uhv ernst peq

154
Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010 UHV-based techniques for surface science and research in heterogeneous catalysis Prof. Dr. Karl-Heinz Ernst Nanoscale Materials Science Empa, Swiss Laboratories for Materials Science and Technology 08. 11. 2009 9:45-10:30 (HCI H8.1) 10. 11. 2009 8:45-10:30 (HCI H2.1) ftp://ftp.empa.ch/pub/empa/outgoing/KHErnst/ Sunday, November 7, 2010

Upload: alfita-red

Post on 22-Oct-2014

67 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

UHV-based techniques for surface science and research in

heterogeneous catalysis

Prof. Dr. Karl-Heinz Ernst

Nanoscale Materials ScienceEmpa, Swiss Laboratories for Materials Science and Technology

08. 11. 2009 9:45-10:30 (HCI H8.1)10. 11. 2009 8:45-10:30 (HCI H2.1)

ftp://ftp.empa.ch/pub/empa/outgoing/KHErnst/

Sunday, November 7, 2010

Page 2: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Contents1. Introduction & Nomenclature1.1. Why ultra-high vacuum? Gas kinetics & vacuum pumps1.2. The concept of model systems (examples from surface science)1.2.1. Single crystal surfaces: Miller indices, adsorption sites, coverage, adsorbate superstructures 1.2.2. Closing the materials and pressure gap: more complex model systemsExamples for application of UHV techniques

2. Probes for surfaces: photons, electrons, ions, etc.

3. Surface structure: Low energy electron diffraction (LEED)

4. Electronic structure and chemical composition4.1. X-ray photoelectron spectroscopy (XPS) 4.2. Auger electron spectroscopy (AES)4.3. High-resolution electron energy loss spectroscopy (HREELS)

5. electronic and geometric surface structure: Scanning tunneling microscopy (STM).

Sunday, November 7, 2010

Page 3: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Short introduction of your docent

• Lehre/Berufsfachschule (Professional Training), Degree: Chemisch-Technischer Assisitent (CTA)

• Chemical Engineering at the University of Applied Sciences (Technische Fachhochschule, TFH) Berlin, Degree: Chemie-Ingenieur (grad)

• Chemistry at Freie Universität Berlin (FUB), Degree: Diplom-Chemiker

• Graduate Study at the Inst. f. Physical Chemistry, FU Berlin and at the Berlin Electron Storage Ring for Synchrotron Radiation (BESSY), (subject: Solid state physics related) Supervisor: K. Christmann, 2nd thesis expert reader: G. Ertl Degree: Dr. rer. nat. (PhD)

• Habilitation at University Zurich, Degree: Private Docent

• Professor title (University Zurich 2010)

www.empa.mss

Sunday, November 7, 2010

Page 4: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

1988 - 1990 Lecturer in Physical Chemistry, TFH Berlin1990 - 1991 Post-Doctorate at the University of Washington, Seattle, USA, Group of Prof. C. T. Campbell1992 - 1992 Research Associate with the Special Research Fond No. 6 (SFB 6) of the German National Science Foundation (DFG) at the Free University, Berlin.1992-present Senior scientist at Empa Dübendorf, since 1998 head of Surface Technology Group, www.empa.ch/mss (now Molecular Surface Science Group, MSSG)8/99-5/2000 On sabbatical leave to UC Berkeley, Department of Physics and Lawrence Berkeley National Laboratory, California, USA, Group of Prof. Y.-R. Shen9/2003-8/2004 On sabbatical leave to Univ. of Washington, Seattle, USA, Department of Bioengineering, Group of Prof. Viola Vogel

Scientific Publications (Oct. 2010): 109 (68 peer reviewed)Hobbies: Sailing, Diving, Mountaineering (down-graded now to: hiking)

Professional Experience

Sunday, November 7, 2010

Page 5: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

K. ChristmannIntroduction to Surface Physical ChemistrySteinkopf Verlag Darmstadt 1991

G. Ertl / J. KüppersLow energy electrons and surface chemistryVCH, Weinheim 1985

P. D. Woodruff / T. A. DelcharModern techniques in surface scienceCambridge University Press, Cambridge 1989

M. Henzler / W. Göpel,Oberflächenphysik des Festkörpers, Teubner, Stuttgart 1991

A. ZangwillPhysics at SurfacesCambridge University Press, Cambridge 1989

R. I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, Wiley & Sons, New York, 1996

Books on surface science

Sunday, November 7, 2010

Page 6: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Why UHV? Collision frequency of gas particles with a surface

At 300 K and 1 atm for N2, ZA is about 3 x 1023 s-1 cm-2

Sunday, November 7, 2010

Page 7: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

At 300 K, if every N2 molecule that strikes this surface remains adsorbed, a complete monolayer is formed in about 3 ns.

If p=10-3 torr (1.3 x 10-6 atm), t=3x10-3 sIf p=10-6 torr (1.3 x 10-9 atm), t=3 sIf p=10-9 torr (1.3 x 10-12 atm), t=3000 s or 50 minutes

Requirement for Experiment in Vacuum: Clean surface quickly becomescontaminated through molecular collision - p must be less than about1.3 x 10-12 atm (10-9 torr).

10-10 to 10-11 torr (UHV - ultrahigh vacuum) is lowest pressure routinelyavailable in vacuum chamber.

A single crystal surface has about 1 x 1019 m-2 atoms (1 x 1015 cm-2)

Sunday, November 7, 2010

Page 8: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

With the assumption of an atom surface density of 3·1014 cm-2, M = 28 (N2 for Air), T = 300 K and a given pressure p, there are ~106·[p[mbar] monolayers] of gas atoms per second adsorbed on the surface. This is with the assumption that each molecule hitting the surface will be adsorbed (sticking coefficient S = 1). As a typical surface analytical measurement will take some minutes up to several hours, a pressure in the range of 10-10–10-11 mbar is required. Such low pressures can be achieved and maintained using Turbo- molecular-, Ion-Getter-, Cryo- and Oil-Diffusion-Pumps. The following table gives the pressure ranges for different vacuum regimes.

Pressure Range Vacuum Regime

1-10-3 mbar Rough Vacuum

10-3-10-5 mbar Medium Vacuum

10-5-10-8 mbar High Vacuum (HV)

Better 10-9 mbar Ultra High Vacuum (UHV)

Sunday, November 7, 2010

Page 9: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Vacuum pumps

Sunday, November 7, 2010

Page 10: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

real catalyst / real conditions

model catalyst / UHV

real catalyst / UHVmodel catalyst / real conditions

A real catalyst is too complex to understand:The concept of model systems

Sunday, November 7, 2010

Page 11: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

The Noble Prize in Chemistry 2007: Gerhard Ertl Employing well-defined surfaces as model systems for heterogeneous catalysis

Heidelberg, 29.06.2007

N2 + 3H2 → 2NH3

Sunday, November 7, 2010

Page 12: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 13: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 14: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 15: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Kinetic Oscillations in CO oxidation

work function measurements

Sunday, November 7, 2010

Page 16: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Ernst et al, J. Catal. 1992

r-WGS reaction over Cu(110)

CO2 + H2 → H2O + CO

Single crystals allow normalization to surface sites and a better comparison with other catalysts (if the number of sites is know as well).

Turn-over rates can be related to surface structure and change of such (reconstruction).

Change in stady-state H-coverage lifts reconstruction and induces lower catalyst activity

673 K, PH2 = 760 torr

573 K, PH2 = 760 torr

673 K, PH2 = 110 torr

Sunday, November 7, 2010

Page 17: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Topography of catalysts via scanning tunneling microscopy (STM)

Sunday, November 7, 2010

Page 18: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

z

x

y y

x

z

y

x

zc)b)a)

e) f)d)

Close-packed FCC surfaces are common model systems

Single crystal surfaces are ordered systems that allow the use of diffraction methods

1.2.1. Single crystal surfaces: Miller indices, adsorption sites, coverage, adsorbate superstructures

Sunday, November 7, 2010

Page 19: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Miller indicesz

x

y y

x

z

y

x

zc)b)a)

e) f)d)

(100) (110) (111)

Sunday, November 7, 2010

Page 20: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

C0

C0 2

= 6.696ÅC0

1.4215 Å

Surface science at the (0001) graphite surface(mainly for self-assembly phenomena at the liquid-solid interface, but many studies of metal clusters - vacuum and liquid - are known)

Sunday, November 7, 2010

Page 21: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Stepped surfaces as model systems

Sunday, November 7, 2010

Page 22: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

The structure of surfaces

Sunday, November 7, 2010

Page 23: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

422 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Table 11Corresponding figure numbers in which top-down views of fcc, bcc and hcpsurfaces from the master hierarchy are presented in the Gazetteer

fcc Fig. bcc Fig. hcp Fig.

{111} 30 {110} 34 {0001} 38{100} 30 {3032} 39

{211} 35 {3034} 39{110} 31 {100} 36 {1120} 40{311} 31 {111} 36 {1122} 40{210} 32{531} 33 {321} 35 {1010} 41

{310} 36 {1011} 41{331} 31 {332} 36 {3038} 41{211} 31 {411} 36 {3 0 3 10} 41{511} 31 {433} 36 {4154} 42{310} 32 {611} 36 {5272} 42{320} 32 {521} 37 {4156} 42{321} 33 {543} 37 {1121} 44{731} 33 {631} 37 {1124} 43{751} 33 {653} 37 {1126} 43{421} 33 {4150} 43{753} 33 {7188} 43

::

{4152} 46{2131} 45{2130} 43

Fig. 30. The only flat fcc surfaces. The {111} and {100} surfaces are triply-reflexive (X3) and quadruply-reflexive (X4) respectively.

Fig. 31. Selected stepped fcc surfaces. All are reflexive (X) apart from {110}, which is doubly-reflexive (X2).

422 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Table 11Corresponding figure numbers in which top-down views of fcc, bcc and hcpsurfaces from the master hierarchy are presented in the Gazetteer

fcc Fig. bcc Fig. hcp Fig.

{111} 30 {110} 34 {0001} 38{100} 30 {3032} 39

{211} 35 {3034} 39{110} 31 {100} 36 {1120} 40{311} 31 {111} 36 {1122} 40{210} 32{531} 33 {321} 35 {1010} 41

{310} 36 {1011} 41{331} 31 {332} 36 {3038} 41{211} 31 {411} 36 {3 0 3 10} 41{511} 31 {433} 36 {4154} 42{310} 32 {611} 36 {5272} 42{320} 32 {521} 37 {4156} 42{321} 33 {543} 37 {1121} 44{731} 33 {631} 37 {1124} 43{751} 33 {653} 37 {1126} 43{421} 33 {4150} 43{753} 33 {7188} 43

::

{4152} 46{2131} 45{2130} 43

Fig. 30. The only flat fcc surfaces. The {111} and {100} surfaces are triply-reflexive (X3) and quadruply-reflexive (X4) respectively.

Fig. 31. Selected stepped fcc surfaces. All are reflexive (X) apart from {110}, which is doubly-reflexive (X2).

422 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Table 11Corresponding figure numbers in which top-down views of fcc, bcc and hcpsurfaces from the master hierarchy are presented in the Gazetteer

fcc Fig. bcc Fig. hcp Fig.

{111} 30 {110} 34 {0001} 38{100} 30 {3032} 39

{211} 35 {3034} 39{110} 31 {100} 36 {1120} 40{311} 31 {111} 36 {1122} 40{210} 32{531} 33 {321} 35 {1010} 41

{310} 36 {1011} 41{331} 31 {332} 36 {3038} 41{211} 31 {411} 36 {3 0 3 10} 41{511} 31 {433} 36 {4154} 42{310} 32 {611} 36 {5272} 42{320} 32 {521} 37 {4156} 42{321} 33 {543} 37 {1121} 44{731} 33 {631} 37 {1124} 43{751} 33 {653} 37 {1126} 43{421} 33 {4150} 43{753} 33 {7188} 43

::

{4152} 46{2131} 45{2130} 43

Fig. 30. The only flat fcc surfaces. The {111} and {100} surfaces are triply-reflexive (X3) and quadruply-reflexive (X4) respectively.

Fig. 31. Selected stepped fcc surfaces. All are reflexive (X) apart from {110}, which is doubly-reflexive (X2).

422 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Table 11Corresponding figure numbers in which top-down views of fcc, bcc and hcpsurfaces from the master hierarchy are presented in the Gazetteer

fcc Fig. bcc Fig. hcp Fig.

{111} 30 {110} 34 {0001} 38{100} 30 {3032} 39

{211} 35 {3034} 39{110} 31 {100} 36 {1120} 40{311} 31 {111} 36 {1122} 40{210} 32{531} 33 {321} 35 {1010} 41

{310} 36 {1011} 41{331} 31 {332} 36 {3038} 41{211} 31 {411} 36 {3 0 3 10} 41{511} 31 {433} 36 {4154} 42{310} 32 {611} 36 {5272} 42{320} 32 {521} 37 {4156} 42{321} 33 {543} 37 {1121} 44{731} 33 {631} 37 {1124} 43{751} 33 {653} 37 {1126} 43{421} 33 {4150} 43{753} 33 {7188} 43

::

{4152} 46{2131} 45{2130} 43

Fig. 30. The only flat fcc surfaces. The {111} and {100} surfaces are triply-reflexive (X3) and quadruply-reflexive (X4) respectively.

Fig. 31. Selected stepped fcc surfaces. All are reflexive (X) apart from {110}, which is doubly-reflexive (X2).

422 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Table 11Corresponding figure numbers in which top-down views of fcc, bcc and hcpsurfaces from the master hierarchy are presented in the Gazetteer

fcc Fig. bcc Fig. hcp Fig.

{111} 30 {110} 34 {0001} 38{100} 30 {3032} 39

{211} 35 {3034} 39{110} 31 {100} 36 {1120} 40{311} 31 {111} 36 {1122} 40{210} 32{531} 33 {321} 35 {1010} 41

{310} 36 {1011} 41{331} 31 {332} 36 {3038} 41{211} 31 {411} 36 {3 0 3 10} 41{511} 31 {433} 36 {4154} 42{310} 32 {611} 36 {5272} 42{320} 32 {521} 37 {4156} 42{321} 33 {543} 37 {1121} 44{731} 33 {631} 37 {1124} 43{751} 33 {653} 37 {1126} 43{421} 33 {4150} 43{753} 33 {7188} 43

::

{4152} 46{2131} 45{2130} 43

Fig. 30. The only flat fcc surfaces. The {111} and {100} surfaces are triply-reflexive (X3) and quadruply-reflexive (X4) respectively.

Fig. 31. Selected stepped fcc surfaces. All are reflexive (X) apart from {110}, which is doubly-reflexive (X2).

422 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Table 11Corresponding figure numbers in which top-down views of fcc, bcc and hcpsurfaces from the master hierarchy are presented in the Gazetteer

fcc Fig. bcc Fig. hcp Fig.

{111} 30 {110} 34 {0001} 38{100} 30 {3032} 39

{211} 35 {3034} 39{110} 31 {100} 36 {1120} 40{311} 31 {111} 36 {1122} 40{210} 32{531} 33 {321} 35 {1010} 41

{310} 36 {1011} 41{331} 31 {332} 36 {3038} 41{211} 31 {411} 36 {3 0 3 10} 41{511} 31 {433} 36 {4154} 42{310} 32 {611} 36 {5272} 42{320} 32 {521} 37 {4156} 42{321} 33 {543} 37 {1121} 44{731} 33 {631} 37 {1124} 43{751} 33 {653} 37 {1126} 43{421} 33 {4150} 43{753} 33 {7188} 43

::

{4152} 46{2131} 45{2130} 43

Fig. 30. The only flat fcc surfaces. The {111} and {100} surfaces are triply-reflexive (X3) and quadruply-reflexive (X4) respectively.

Fig. 31. Selected stepped fcc surfaces. All are reflexive (X) apart from {110}, which is doubly-reflexive (X2).

422 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Table 11Corresponding figure numbers in which top-down views of fcc, bcc and hcpsurfaces from the master hierarchy are presented in the Gazetteer

fcc Fig. bcc Fig. hcp Fig.

{111} 30 {110} 34 {0001} 38{100} 30 {3032} 39

{211} 35 {3034} 39{110} 31 {100} 36 {1120} 40{311} 31 {111} 36 {1122} 40{210} 32{531} 33 {321} 35 {1010} 41

{310} 36 {1011} 41{331} 31 {332} 36 {3038} 41{211} 31 {411} 36 {3 0 3 10} 41{511} 31 {433} 36 {4154} 42{310} 32 {611} 36 {5272} 42{320} 32 {521} 37 {4156} 42{321} 33 {543} 37 {1121} 44{731} 33 {631} 37 {1124} 43{751} 33 {653} 37 {1126} 43{421} 33 {4150} 43{753} 33 {7188} 43

::

{4152} 46{2131} 45{2130} 43

Fig. 30. The only flat fcc surfaces. The {111} and {100} surfaces are triply-reflexive (X3) and quadruply-reflexive (X4) respectively.

Fig. 31. Selected stepped fcc surfaces. All are reflexive (X) apart from {110}, which is doubly-reflexive (X2).

Selected fcc surfaces

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 423

Fig. 32. Selected achiral kinked fcc surfaces. All are reflexive (X).

Fig. 34. The only flat bcc surface. It is doubly-reflexive (X2).

Fig. 35. Selected stepped bcc surfaces; note that the {211} surface is reflexive(X) and therefore achiral, whereas all other stepped bcc surfaces including{321} are chiral (D, L).

Fig. 33. Selected chiral (D, L) kinked fcc surfaces.

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 423

Fig. 32. Selected achiral kinked fcc surfaces. All are reflexive (X).

Fig. 34. The only flat bcc surface. It is doubly-reflexive (X2).

Fig. 35. Selected stepped bcc surfaces; note that the {211} surface is reflexive(X) and therefore achiral, whereas all other stepped bcc surfaces including{321} are chiral (D, L).

Fig. 33. Selected chiral (D, L) kinked fcc surfaces.

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 423

Fig. 32. Selected achiral kinked fcc surfaces. All are reflexive (X).

Fig. 34. The only flat bcc surface. It is doubly-reflexive (X2).

Fig. 35. Selected stepped bcc surfaces; note that the {211} surface is reflexive(X) and therefore achiral, whereas all other stepped bcc surfaces including{321} are chiral (D, L).

Fig. 33. Selected chiral (D, L) kinked fcc surfaces.

Sunday, November 7, 2010

Page 24: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 423

Fig. 32. Selected achiral kinked fcc surfaces. All are reflexive (X).

Fig. 34. The only flat bcc surface. It is doubly-reflexive (X2).

Fig. 35. Selected stepped bcc surfaces; note that the {211} surface is reflexive(X) and therefore achiral, whereas all other stepped bcc surfaces including{321} are chiral (D, L).

Fig. 33. Selected chiral (D, L) kinked fcc surfaces.

fcc surfaces without mirror planes

Sunday, November 7, 2010

Page 25: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 423

Fig. 32. Selected achiral kinked fcc surfaces. All are reflexive (X).

Fig. 34. The only flat bcc surface. It is doubly-reflexive (X2).

Fig. 35. Selected stepped bcc surfaces; note that the {211} surface is reflexive(X) and therefore achiral, whereas all other stepped bcc surfaces including{321} are chiral (D, L).

Fig. 33. Selected chiral (D, L) kinked fcc surfaces.

Selected bcc surfacesS.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 423

Fig. 32. Selected achiral kinked fcc surfaces. All are reflexive (X).

Fig. 34. The only flat bcc surface. It is doubly-reflexive (X2).

Fig. 35. Selected stepped bcc surfaces; note that the {211} surface is reflexive(X) and therefore achiral, whereas all other stepped bcc surfaces including{321} are chiral (D, L).

Fig. 33. Selected chiral (D, L) kinked fcc surfaces.

424 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Fig. 36. Selected achiral kinked bcc surfaces. All are reflexive (X) except for {111} and {100}, which are triply-reflexive (X3) and quadruply-reflexive (X4)respectively.

Sunday, November 7, 2010

Page 26: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 425

Fig. 37. Selected chiral (D, L) kinked bcc surfaces.

Fig. 38. The only flat hcp surface. It is a bayonet surface and designated XX6o.

Selected hcp surfaces

426 S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429

Fig. 39. The only interrupted-flat hcp surfaces. These surfaces are uniterminated-reflexive and designated XXu.

Fig. 40. The only meandering row hcp surfaces. The {1122} surface is glissadic (XXø), whereas {1120} is reflexive-glissadic (XX2ø).

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 427

Fig. 41. Selected stepped hcp surfaces. Note that {1010} is doubly-reflexive (XX2τ , XX2

τ ) with (τ, τ ) ⇒ (σ, λ), whereas {1011} is reflexive (XXτ , XXτ ) with(τ, τ ) ⇒ (λ, σ ). In contrast, {3038} and {3 0 3 10} are both uniterminated-reflexive surfaces (XXu).

Fig. 42. Selected geminal hcp surfaces. All such surfaces are pure one-chiral (DXu, LXu).

Sunday, November 7, 2010

Page 27: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

2.1 GaAs-Oberflachen

fs1(a) s2 v s(b)

Abbildung 2.2: (a) Facettierte Oberflache. Die ideale Oberflache f zerfallt in die benachbarten

Flachen s1 und s2. (b) Vizinalflache. Die Orientierung der idealen Oberflache v weicht um

einen kleinen Winkel von der Orientierung der stabilen Oberflache s ab.

Eine ubersichtliche Darstellung der verschiedenen Orientierungen laßt sich durch

eine stereografische Projektion in die Ebene erreichen (ausfuhrlich z. B. in Ref. [32]).

Die stereografische Projektion ist winkeltreu, so daß sich Winkel zwischen verschie-

denen Flachen direkt bestimmen lassen. Aufgrund der Kristallsymmetrie sind viele

Ebenen aquivalent, insbesondere solche, deren Indizes durch zyklisches Vertauschen

auseinander hervorgehen [(11n) entspricht (n11)]. Daher genugt es fur viele Zwecke,

die Projektion auf das stereografische Dreieck zwischen (001), (011) und (111) zu be-

schranken (Abb. 1.1 auf S. 11).

Die drei niederindizierten Flachen an den Ecken des Dreiecks bilden eine Basis der

Kristallstruktur. Alle hoherindizierten Oberflachen lassen sich aus diesen drei Flachen

aufbauen. Orientierungen, die auf den Seiten des Dreiecks liegen, sind Kombinationen

der Flachen an den jeweiligen Ecken. So sind z. B. die Flachen mit den Miller-Indizes

(11n) aus (111) und (001) zusammengesetzt (vgl. Abb. 5.1(b) auf S. 56). Aufgrund

dieser Uberlegungen sieht man auch leicht, daß (1 1 25) = 1 · (111) + 24 · (001) vizinal

zu (001) liegt. Allgemeingultig ist das in diesem Absatz Dargestellte jedoch nur fur

die idealen Oberflachen. Auf GaAs(113) etwa bildet sich eine stabile Struktur, die

unabhangig von niederindizierten Oberflachen ist [2, 3].

Als Zone bezeichnet man die Menge aller Flachen, die durch Drehung um eine be-

stimmte Achse ineinander ubergehen. Die Richtung dieser Achse gibt der Zone ihren

Namen. Untersuchungen auf Oberflachen der [110]-Zone waren der Ausgangspunkt der

vorliegenden Arbeit. In Abb. 2.3 ist diese Zone dargestellt. In ihr liegen die Ebenen

mit den Indizes (11n). Die Winkel zwischen diesen Flachen sind in Tab. 2.1 zusam-

mengefaßt.

Bei Galliumarsenid sind die beiden durch Aufschneiden eines Kristalls erzeugten

Oberflachen, also Vorder- und Ruckseite, in der Regel nicht aquivalent, da der Stoff aus

17

A surface of arbitrary orientation usually has a high surface energy. It is common that the real surface deviates substantially from its orientation and forms facets of the next most stable face (a) or close to the original orientation exists a stable “vicinal” surface.

Faceting and vicinal surfaces

Sunday, November 7, 2010

Page 28: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

More realistic surface model

Sunday, November 7, 2010

Page 29: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Rekonstruktion, Relaxation

Relaxation: Veränderung derGitterkonstante senkrecht zurOberfläche

Rekonstruktion: Parallel zurOberfläche werden Atome neuAngeordnet (grössere Einheitszelle)z.B. 2x1 oder 7x7

Reconstructions and relaxation:In reality the surface deviates from the bulk plane periodicity.

Sunday, November 7, 2010

Page 30: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

missing row reconstruction of clean surfaces

Pt(110) – 1x2 reconstruction Pt(110) – 1x1

[001]

[110]

(111) micro facet

(CO adsorption lifts reconstruction and creates (1x1) surface!)

Sunday, November 7, 2010

Page 31: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Relaxation directly under a single molecule

The Cu step atom of a (211) surface is lifted under a propene molecule (DFT calculation)Rekonstruktion, Relaxation

Relaxation: Veränderung derGitterkonstante senkrecht zurOberfläche

Rekonstruktion: Parallel zurOberfläche werden Atome neuAngeordnet (grössere Einheitszelle)z.B. 2x1 oder 7x7

Sunday, November 7, 2010

Page 32: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

46 W. Reimer et aL / LEED analysis of the (2 X 1)H-Ni(110) structure

0 = 1.5 [5]. At T>~ 200 K a local reconstruction into a one-dimensionally disordered phase starts already at rather low coverages [6]; it equally exhibits a (1 • 2) pattern.

The present work is concerned with a LEED structural analysis of the low temperature (2 X 1) phase at 0 = 1.0 (There is strong evidence that the derived local geometry of the adsorption site equally holds for all of the lattice gas p h a s e s a t O H ~< 1.0, e.g. by the coverage independent magnitudes of the adsorption energy, the frequency of the N i - H vibration and the change in work function in this coverage range).

Before starting the analysis of the adsorbate covered system, also the structure of the clean Ni ( l l0 ) surface was determined. A full account of the LEED structure analysis itself will be given elsewhere [7], in addition a similar analysis of the (1 • 2) reconstructed surface was reported recently [8].

The LEED pattern of the (2 x 1)H phase is characterized by a systematic extinction of the (0, n / 2 ) beams at normal incidence indicating the presence of a glide symmetry plane [9] and thus of two H atoms per unit cell [2]. Based on He diffraction experiments Rieder and Engel [2] proposed a structural model which is reproduced in fig. l a and whereafter the adsorbed atoms form

a) [110]

YH

]( % ( o,,

,,' [0011 , [0011

b) [110] yH

dl

Z H d12

[110] d23

L,,,[l'lo] , 1001] - ' I001]

Fig. 1. Models of the (2 x 1)H-Ni(110) structure: (a) for H atoms on quasi-threefold sites, top view; (b) for H atoms on long-bridge sites, top view; (c) side view illustrating the structural

parameters; (d) geometry of the local Ni3-H adsorption cluster.

d12 = 1.18 Åd23 = 1.32 Åd34 = 1.25 Å

dbulk = 1.25 Å

Relaxation p2mg (2x1)2H / Ni(110)

Sunday, November 7, 2010

Page 33: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Superstructures: Wood notation

Sunday, November 7, 2010

Page 34: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

b1

b 2

⎝ ⎜

⎠ ⎟ =

m11 m12

m21 m22

⎝ ⎜

⎠ ⎟

a1

a2

⎝ ⎜

⎠ ⎟

c)

a2

a1

b1

b2

a)

a2a1

b1

b2

b)

a2a1

b1 b2

2 00 2⎛

⎝ ⎜

⎠ ⎟

Superstructures: Matrix notation

1 −11 1⎛

⎝ ⎜

⎠ ⎟

2 1−1 1⎛

⎝ ⎜

⎠ ⎟

Sunday, November 7, 2010

Page 35: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Adsorption sites

Sunday, November 7, 2010

Page 36: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Coverage

Sunday, November 7, 2010

Page 37: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 38: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

E(x,y)

ad

(x,y) E(x,y)

repulsive

a) b) c)

attractive

x,y x,y x,y

diff

Ordered layers can only form with sufficient surface diffusion (a)

Adsorption energy is modulated via substrate corrugation (a) plus by lateral interaction between adsorbed species (b)

When repulsion matches adsorption energy, saturation coverage is reached.

Sunday, November 7, 2010

Page 39: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

1.2.2. Closing the materials and pressure gap: more complex model systemsExamples for application of UHV techniques

Sunday, November 7, 2010

Page 40: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Closing the pressure and the materials gap

Sunday, November 7, 2010

Page 41: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Stable configurations of small clusters

Side length of the cube 1 nm 1 μm 1mm

Number of bulk atoms (NB) 1 2.7·1010 2.7·1019

Number of surface atoms (NS) 29 5.4·107 5.4·1013

NS/(NB+NS) 0.96 2·10-3 2·10-6

Number of edge atoms 12 3.6·104 3.6·107

Number of corner atoms 8 8 8

Sunday, November 7, 2010

Page 42: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 43: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 44: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 45: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Normalization of turnover rate w/surface sites

Sunday, November 7, 2010

Page 46: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 47: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Electronic structure related to cluster size: XPS

Sunday, November 7, 2010

Page 48: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Melting Point of Gold (Au)

Sunday, November 7, 2010

Page 49: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Relevant interactions for surface analytical methods

2. Probes for surfaces: photons, electrons, ions, etc

Photons

Sunday, November 7, 2010

Page 50: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Surface sensitive methods for elemental, chemical and structural analysis can be achieved by using particles for excitation or detection, which interact strongly with matter. With other words using particles with a very short mean free path in matter.

Sunday, November 7, 2010

Page 51: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Inelastic mean free path of electrons λ as a function of the electron

energy for different materials. As can be seen λ is very energy but not

very material dependent.

Sunday, November 7, 2010

Page 52: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 53: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

3. Surface structure: Low energy electron diffraction (LEED)

Sunday, November 7, 2010

Page 54: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

fluorescentscreen

diffracted beam

gun

incidentbeam

two dimensionalcrystal lattice(magnified)

diffractionspots

Surface structure: Low energy electron diffraction (LEED)

Sunday, November 7, 2010

Page 55: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Primary electron energy 20 - 1000 eV

Ni(111)

sinφ ≈ 1/√E)

λ = h/√(2 me e ·U)

Sunday, November 7, 2010

Page 56: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

150 eV 250 eV

650 eV

Sunday, November 7, 2010

Page 57: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 58: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

125

DEUTSCHE BUNSEN-GESELLSCHAFTUNTERRICHT

respect to the exact positions of atoms at a surface is some-what more complicated and requires fully dynamical quantum mechanical scattering calculations.

The use of LEED as a standard technique for surface analysis started in the early 1960’s when large enough single crystals and commercial instruments became available for surface studies. At fi rst the technique was only used for qualitative characterization of surface ordering and the identifi cation of two-dimensional superstructures. The quantitative information about the positions of the atoms within the surface is hidden in the energy-dependence of the diffraction spot intensities, the so-called LEED I-V, or I(E), curves. Computer programs and the computer power to analyze these data became available in the 1970’s. With the ever growing speed of modern computers LEED-IV structure determination has been applied to increas-ingly complex surface structures. To date LEED is the most pre-cise and versatile technique for surface crystallography.

For further information about the history, experimental setup, and theoretical approaches of LEED refer to the books by Pen-dry, [Pend74], Van Hove and Tong [Vanh79], Van Hove, Wein-berg and Chan [Vanh86], and Clarke [Clar85]. The present ar-ticle makes extensive use of these works.

2 BASIC PRINCIPLES

The basic principle of a standard LEED experiment is very sim-ple: a collimated mono-energetic beam of electrons is directed towards a single crystal surface and the diffraction pattern of the elastically back-scattered electrons is recorded using a position-sensitive detector. For electrons, like for all wave-like objects, the angular intensity distribution due to the interfer-ence of partial waves back-scattered from a periodic array is described by Bragg’s law or, more conveniently, by a set of Laue equations, one for each dimension of periodicity, which predict a regular pattern of diffraction spots.

2.1 SURFACE PERIODICITY AND RECIPROCAL LATTICE

Because of the short penetration depth of low-energy elec-trons the diffraction process is determined by a small number of atomic layers at the crystal surface. The electrons do not probe the full crystal periodicity perpendicular to the surface. Therefore, the array of relevant scatterers is only periodic in two dimensions. The surface lattice can be described by a pair of lattice vectors a1 and a2, which are parallel to the surface plane, and the surface unit cell, i.e. the contents of the paral-lelogram spanned by a1 and a2. The surface consists of identi-cal copies of the unit cell at every point

R = m1 a1 + m2 a2 (3)

with integer numbers m1 and m2. The left hand side of Figure 1 illustrates common square, rectangular and hexagonal sur-faces and the lattice vectors defi ning their unit cells.

The two-dimensional Laue equations are based on reciprocal lattice vectors within the surface plane which are defi ned by

the real space lattice vectors through a set of four simultane-ous equations:

a1 ! a*1 = 2p a2 ! a*2 = 2p (4a) a1 ! a*2 = 0 a2 ! a*1 = 0 (4b)

Figure 1 (left from top to bottom) arrangement of atoms in the {100} (square) {110} (rectangular) and {111} (hexagonal) surfaces of a simple face cen-tered cubic crystal lattice and a p(2x1) superstructure on a square surface; the diagrams include lattice vectors defining the surface unit cell and the corresponding reciprocal lattices (right).

a1

a2

a1

a2

a*1

a*2

a*1

a*2

b*1

b*2

a1

a2

a*1

a*2

b2

b1

In order for the scalar products in (4a) to be dimensionless, the reciprocal lattice vectors must have units of inverse length, nm-1.As a consequence of (4b) a*2 and a*1 must be perpendicular to a1 and a2, respectively, which means that a rectangular real-space lattice will also have a rectangular reciprocal lattice. For non-rectangular lattices the angles are different in real space and reciprocal space. The right-hand column of Figure 1 shows the corresponding reciprocal lattices for each of the surfaces on the left. The reciprocal lattice vectors defi ne the positions of the diffraction maxima through the Laue equation (5).

k||,out (n1,n2) = k||,in + n1 a*1 + n2 a*2 (5)

k||,out is the component of the wave vector of the diffracted electrons, which is parallel to the surface plane (by conven-

62 3 Experimentelles

!"

#$

!"

#$%&!'

%

Abbildung 3.16:Adsorptionsstruktur von COauf Ru(001). Oben: Strukturmo-dell und LEED-Bild (k-Raum)der (

!3"

!3)R30! CO-Bedeckung

(0.33 ML). Weitere Adsorptionvon CO fuhrt zur Komprimierungdieser Struktur bis zur CO-Satti-gungsbedeckung (0.68 ML), derenLEED-Bild im unteren Teil darge-stellt ist.

!"

#$#$

#$

#$

3.4.3 Das Koadsorbatsystem CO/O/Ru(001)

Sauersto! adsorbiert dissoziativ, also atomar auf Ruthenium.[Ove98, Ove96] DieBindungsenergie ist abhangig von der Bedeckung und betragt fur 0.5 ML proSauersto!atom EB=4.9 eV.[Ove98, Sta96] Die Adsorption erfolgt an dreifach ko-ordinierten (hcp-“hollow”-)Platzen. Im Folgenden soll nur die (2"1)O-Bedeckung(0.5 ML) bzw. die entsprechende Mischbedeckung mit CO diskutiert werden, dadiese Ausgangspunkt der durchgefuhrten Experimente ist. Sie wird anhand vonReferenzspektren prapariert, siehe hierzu Abbildung 3.18. Das LEED-Bild der(2"1)O-Bedeckung ist im rechten Teil von Abbildung 3.17 dargestellt, es zeigteine (2"2)-Symmetrie da es uber drei mogliche Ausrichtungen der (2"1)-Strukturgemittelt ist.

Die maximale CO-Bedeckung auf dieser O-Bedeckung betragt ca. 0.2 ML, waseiner (2"2)-Struktur entspricht. Fur das Gesamtsystem werden zwei unterschied-liche Strukturen diskutiert.[Hof91, Kos92] Die sogenannte Honigwabenstrukturist im linken Teil von Abbildung 3.17 dargestellt. Gegenuber einer (2"1)O-Struktur hat jedes zweite O-Atom einen Platzwechsel vollzogen, der auf der nurmit O-Bedeckten Oberflache energetisch ungunstig ware. Die Gesamtenergie der

Sunday, November 7, 2010

Page 59: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

128

BUNSEN-MAGAZIN · 12. JAHRGANG · 4/2010UNTERRICHT

the fl uorescent screen have become commercially available in recent years for applications that require low incident beam currents, either to avoid beam damage (e.g. organic molecules) or charging of insulating samples (e.g. oxides). These systems can be operated with electron currents as low as 1 nA. Typical LEED systems have diameters of around 140 mm.

The LEED pattern is recorded using a video camera with suit-able image processing software. As with all methods that use electrons as probes, vacuum conditions are required because electrons cannot penetrate a gas atmosphere at normal pres-sures. In general, however, the vacuum conditions required to avoid contamination of clean surfaces are more rigorous (typi-cally < 10-9 mbar) than those imposed by the use of electrons (typically < 10-6 mbar).

4 APPLICATIONS

In this section we will discuss a small selection of typical ap-plications of LEED in order to illustrate the different levels at which this technique yields information about surface ge-ometries.

4.1 LEED PATTERN: CO ON NI{111}

The adsorption of carbon monoxide on the {111} surface of nickel is a good example how LEED diffraction patterns can be used for a simple characterization of adsorbate structures. With increasing coverage of CO adsorbed on Ni{111} four dif-ferent LEED patterns are observed between about 0.30 and 0.62ML (1 ML corresponds to 1 molecule per substrate sur-face atom):

• a diffuse [2 1; -1 1] or p(!3 x !3) R30° pattern between 0.3 and 0.4 ML,

• a sharp [2 0; 1 2] or c(2 x 4) pattern for coverage around 0.5 ML,

• a sharp [3 1; -1 2] or p(!7 x !7) R19° pattern between 0.56 and 0.60 ML,

• a more complicated [3 2; -1 2] pattern at the maximum cov-erage of 0.62 ML, which is described as “c(2!3 x 4)rect” in non-standard Wood notation.

Images of the fi rst three patterns are depicted in Figure 5 to-gether with the corresponding real-space unit cells (red arrows and dashed lines). The middle part of the Figure also shows the complete (2x4) unit cell (in black). Note that the “c” in the Wood notation c(2 x 4) means that the center and the corners of the (2x4) unit cell are lattice points. Therefore the primitive unit cell is only half the size, as indicated by the red arrows. The matrix notation always refers to the primitive unit cell. The yellow arrows in the LEED patterns (left) indicate the reciprocal lattice vectors corresponding to the unit cells marked in red.

For the c(2 x 4) and p(!7 x !7) R19° structures it is not pos-sible to reach all diffraction spots by adding integer multiples of these two vectors. This is because the observed pattern is a superposition of LEED patterns arising from different parts

of the surface, where the ordered arrangements of molecules are the same in principle but may have different orientations. Such rotation or mirror domains are usually observed if the superstructure has lower symmetry than the underlying sub-strate alone. Any symmetry operation of the substrate surface (rotation or mirror) that is not shared with the superstructure will therefore convert the superstructure unit cell into a unit cell that is equivalent but has a different orientation. This new unit cell has a different reciprocal lattice with a new set of dif-fraction spots. All orientation domains are equivalent and will, therefore, cover equal areas of the surface. In the case of the c(2 x 4) superstructure, which has a rectangular unit cell, the missing symmetry is the three-fold rotation of the hexagonal substrate surface; therefore there are two additional rotational

Figure 5: Experimental LEED patterns formed by CO adsorbed on Ni{111} (left) and corresponding real-space unit cells (right): p(!3 x !3) R30° (top, Ekin = 98eV) c(2 x 4) (middle, Ekin = 129eV) and p(!7 x !7) R19° (bottom, Ekin = 117eV). Note that the real space diagrams are rotated by about 30° with respect to the crystal orientation of the experiment; the dark structure extending from the top left to the middle of the LEED patterns is the shadow of the electron gun [Held98].

!"="0.33ML:"""p(#3"x"#3)"R30°

a1

a2

2"""1

$1"""1M"="

!"="0.50ML:"""c(2"x"4)

a1

a2

2"""0

1"""2M"="

!"="0.57ML:"""p(#7"x"#7)"R19°

a1

a2

3"""1

$1"""2M"="

CO / Ni(111)

Sunday, November 7, 2010

Page 60: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

a) b)

!

[001]

[110]_

Mirror domains

Sunday, November 7, 2010

Page 61: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Superstructures

Sunday, November 7, 2010

Page 62: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

The adsorption site is not available via static LEED

Sunday, November 7, 2010

Page 63: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Complete surface structure via dynamical I-V LEED and multiple scattering theory

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 427

Fig. 41. Selected stepped hcp surfaces. Note that {1010} is doubly-reflexive (XX2τ , XX2

τ ) with (τ, τ ) ⇒ (σ, λ), whereas {1011} is reflexive (XXτ , XXτ ) with(τ, τ ) ⇒ (λ, σ ). In contrast, {3038} and {3 0 3 10} are both uniterminated-reflexive surfaces (XXu).

Fig. 42. Selected geminal hcp surfaces. All such surfaces are pure one-chiral (DXu, LXu).

S.J. Jenkins, S.J. Pratt / Surface Science Reports 62 (2007) 373–429 427

Fig. 41. Selected stepped hcp surfaces. Note that {1010} is doubly-reflexive (XX2τ , XX2

τ ) with (τ, τ ) ⇒ (σ, λ), whereas {1011} is reflexive (XXτ , XXτ ) with(τ, τ ) ⇒ (λ, σ ). In contrast, {3038} and {3 0 3 10} are both uniterminated-reflexive surfaces (XXu).

Fig. 42. Selected geminal hcp surfaces. All such surfaces are pure one-chiral (DXu, LXu).

A

Fig. 1. (a) Top- (b) side-view of the two possible terminations (A&) of a hccp (10%) surface.

ature could be controlled by a NiCi-Ni thermo- couple spot-welded to the edge of the sample.

Further crystal preparatian in vacuum con- sisted of cycles of argon sputtering at 3~-500 eV ion energy and beam currents of 3-6 PA/cm’ whereby the sample temperature was successively increased up to 500 K followed by cycles of an- nealing at 680 K. Since a phase transition from the hcp to the fee phase occurs at 700 K much

Fig. 2. I&ED-pattern of the clean co(lOiO) surface at an electron energy E, = 66 eV.

care was taken not to reach sample temperatures above 680 K. After numerous sputter.-annealing cycles only small amounts of carbon remained at the surface which could be reactively removed by oxygen at 650 K. Traces of oxygen impurity could be reacted off by hydrogen at 680 K. The cleanli- ness of the surface could be controlled very sensi- tively by HREELS. A LEED pattern of the clean surface at an electron energy E, = 66 eV is shown in fig. 2.

LEED I/ 1/ curves were measured and recorded by means of a video (“auto”) LEED system devel-

e ne r gy ieV)

Fig. 3. Experimental I/Y curves of four s~mmet~-equivalent LEED-beams: (1.2). (I.?). f%.2) and ii.?).

H. Over et al. / A LEED structural analysis of the Co(lOi0) surface

Comparison of multilayer relaxations Ad,, and Ad,, for some rectangular single crystal surfaces

Cu(ll0) [24] Al(110) [25] Re(lOi0) [l] Fe(211) [26] c0(1010)

- 8.5( * 0.7)% - 8.4( * O.S)% - 17% - 10% - 12.8( ?0.5)% + 2.3( k 0.9)% + 4.9( f 1 .O)% + l-2% 1-58 + 0.76( k 0.2)%

for both crystals Re(lOi0) and Co(lOi0) indicat- ing a similar relaxation mechanism for these hcp surfaces.

To summarize, our LEED analysis of the clean Co(lOi0) surface reveals that only termination A represents the stable atomic configuration in the surface, exhibiting a contraction of the first sub- plane spacing by 123 *OS)% and no further re- laxation deeper in the bulk. We note that the same termination (A) was found previously for the clean Re(lOi0) surface [l].

We thank Dr. A. Preusser for technical assis- tance.

Note added in proof

After acceptance of our Letter a recent LEED analysis from Lindroos et al. [27] concerning “The termination and multilayer relaxation at the Co- (1010) surface” was brought to our knowledge. The Z/V curves of Lindroos et al. are in good agreement with our results, but a discrepancy oc- curs with respect to the magnitude of the first layer contraction. While Lindroos et al. ascer- tained a contraction of -6.5( *2)‘% we de- termined a larger contraction of - 12.8( f 0.5)s.

References

[l] H.L. Davis and D.M. Zehner, J. Vat. Sci. Technol. 17 (1980) 190.

[2] G.L.P. Bertring, Surf. Sci. 61 (1976) 673. [3] G.L.P. Berning, G.P. Alldredge and P.E. Viljoen, Surf.

Sci. 104 (1981) L225. [4] B.W. Lee, R. Alsenz, A. Ignatiev and M.A. Van Hove,

Phys. Rev. B 17 (1978) 1510.

[5] M. Welz, W. Moritz and D. Wolf, Surf. Sci. 125 (1983) 473.

[6] G. Kleinle, W. Moritz, D.L. Adams and G. Ertl. Surf. Sci. 219 (1989) L637.

[7] K.-H. Ernst, E. Schwarz and K. Christmann. in prepara- tion.

[8] K. Mliller and K. Heinz, in: The Structure of Surfaces, Eds. S.Y. Tong and M.A. Van Hove (Springer, Berlin. 1986) p.105.

[9] M.A. Van Hove and S.Y. Tong, Surface Crystallography by LEED, Springer Series in Chemical Physics (Springer. Berlin, 1979).

[lo] W. Moritz, J. Phys. C 17 (1984) 353. [ll] M. Maglietta, E. Zanazzi, F. Jona, D.W. Wepsen and

P.M. Marcus, Appl. Phys. 15 (1978) 409. [12] L. Hedin and B.I. Lundquist, J. Phys. G 4 (1971) 2064. [13] D.W. Marquardt, J. Sol. Indust. Appl. Math. 11 (1963)

431. [14] G. KIeinle. W. Moritr and G. Ertl, Surf. Sci. 238 (1990)

119. [15] G. Kleinle, Thesis, Freie Universitlt Berlin (1989). [16] (a) P.J. Rous, J.B. Pendry, D.K. Saldin. K. Heinz, K.

Mliller and N. Bickel, Phys Rev. Lett. 57 (1986) 2950; (b) P.J. Rous and J.B. Pendry, Comput. Phys. Commun. 54 (1989) 137.

[17] W. Moritz, H. Over, G. Kleinle, G. Ertl, in: The Structure of Surfaces III, Eds. M.A. Van Hove, S.Y. Tong and Xie Xide (Springer, Berlin, 1990) in press.

[18] H. Over, U. Ketterl, W. Moritz and G. Ertl, m prepara- tion.

[19] G. Kleinle, J. Wintterlin, G. Ertl, R.J. Behm, F. Jona and W. Moritz, Surf. Sci. 225 (1990) 171.

[20] E. Zanazzi and F. Jona, Surf. Sci. 62 (1977) 61. [21] J.B. Pendry, J. Phys. C 13 (1980) 937. [22] A. Preusser, Comput. Aided Geom. Design 3 (1986) 267. [23] D.L. Adams, W.T. Moore and K.A.R. Mitchell, Surf. Sci.

149 (1985) 407. [24] D.L. Adams, H.B. Nielsen, J.N. Andersen, 1. Steensgaard,

R. Feidenhans’l and J.E. Sorensen, Phys. Rev. Lett. 49 (1982) 669.

[25] H.B. Nielsen, J.N. Andersen. L. Petersen and D.L. Adams, .I. Phys. C. 15 (1982) L1113.

[26] J. Sokolov, H.D. Shih, U. Bardi, S. Jona and P.M. Marcus, Solid State Commun. 48 (1983) 739.

[27] M. Lindroos, C.J. Barnes, P. Hu and D.A. King, Chem. Phys. Lett. 173 (1990) 92.

Sunday, November 7, 2010

Page 64: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 65: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 66: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Absorption very fast - ~10-16 s- no photoemission for - KE of photoelectron increases as BE decreases- intensity of photoemission goes with intensity of photons- need monochromatic (x-ray) incident beam- a range of KEs can be produced if valence band is broad- since each element has unique set of core levels, KEs can be used to fingerprint elementBinding energy (BE) represents strength of interaction between electron (n, l, m, s) and nuclear charge.

Sunday, November 7, 2010

Page 67: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Binding energy for different electron core levelsas a function of the atomic number

Sunday, November 7, 2010

Page 68: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 69: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

EKin = ħω – EB

EB = Eftot(N-1) - Ei

tot(N)

EKin

EB

but relaxation occurs!

N-1 electrons react on the created hole

RELAXATION! EB smaller as E0

Koopmans Theorem:(„frozen orbital approximation“)

N-1 electrons do not react on the hole creation

EB = Orbital eigenenergy = E0

EKin

EB

Sunday, November 7, 2010

Page 70: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Koopman's TheoremThe BE of an electron is simply difference between initial state (atom with n electrons) and final state (atom with n-1 electrons (ion) and free photoelectron) BE = Efinal(n -1)- Einitial (n)If no relaxation followed photoemission, BE = - orbital energy which can becalculated from Hartree-Fock

Sunday, November 7, 2010

Page 71: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Spin-orbit coupling

Sunday, November 7, 2010

Page 72: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

l = 1 (p)l = 0 (s)

l = 2 (d)

l = 3 (f)

1

2

3

4

5

6

7

n

Sunday, November 7, 2010

Page 73: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

As the energy depends on n, l and j it is convenient to label the electron states according to this three quantum numbers in the following way:The value of n followed by the Label of the shell and as subscript the value of j.

Quantum numberQuantum numberQuantum number X-raylevel

Spectroscopicleveln l j

X-raylevel

Spectroscopiclevel

1 0 1/2 K 1s1/2

2 0 1/2 L1 2s1/2

2 1 1/2 L2 2p1/2

2 1 3/2 L3 2p3/2

3 0 1/2 M1 3s1/2

3 1 1/2 M2 3p1/2

3 1 3/2 M3 3p3/2

3 2 3/2 M4 3d3/2

3 2 5/2 M5 3d5/2

Sunday, November 7, 2010

Page 74: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 75: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

XPS survey spectrum of a clean Silver surface

Sunday, November 7, 2010

Page 76: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Ag3d detail spectrum of a clean Silver surface

Sunday, November 7, 2010

Page 77: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

PES/XPS: Apparatus

Sunday, November 7, 2010

Page 78: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Electron Spectroscopy: Energy Detector

Sunday, November 7, 2010

Page 79: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Schematic representation of theInteraction of an electron beamimpinging in normaldirection on a surface.

How to make characteristic X-rays

Sunday, November 7, 2010

Page 80: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

For XPS

Sunday, November 7, 2010

Page 81: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

For first order diffraction of the AlKα line, with λ = 8.3 Å, it is found

that quartz crystal spacing of the [10-10] planes is 4.25 Å and the Bragg angle is thus 78.5°. Quartz has many advantages, since it can be obtained in perfect crystals of very large size, which can easily be bent elastically and can be backed to high temperatures without damage or distortion.

A crystal to monochromatethe MgKα line is not known!!

Sunday, November 7, 2010

Page 82: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Electron energyanalyzer

Mono-energeticX-ray source

TurbomolecularPump

TurbomolecularPump

AnalyzerChamber

AnalyzerChamber

Sunday, November 7, 2010

Page 83: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

The Swiss Light Source (SLS) in Villigen

Sunday, November 7, 2010

Page 84: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

!"#$%&'(&'#

Sunday, November 7, 2010

Page 85: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Chemical shift of PES lines

Sunday, November 7, 2010

Page 86: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Poly(vinyl fluoride) -(CHF-CH2)-

In this case we can see that all the fluorine atoms are equivalent but that there are two inequivalent carbon atoms in this polymer, where we should expect a strong charge transfer due to the C-F bond and therefore a strong chemical shift.

Sunday, November 7, 2010

Page 87: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Poly(vinyltrifluorocetate)

Sunday, November 7, 2010

Page 88: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 89: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Ultraviolet photoelctron spectroscopy (UPS)

Sunday, November 7, 2010

Page 90: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Auger electron spectroscopy (AES)

Sunday, November 7, 2010

Page 91: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Schematic illustration of the KLL Auger electron emission process

Sunday, November 7, 2010

Page 92: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 93: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 94: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Typical representationof an Auger spectrum

Auger Spectrum

Sunday, November 7, 2010

Page 95: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Diagram showing the energyof the main Auger lines

Sunday, November 7, 2010

Page 96: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Scanning Auger Microscopy (SAM)

Sunday, November 7, 2010

Page 97: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Molecular Structure:

Angle-scanned X-ray Photoelectron Diffraction

x-rays

• x-ray tube• synchrotron

1st orderinterference

‚forward-focusing‘

analyzer

polar angle Θ

azimuthalangle ϑ

Sunday, November 7, 2010

Page 98: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Absolute configuration of molecules

Fasel, Ernst, et al., Angew. Chem. Int. Ed. 43 (2004) 2853

Sunday, November 7, 2010

Page 99: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 100: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

The adsorption site is not available via static LEED

Sunday, November 7, 2010

Page 101: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Electron Energy Loss Spectroscopy (EELS)

also known as high resolution EELS (HREELS)Based on inelastic scattering of monoenergetic beam of low energy electrons (Ei = 1-10 eV) from surface.

Es = Ei - Evib

Sunday, November 7, 2010

Page 102: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 103: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 104: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 105: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 106: UHV Ernst Peq

106

Heinrich Rohrer

Gerd Binnig

Nobel Prize (1986)

Scanning tunneling microscopy (STM)

Sunday, November 7, 2010

Page 107: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

In classical science if a particle impinges a barrier (such as small ball hitting a solid wall) there is no chance of the particle being found beyond the barrier.

In quantum mechanics this is not correct and we speak of a probability that the electron can be found beyond the barrier.

Classical barrier – no transmission, only reflection

quantum barrier – part transmission, Part reflection

Sunday, November 7, 2010

Page 108: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

In quantum mechanics one must think of the electron has having wave-like as well as particle-like properties – wave-particle duality.

We speak of the wavefunction of the electron and we are interested in wavefunction penetration and overlap.

Sunday, November 7, 2010

Page 109: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

When two materials (one of which is often in the form of a metal tip) are brought close to one another and a potential difference V applied a tunnelling current I occurs.

This can be expressed as

z is the separation between the two materials and

V is the potential difference applied and

E is the energy of the electron

is read as ‘h bar’ and is Planck’s constant (actually h is Planck’s constant and h bar is h/2π)m* is the effective electron mass

To a first approximation, STM is like doing an I-V measurement but with the electrodes very close together.

Sunday, November 7, 2010

Page 110: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

However things are a little (a lot) more complicated thanthat.

Firstly, the tip is often a sharpened tip using a strong solution of KOH and a voltage applied.

An ideal tip has oneatom at the end of the tip.

Sunday, November 7, 2010

Page 111: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 112: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 113: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

0.25 mm

0.00025 mm

The distance of the tip from the surface is 1 nm = 0,000.001 mm while the height regulation is accurate down to 1 pm = 0,000.000.001 mm

Ag(111)

For an analogous height resolution using the Eiffel tower one must position it at 1 mm above the Champs Élysées and scan it with an accuracy of at least 0,001 mm.

Sunday, November 7, 2010

Page 114: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

electrons

When the tip is biased positive relative to the sample electrons flow from the sample to the tip – note the tunnel current is in the opposite direction.

Sunday, November 7, 2010

Page 115: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

There are two common modes for STM operation:

Constant Current Mode By using a feedback loop the tip is vertically adjusted in such a way that the current always stays constant.

Constant Height Mode In this mode the vertical position of the tip is not changed. The current as a function of lateral position represents the surface image.

Sunday, November 7, 2010

Page 116: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 117: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Constant current contour

Bias voltage

Distance z

eSample

eee

Tip

Tunneling current ≈ e -2κz

VDC

Conductive partLess Conductive part

Sunday, November 7, 2010

Page 118: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

If the tip-surface interaction is so important how do we maintain accurate separation?

The electronics uses a feedback system. The sample is mounted on a stage which is attached to a piezoelectric material.

A piezoelectric material is a material that expands or contracts when a voltage is applied to it.

During constant current STM when the feedback sensor detects a change in the tunnel current, the voltage to the piezoelectric is changed to adjust the height to keep the tunnel current the same

Sunday, November 7, 2010

Page 119: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 120: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 121: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 122: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

So if we have a metal tip and a metallic sample, what exactly are we measuring/probing?

Band alignment under Zero bias

In the sample, there may be bands present, which may be occupied or empty.

Sunday, November 7, 2010

Page 123: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Band alignment under positive sample bias

Electrons flow from the tip to the empty sample bands or unoccupied sample states.

Sunday, November 7, 2010

Page 124: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Band alignment under negative sample bias

Electrons flow from the filled sample bands or occupied sample states.

Sunday, November 7, 2010

Page 125: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

This also applies to semiconductors with their states in the band gap

Sunday, November 7, 2010

Page 126: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Annealing of Cu(111) under the STM

Sunday, November 7, 2010

Page 127: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Step fluctuation on Cu(111)

Sunday, November 7, 2010

Page 128: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

A tool beyond imaging:Manipulation of atoms and molecules

Sunday, November 7, 2010

Page 129: UHV Ernst Peq

Manipulations with the STM @ 4K

Sunday, November 7, 2010

Page 130: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 131: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 132: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 133: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 134: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 135: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 136: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 137: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Experiment:

- Adsorption on Cu(211) @ 30 K

- LT-STM @ 6 K

Propene

H3CH C=C H

H

Cu(211)

CO

CO

Sunday, November 7, 2010

Page 138: UHV Ernst Peq

The smallest Swiss Cross in the world (or PR comes first)

propene on Cu(211)

Sunday, November 7, 2010

Page 139: UHV Ernst Peq

INELASTIC ELECTRON TUNNELING (IET) - INDUCED ACTION

e -

Translation

e -

Desorption

e -

Chemical Reaction

+ X

e -Flipping (?)

Rotation

e -

Sunday, November 7, 2010

Page 140: UHV Ernst Peq

Cu(211) propene

6.1nm x 4.9 nmSTM contrast from DFT

Adsorption at 40 K; STM at 7 K

Sunday, November 7, 2010

Page 141: UHV Ernst Peq

Daniele Passerone, Empa

DFT results for single propene: two configurations

D. Passerone, Empa

Sunday, November 7, 2010

Page 142: UHV Ernst Peq

Rotamers & Enantiomers

Sunday, November 7, 2010

Page 143: UHV Ernst Peq

2

2*

1

*1

1

1

*22

*11

6.1nm x 4.9 nm

Sunday, November 7, 2010

Page 144: UHV Ernst Peq

“IET action spectroscopy”: Rotation

ν (C=C) = 204.2 meV νs(CH3) = 361.5 meVνa(CH3) = 364.3 meVνa(CH3) = 367.0 meV

1 2*

2* 12*

1

Sample bias (mV)

Rea

ctio

nyi

eld

pere

lect

ron

a c

b

10-12

200

200 mV

400300

360 mV

10-11

10-10

10-9

10-8

500

Parschau et al., Angew. Chem. Int. Ed. 48 (2009) 4065

threshold correlates with vibration!

Sunday, November 7, 2010

Page 145: UHV Ernst Peq

νs(CH2) = 369 meVν (CH) = 373 meVνa(CH2) = 381 meV

Lateral hopping “action spectroscopy”

νs(CH2) = 369 meVν (CH) = 373 meVνa(CH2) = 381 meV

375 mV

10-12

10-11

10-10

300 400 500 600

*

*

a

bR

eact

ion

yiel

dpe

rele

ctro

n

Sample bias (mV)

c

Sunday, November 7, 2010

Page 146: UHV Ernst Peq

“enantio-conversion”: from right to left and vice versa

10

1

10

1

101

N = 1.0 ± 0.1

N = 1.9 ± 0.2

Tunneling current (nA)

Hop

ping

rate

(s- 1

) Flipping rate(s -1)ca

b

Sunday, November 7, 2010

Page 147: UHV Ernst Peq

©√

EHP

©√

R-CH2 + H

Parschau et al., Angew. Chem. Int. Ed. 48 (2009) 4065Sunday, November 7, 2010

Page 148: UHV Ernst Peq

- 2 V pulse

Oxidation: IET-induced chemistry

400 mV / 100 nA

+ 2 V pulse

Sunday, November 7, 2010

Page 149: UHV Ernst Peq

allene

propyne ν (C=C) = 266.0 meV-ν (C=C=C) = 242.5 meV

Identification of the reaction product: IET hopping action spectroscopy

CH3 and C=C can be excited propyne-

270 mV

370 mV

Sunday, November 7, 2010

Page 150: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

A Modern Tool for Studying Surface Processes:Scanning Force Microscopy

Sunday, November 7, 2010

Page 151: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Sunday, November 7, 2010

Page 152: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

!"#$%&%#%&'()"$*(+,%#$*&$-)./)$01234)

5(,.$#$0()/+(6"($078)!"

9&*%:)./)+(,.$#$0()0"+'();39<4=8))

!1/#0%.+8

!" !

#

!" fQ

>.$,(+'#%&'()/.+0(,)) ,:&/%)./)+(,.$#$0()0"+'()) /)?&,,&@#%&'()/.+0(,))))) A+.#*($&$-)./)0"+'())

#%%+#0%&'()&$%(+#0%&.$/

B

Sunday, November 7, 2010

Page 153: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

Quarzuhren sind aufgrund der darin enthaltenen Quarzoszillatoren hochpräzise. Das zeitgebende Element ist eine Stimmgabel aus einkristallinem Quarz, die bei einer

Frequenz von f0 = 32 768 = 215 Hz schwingt.Scanning force microscopy using a quartz tuning fork

Figure 2: Experimental setup. a) The NC-AFM/STM tuning fork sensor is glued onto the carrier

made of macor. Contacts P1 and P2 are the contacts of the excitation piezo. The signal from the

tuning fork is detected via contact T1 and T2. The µm wire attached to the tip conducts the tunnel-

ing current. b) The walker unit is a tripod situated on shear stack piezos for the coarse approach.

The x-, y- and z-piezos are used during the scan process. The tuning fork is located opposite the

sample (only half of the sample is drawn to keep the view free to the sensor carrier). Further ex-

planations are given in the text. Schematic of the microscope on its support stage: (A) walker unit,

(B) x-, y-piezo and (C) z-piezo of the tripod scanner unit, (D) z dither piezo, (E) sensor carrier, (F)

tuning fork assembly, (G) sample (not fully drawn), (H) sample holder (not fully drawn), (I) sam-

ple stage, (J) microscope stage, (K) walker support and (L) shear stack piezos. The base plate has a

diameter of 10 cm.

amplifier has to be placed nearby to improve the signal-to-noise ratio. The change of the tuning93

fork frequency ∆ f is used as a feedback signal for NC-AFM.94

The tip is electrically connected to a Pt0�9Rh0�1 wire, 50 µm in diameter (see figure 2 a). Using this95

electrical contact, a bias voltage can be applied between tip and sample and a tunneling current can96

be measured. This tunneling current serves as a feedback signal when operating in the STM mode.97

However, while operating in one of the modes, AFM or STM, the other channel can always be co-98

recorded. Much care has been taken to ensure that both channels, AFM and STM, are electrically99

separated from each other, preventing cross talk.100

5

Sunday, November 7, 2010

Page 154: UHV Ernst Peq

Prof Dr. Karl-Heinz Ernst, ETH ZH Catal. Vorl. 2010

(NiAl)2�substrate (Al19O28Al28O32)2�. An oxygen deficiency with unoccupied electronic states in the411

aluminum oxide band gap was proposed.412

Figure 10: Atomic resolution NC-AFM image of a straight antiphase domain boundary (type I) inthe aluminum oxide on NiAl(110). The scan area is 6.4 nm � 6.4 nm in a) and b). b) An adjustedmodel [42] has been superimposed in. The unit cell is extended by 3 Å along the long edge of theunit cell. Inserted sites are given in lighter colors. Dashed lines indicate the extension. The dottedline highlights wave-like oxygen rows along the unit cell. c) shows an enlarged section of the im-age for better visibility (3.5 nm � 3.5 nm). Yellow arrows denote the direction and length (3 Å) ofthe Burgers vector. Yellow loops indicate spacious arrangements of oxygen sites that are differentfrom all domain sites. ∆ f = -2.75 Hz, Aosc = 3.8 Å, Ubias = -220 mV.

An atomically resolved NC-AFM image of a straight APDB (type B I) is shown in figure 10.413

Clearly visible, the boundary is marked by a fairly wide linear depression. The adjusted model414

for the lateral positions at the APDB [42] is superimposed in figure 10b) and found to be in per-415

fect agreement. From this we see that NC-AFM images the surface oxygen sites of the film with416

high accuracy. The above model is based on a unit cell that has been split up in the middle accord-417

ing to STM images. Important structural elements of the oxygen sub-lattice are highlighted as well418

as the extended unit cell and two equivalent lines between which the inserted new sites are visible.419

Inserted sites are marked in a slightly different color to distinguish them from the usual sites in the420

oxide unit cell: orange and light blue as compared to red and blue. In figure 10c) an enlarged sec-421

tion of the elongated unit cell at the APDB is given. In the middle of the APDB a broken block of422

8 O atoms appears, which is of the kind that is almost aligned with the NiAl[001] direction. A par-423

ticularly spacious arrangement of oxygen atoms in the shape of a quadrangle (yellow dotted loops)424

is formed at this block at the boundary. This is in agreement with DFT calculations [42], which as-425

22

Insulator surfaces: Al2O3 / NiAl(111) and NaCl

!"#$%&'()*+,-.#"/0

123$4$526$(78

!"#$%&'()$ *+,-./0-"12)1+$3),

Sunday, November 7, 2010