

    zi

    1r =

    r

    i

    zr = 1z =r 0

    z r 1

    1r =

    r

    i

    These isoresistance and isoreactance curves are the basis for the famous

    and very useful Smith charts.1

    1 P. H. Smith,Electronics12 , 29 (1939); 17 , 130 (1944)